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LINEAR INEQUALITIES AND THE ABSTRACT
MOMENT PROBLEM IN TOPOLOGICAL VECTOR SPACES

L.N.CARLING

Introduction.

In this paper we shall be concerned with the following two problems,
one being the dual of the other.

THE FIRST INEQUALITY PROBLEM. Given a set of elements x, of a real
topological vector space E and a corresponding set of scalars «,, we seek an
element f of E’', the (topological) dual of E, such that

f(xt) -Z “l

holds for all 1, and f satisfies a given topological condition.

THE SECOND INEQUALITY PROBLEM. Given a set of elements f, of E' and
a corresponding set of scalars x,, we seek an element x of E such that

fl(x) ; “l
holds for all ¢, and x satisfies a given topological condition.

The purpose of the paper is to review results already established, and
to present a new result on the second inequality problem. Notice that,
if we replace the inequalities by equalities, and allow Z to be real or
complex, we are then considering the abstract moment problem. In
fact, as we shall see, we may regard this as a special case of the inequality
problem; for brevity let us call it the moment case (the moment form of
the theorems will bear the number of the corresponding inequality theo-
rem with a prime).

I wish to thank Dr. M. R. Mehdi for introducing me to this topic
and for his subsequent help and encouragement.

Normed space.

The following theorem provides the full solution of the first inequality
problem for the case of the normed space.
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THEOREM 1. Let {x,:te I} be any set of elements of the real mormed
space E and {x,: e I} any corresponding set of scalars. Suppose o to be
a given positive real number. A mecessary and sufficient condition for the
existence of w of E' satisfying the relations

(i) w(x)=z«x, tel,
(i) Jull<e
18 that
1) Zeoto, = olZeodmll

should hold for every finite subset Q2 of I and every set of mon-negative
scalars 1, 1€ £2.

This result was given by K. Fan [2, p. 124], though it is contained in
an earlier paper of S. Mazur and W. Orlicz [5, p. 152].

The corresponding theorem for the moment case is well known; it will
now be given to serve as the representative example of the moment form.

THEOREM 1'. Let {x,: 1€ I} be any set of elements of the real or com-
plex normed space E and {x,:ie I} any corresponding set of scalars.
Suppose ¢ to be a given positive real number. A mnecessary and sufficient
condition for the existence of w of E’ satisfying the relations

(i) w(x) = «, el
(i) [lull=e
18 that
(2) IZeoho] = elZicotll

should hold for every finite subset 2 of I and every set of scalars 2,, 1€ Q.

Theorem 1’ was proved in particular cases by F. Riesz and E. Helly
(c. 1912) and in the general case by H. Hahn (1927); a proof is to be
found, for instance, in Banach’s book [1, p. 55]. But it is quite easily
deduced from theorem 1 (I am indebted to H. P. Mulholland for point-
ing this out to me), as we shall now see, the proof being adaptable to
each of the subsequent theorems in the moment form. The necessity is
trivial; to prove the sufficiency we consider first the case when £ is
real. From (2) we obtain the inequality

ztef)(lt—}'t/)“c = @”zte.()(lz_}';')xtn )

where the A, and 2, are arbitrarily chosen non-negative scalars. Hence

zzeﬂlt(xz + Eleglll(_(xl) = 9”249911‘”4_’_2;50}'4,(_x;)” ’
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and the result now follows from an application of theorem 1 to the sets
{z, -2, :1el}and {«, —«,:tel}. Now let £ be complex, and denote
by E, the normed space E with the scalars restricted to the real numbers.
From (2) we obtain the inequality,

IZLEQ (}'t - iltl)azl é 4 szeg (Az - Mz')xt” )

where the 4, and 4 are arbitrarily chosen real numbers. Hence

IZLEQ}'tﬁL + ZLEQ}'L,ytl ~S— 0 !;ZLEQ}’L:EL + ZI,E!J)'[’( - ixz)” ’

where we define §,+4y,=«,. By what we have proved there exists f of
(E,) such that

f) =8, f(—iz)=vy, el,
Ifl <o

Then % given by wu(x)=f(x)+if(—4x) is a continuous linear functional
on E; further, since we may write u(x)=re® (r,0 real numbers), then
lu(x)| =f(e~x) < ol|i|, so that |lu||<e. Hence u fulfils the requirements
of theorem 1'.

The second inequality problem presents more difficulties in its solu-
tion, as the following well known example belonging to the moment case
illustrates.

Exampri. Let E=C[0,1], the space of real continuous functions on
[0,1] with the least upper bound norm. We are given a set

{pp:m=1,2,...}

of functions on [0,1], where each ¢, is constant save for a jump of 1 at
t=1/n. Then it is easy to see that there is no x of C[0,1] for which

1
(x(t) do,(t) = (=1, n=1,2,....
0
even though the dual form of the inequality (2), namely inequality (4),
which we shall presently meet, is satisfied.
The following result, which in its moment form is due to Helly (1921),
partially solves the second inequality problem.

TrEOREM 2. Let {u, : t € I} be any set, the linear hull of which is finite-
dimensional, in E’, the dual of the real normed space E; let {x,:ve I} be
any corresponding set of scalars. Suppose o to be a given positive real
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number. A mecessary and sufficient condition that corresponding to each
&> 0 there should exist x, of E satisfying the relations

(i) u(x)z«, el
(i) llzjlso+e
is that
(3) Seohx, = ollZecndul

should hold for every finite subset 2 of I and every set of nom-negative
scalars A, 1€ Q.

To arrive at the moment form of this theorem, namely theorem 2’
(Helly), one replaces condition (3) by

(4) 2ol = elZicotull s

the 4, being real or complex.

A proof of theorem 2’ is given, for instance, by E. Hille and R. Phillips
[3, p.31]. Theorem 2 will be deduced as a corollary of a theorem to appear
later in this paper.

We now come to the full solution of the second inequality problem, and
therefore of the second moment problem, a result believed to be new. Es-
sentially what is done to obtain this is the replacing of condition (3) in
theorem 2 by a stronger condition.

TaEOREM 3. Let {u,: €1} be any set of elements of E', the dual of the real
normed space E, and let {a,: . I} be any corresponding set of scalars. Suppose
o to be a given positive real number. A necessary and sufficient condition for
the existence of x of E satisfying the relations

(i) u(zx) 2 a,, el,

(ii) Jll| = o
s that
(5) Dot X, = 0 SUPL_y, . m |20 d W (Yr)]
should hold for some finite subset {yy,. . .. yn}, O<|lyel| £ 1, k=1,...,m,of E,
Sfor every finite subset 2 of I and for every set of non-negative scalars 2.,
te L.

Proor. Necessity. Suppose there exists z of E satisfying relations (i)
and (ii). If z=0 (the origin), then (5) is trivially true. Suppose therefore
that = 6; then for any finite subset 2 of I and any set {4,::€ 2} of
non-negative scalars we have

zlegﬂtal = LE-Q}' (x) “x” ZLeﬂltut(x/”x“) é Q |Ztegltut(y)1 ’

where y =x/||z||.
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Sufficiency. Put B={x e E : ||z||<o} and let F be the linear hull of
{¢,. . ,¥n}. Then X =FnB is absolutely convex and compact. We first
show that the set,

Gg = NolreB u@)z2x}

is non-empty for any finite subset £2 of I. Let n be the cardinality of
such a set 2 and put u; =u, for brevity. Define the mapping 7':  — R»
by

T(x) = (uy(x),. .., uy(x)) .

T 1s clearly linear and continuous; so the set D=7(X) is absolutely
convex and compact.
Now suppose G,=0 and therefore G,nF =0; then the closed convex

cone,
C = (0g,..r00) + {(&p,. ., &) 16,20, 0=1,...,n}

and D are disjoint. Therefore a hyperplane in R® strictly separates
them; that is, there is a linear functional ¢ on R™ and a real number y
satisfying

SuP,cp@(2) <y < @(y)

for every y of C. D being balanced, it follows that

SupzeDl(p(z)i < ‘P(y)

holds for every y of C. This means that there are real number 1,,...,4,
for which
|1 (@) < Zf_q (oo + 1)

is true for every z of X and for all ,=0, k=1,...,n. From this we draw
two conclusions:

(1) 4,20, k=1,...,n,

(i) olX%- 1wyl <Zp1dpop,  t=1,...,m,
and thus arrive at a contradiction. Hence G,nF is not empty.

Now let, & ={Q: 2 is a finite subset of I}. The intersection G,nF,

being equivalent to
naeﬂ{x : ut(x) 2 0‘;} nx ’

is a closed subset of X. Then the set ¥={G,nF:Qe F} is a family
of closed subsets of the compact set X. It is clear that

Ni_1Go, = NioNicodr e B u@)z o}
=N.yzeB:u@)zx}, N=Ui 2,

Math. Scand. 24 — 15
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where 2, € #. We have therefore seen that any finite intersection of
% is non-empty; it follows from the finite-intersection property of %
that Ny, zGoNF +0 and hence N, 4 G,+0 holds. This completes the
proof.

In the moment form of this theorem, namely theorem 3’, condition (5)
is replaced by

(6) |zte!)}'t(xtl é e Supk=l,...,m ]zzteLuz(yk)l ’

the 1, being real or complex.

REMARKS. 1. Theorem 3’ can be proved in a manner similar to that of
theorem 3 just given, the non-negative cone in R™ being replaced by the
set {(ovg,. s 0p)}

II. The proof of theorems 1 and 1’ rely on Zermelo’s axiom through
the agency of the theorem on the weak-star compactness of the unit
ball in E’ and the Hahn-Banach theorem respectively. The deepest
theorem depended on in the proof of theorems 3 and 3’ is that of a conti-
nuous function’s assuming its supremum on a compact set in the medium
of the separation theorem in R”.

By means of the following lemma we shall deduce theorems 2 and 2’
from theorems 3 and 3’ respectively.

LeMMA. Let {w,,...,u,} be a linearly independent set in E’, the dual of a
normed space E ; let 6> 0 be given. Then there exists a finite set {yy,. . ., Y}
0<|ly,ll£1, k=1,...,m, in E for which

X7 1uull S (1406) SUPgay,.. m | 251 25%(Yi)|

holds for every set of scalars p;, j=1,...,n.

Proor. Put B={x € E : |x[|<1} and let K denote the ground field of
E (either R or C). Further write

A= A= .., h) e En: |2|=1}

(the Euclidean norm is meant) and u,=37_, A,u, for each A of K™ Choose
any A from A, but z, from B such that u,(x,) differs from zero; put
e=0|u,(z,)|. By the definition of norm in E’ there is some x, of B such
that
lluall — & < |u(,)
holds. Then we have
llwall < ua(@2)] + 0 |uy(@o)]
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which we now write as

llwall < (L+6)|wa(y,)l
where

_fxy  if |uy(a,)] 2 |uy(x;)| holds ,
Y=z, otherwise .

Clearly the condition 0< |jy,||=1 is met.
For each 1 of A define the mapping 7', : K™\{0} - R by

Ty(%) = (L+0)w(yy)l/llw,l.

T, is continuous, since {u,,...,u%,} is linearly independent. Hence to
each A of A there corresponds an open neighbourhood U, of 4 in K* that
is contained within the set {x : 7';(x)>1}. Being compact A is covered
by a finite subfamily of {U,: 1€ A4}, say by {U,,...,U, }. Hence we
have

lwdl = (140)u,(y)]

for each » of U, and for k=1,...,m, and therefore

lwll = (1+0) supy,...,m|%x(Ys)]

for each A of A (we put y, =y, for brevity). Now A being absorbent in
K™, there is some g >0 for which gu € A for each u of K*; we therefore
arrive at the inequality

(IZ7-1 epywsll = (1+0) suPpy, ... m |27 1 005%; (Y1)
which, divided through by p, yields the required result.

A PROOF OF THEOREMS 2 AND 2'. Let {u,,...,u,} be a base of the
linear hull of the given u,, ¢ € I. By the lemma there exists a finite set
M1, s Um}s O<|lyll£1, k=1,...,m, in E such that

IZ7-1 Al = (1+efo) suDpey,...,m 1271415y

for every set of scalars 4;, j=1,...,n. With condition (3) and condition
(4) respectively we obtain

Sea i, S (0+¢) suPy_y,.. m |20t ®, (Yl
and

|2¢e!)lto‘z| é (Q + 8) Supk=1,...,m IZLEQ )'tu’;(yk)l

for every finite subset 2 of I and every set of the appropriate scalars
1, te Q. The result now follows immediately from theorems 3 and 3’
respectively.
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We have seen that the counter-example given above satisfied condition
(4) of Helly’s theorem. Let us now verify that it does not satisfy condi-
tion (6). We show that

(7) Zrcotn(—1)¥| < 0 |Zpeotay(1/k)]|

fails to hold for every y of E and every ¢ >0, for some finite subset £
of the positive integers and some scalars 2,, k € Q.

Let y be any element of E. If y(1/k)=0 for some positive integer k,
then (7) is violated for every o > 0 if we take Q= {k} and 4, =1. Suppose
therefore that y(1/k)+0, k=1,2,.... If y(1/k) has the same sign for two
consecutive values n, n+1 of k, (7) is again violated for every o >0 if
we take 2={n,n+ 1} and put

= (= 1¥y(1fk), keQ.

Hence we may suppose now that the sign of y(¢) alternates at t=1,%,...
But then by the continuity of y on [0,1], it is clear that y(1/k) — 0 must
hold as k — o. Let p> 0 be given, and take Q= {k,} where k, is a posi-
tive integer for which |y(1/k,)| <1/e holds. Then (7) is violated if we
take 1, =1, and we have now exhausted the possible elements of £ that
y could be.

Locally convex space.
The generalisation of theorem 1 to a locally convex space [6] (under-
stood throughout to be Hausdorff) is as follows.

THEOREM 4. Let {x, : 1 € I} be any set of elements in a real locally convex
space E, the topology of which is generated by the set S of semi-norms and
{x,:ve I} any corresponding set of scalars. Suppose that ¢ is a given
positive real mumber and {p,,...,p,} (p, non-zero) a given finite subset
of 8. A necessary and sufficient condition for the existence of w of E' satisfy-
ing the relations

(i) wx)ze, cel,
(i) [u(x)| =@ SUPj-,...,mP5(%)

for every x of E is that
(8) Ete.()}'zocz é qupj=1,...,mp}( ze.Q)' )

should hold for every finite subset 2 of I and for every set of non-negative
scalars A, 1€ Q.



LINEAR INEQUALITIES AND THE ABSTRACT MOMENT PROBLEM ... 229

Theorem 4 has been given by O. Hustad [4, p. 397], though as he
points out in a later paper the result is essentially contained in [5, p. 147].
Hustad deduces an interesting corollary, from which I first deduced
theorem 3.

The moment form of theorem 4 (with (8) replaced by

IELEQAL“I! —é e sup]'=l ..... mpj (ZLG.QZ'L‘T::))

is deducible from it by the argument used in deducing theorem 1’ from
theorem 1, since we used only the semi-norm properties of the norm
there. For the same reason theorem 4’ can be proved directly by the
standard proof of theorem 1’ mutatis mutandis.

Scrutiny of theorems 1, 3 and 4 reveals that each can be considered
as a particular case of the following general theorem.

TuEOREM 5. Let (B, E,) be a dual pair of real vector spaces, E, provided
with a topology that makes it a locally convex space. Let {x,: 1 I} be any
set of elements of E,, and {x,:v€ I} any corresponding set of scalars.
Suppose U to be an absolutely convex neighbourhood of the origin in K,
and let g > 0 be given. A necessary and sufficient condition for the existence
of w of E, satisfying the relations

i) <z uyzwx, vel,
(ii) we oU°, U° the polar of U,

8 that
(9) Z;e!)lz(x; b Q SUPyey I<ZL€-QZ'LxL’ ’U>|
should hold for some absolutely convex o(E,, E,)-compact subset V of U°,

for every finite subset Q of I and for every set of non-negative scalars 2,, t € .

PRrOOF. Necessity. If w=0, then (9) is trivially true. Suppose therefore
that w =+ 6. For each finite subset 2 of I, and for every set of non-negative
scalars 4, 1€ 2,

Eteglt(xt § ZLGQAKxnu) § QKZteQz’anu/Q)I § 0 SuvaVl<ZLE.Qltxt’v>l ’

where V is the absolutely convex hull of {u/p,6}, which is clearly a
o(E,, E,)-compact subset of U°.
Sufficiency. We first show that the set

GQ = nze.Q {’ll/ € QUO : <.’Ifl,'ll/>; o‘t}

is non-empty for any finite subset 2 of I, which is of cardinality =, say.
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Denote by E,(o) the locally convex space E, with the ¢(E,, ) topology.
Define the mapping 7' : Ey(s) — R® by

T(u) = K@pups- - X2y w))

(we write x, as x, for brevity). 7' is clearly linear; it is continuous
(E, is the dual of E,(c)). Hence D=T(V) is absolutely convex and com-
pact.

Now suppose G,=0; then the closed convex cone

C = (0g,00s00)+ {5y, . &) 1 £,20,0=1,...,n}

and D are disjoint. Therefore, as in the proof of theorem 3, there are
real numbers 4,, k=1,...,%, satisfying the relations

(1) 2,20, k=1,...,n,
(1) ol{Zh=1MZhs V)| < D1ty

for every v of V. This contradicts the hypothesis and so we have shown
that G, is not empty.
Now let
F = {Q:Qis a finite subset of I} .
Then
G = {G,nV:2eF}

is a family of o(Z,, E,)-closed subsets of the o(E,, E,)-compact set V.
Precisely as in the proof of theorem 3, by the finite-intersection property
of ¢ it follows that N, 4G, + 0, and so the proof is complete.

The moment form of this, theorem 5’, in which condition (9) would be
replaced by
IZ;telo‘:l é 0 supveVKZze.Ql;xnv)I ’

2, being real or complex, can be proved directly in a manner similar to
the proof above (cf. the first remark following theorem 3).

That theorems 1 and 4 are a particular case of theorem 5 is a conse-
quence of the Alaoglu-Bourbaki theorem on the weak-star compactness
of the polar of a neighbourhood in a locally convex space, and the Hahn—
Banach theorem. To see this one takes

U= {zxek:sup;,,  .pix)s1}

for theorem 4; it is easily verified that oU® is precisely the set of u of E’
that satisfy relation (ii). One takes ¥V =U° and then has only to show
that

SUP,epe [()| = SUP;,...,m P4(%)
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holds for each z of E; clearly it is sufficient to show that

(10) SUPye po [2(2)] Z SUPjy,..,m Pi(¥) = P()

holds for each x of E, where p is clearly a semi-norm. We may obviously
suppose that x+0; then define the linear functional f on the linear
hull L of {«} by

fiz) = 2p().

By the Hahn-Banach theorem there is some % of E’ such that

wy) =fy), yeL, and |uly) <py), yek,
hold, so that w € U°. Then |u(x)|=p(x) follows and hence relation (10).
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