ON STEINER AND SIMILAR TRIPLE SYSTEMS

A. J. W. HILTON

1. Introduction.

Given a finite set S of s elements, a Steiner triple system over the set S is a system of triples of elements of S such that each pair of elements is contained in one and only one of the triples. It is well known [3] that a necessary and sufficient condition for the existence of a Steiner triple system is that s=6n+1 or 6n+3 for some positive integer n. In [5] Th. Skolem gave a method for constructing a Steiner triple system in the case s=6n+1, $n\equiv 0$ or 1 modulo 4, and in [2] H. Hanani extended this to the case s=6n+1, $n\equiv 2$ or 3 modulo 4. In this paper a similar method for constructing a Steiner triple system in all cases is given. In [1] Fort and Hedlund gave an inductive method for constructing a minimal system of triples such that each pair occurs in at least one triple, and here a non-inductive method is given. Similarly in [4] J. Schönheim gave a construction for a maximal system of triples such that no pair is contained in more than one triple and, again, another construction is given here.

2. Construction of a Steiner triple system if s = 6n + 1.

In [5] Th. Skolem showed that the numbers 1, 2, ..., 2n can be distributed in n pairs with differences 1, ..., n if and only if $n \equiv 0$ or 1 modulo 4. In [6] he used this to construct a Steiner triple system when s = 6n + 1 and $n \equiv 0$ or 1 modulo 4. He also remarked that a necessary condition for the distribution of the integers 1, ..., 2n - 1, 2n + 1 into n pairs with differences 1, ..., n is $n \equiv 2$ or 3 modulo 4 and noted that if such a distribution could be found, then a Steiner triple system in the case $n \equiv 2$ or 3 modulo 4 could be constructed. Later H. Hanani [2] showed that if $n \equiv 3$ modulo 4, then the integers 1, ..., n, n+2, ..., 2n+1 can be distributed into n pairs with differences 1, ..., n and used this to construct a Steiner triple system in the case s = 6n+1, $n \equiv 2$ or 3 modulo 4.

Firstly, for $n \equiv 0$ or 1 modulo 4, different distributions of the numbers $1, \ldots, 2n$ into n pairs (a_r, b_r) with $b_r - a_r = r$, $r = 1, \ldots, n$, from those of

Received September 18, 1967; in revised form March 28, 1969.

Skolem are given. For n=4m and $m \ge 1$ the distribution is given in the following chart.

r	$a_{m{r}}$	$b_{\it r}$	
2α	$2m+1-\alpha$	$2m+1+\alpha$	$\alpha=1,2,\ldots,2m;$
1	7m	7m + 1	
$1+2\alpha$	$6m-\alpha$	$6m+1+\alpha$	$\alpha=1,2,\ldots,m-2;$
2m - 1	4m + 2	6m + 1	$m \geq 2$;
$2m-1+2\alpha$	$5m+2-\alpha$	$7m+1+\alpha$	$\alpha=1,2,\ldots,m-1;$
3m - 1	2m + 1	6m.	

Chart 1.

For n = 4m + 1 and $m \ge 2$ the distribution is

r	a_{r}	$b_{\it r}$	
2α	$2m+1-\alpha$	$2m+1+\alpha$	$\alpha=1,2,\ldots,2m;$
1	5m + 2	5m + 3	
$1+2\alpha$	$6m+2-\alpha$	$6m+3+\alpha$	$\alpha=1,2,\ldots,m-2;$
2m-1	6m + 3	8m + 2	
$2m-1+2\alpha$	$5m+2-\alpha$	$7m+1+\alpha$	$\alpha=1,2,\ldots,m;$
4m + 1	2m+1	6m + 2.	

Chart 2.

Next, for $n \equiv 2$ or 3 modulo 4, distributions of the integers $1, \ldots, 2n-1, 2n+1$ into n pairs (a_r, b_r) with $b_r-a_r=r$, $r=1, \ldots, n$, are given, which answers Skolem's query [6]. The distributions of the integers $1, \ldots, 2n$ given above are very similar to each other and further, they are very similar to the distributions of the integers $1, \ldots, 2n-1, 2n+1$ given immediately below. For n=4m+2 and $m \ge 2$ the distribution is

r	$a_{m{r}}$	$b_{m{r}}$	
2α	$2m+2-\alpha$	$2m+2+\alpha$	$\alpha=1,2,\ldots,2m+1;$
1	7m + 4	7m + 5	
$1+2\alpha$	$6m+2-\alpha$	$6m+3+\alpha$	$\alpha=1,2,\ldots,m;$
2m + 3	6m + 2	8m + 5	
$2m+3+2\alpha$	$5m+2-\alpha$	$7m + 5 + \alpha$	$\alpha=1,2,\ldots,m-2;$
4m + 1	2m + 2	6m+3.	

Math. Scand. 24 - 14

For n = 4m + 3 and $m \ge 1$ the distribution is

$m{r}$	a_r	$b_{\it r}$	
2α	$2m+2-\alpha$	$2m+2+\alpha$	$\alpha=1,2,\ldots,2m+1;$
1	5m + 4	5m + 5	
$1+2\alpha$	$6m + 5 - \alpha$	$6m+6+\alpha$	$\alpha=1,2,\ldots,m-1;$
2m + 1	6m + 6	8m + 7	
$2m+1+2\alpha$	$5m+4-\alpha$	$7m + 5 + \alpha$	$\alpha=1,2,\ldots,m$;
4m + 3	2m+2	6m+5.	

Now let A be the set of all triples

$$\{x, x+r, x+n+b_r\}, \quad r=1,\ldots,n; x=1,\ldots,6n+1,$$

where each number is taken modulo 6n+1. Then A is a Steiner triple system. The number of distinct triples of A is at most n(6n+1) = s(s+1)/6 which is well-known [3] to be the number of triples in a Steiner triple system. It is therefore only necessary to show that each pair $\{y,z\}$ of unequal numbers between 1 and 6n+1 occurs at least once in a triple of A.

It is clear that

$$(1,2,\ldots,n,n+a_1,n+a_2,\ldots,n+a_n,n+b_1,n+b_2,\ldots,n+b_n)$$

is a permutation of $(1,\ldots,3n)$ if $n\equiv 0$ or 1 modulo 4, or of $(1,\ldots,3n-1,3n+1)$ if $n\equiv 2$ or 3 modulo 4. Exactly one of the differences of the pair $\{y,z\}$ is congruent modulo 6n+1 to one of $1,\ldots,3n$ and similarly exactly one is congruent modulo 6n+1 to one of $1,\ldots,3n-1,3n+1$. We may therefore assume that z-y is congruent modulo 6n+1 to one of $1,\ldots,3n$ if $n\equiv 0$ or 1 modulo 4, and to one of $1,\ldots,3n-1,3n+1$ if $n\equiv 2$ or 3 modulo 4. For some r, $1\leq r\leq n$, if z-y=r or $n+b_r$, then

$$\{y,z\} \subset \{y,y+r,y+n+b_r\} \in A$$
 ,

and if $z-y=n+a_r$, then

$$\{y,z\} \, \subset \, \{z-n-b_r,z-n-a_r,z\} \in A$$
 .

It follows therefore that A is a Steiner triple system.

3. Construction of a Steiner triple system if s = 6n + 3.

A very similar method exists in this case to that already described in the case s=6n+1. Firstly, if $n\equiv 0$ or 3 modulo 4, the integers $1,\ldots,n$, $n+2,\ldots,2n+1$ are distributed into n pairs (c_r,d_r) with $d_r-c_r=r$, $r=1,\ldots,n$. The distribution when n=4m and $m\geq 1$ is as follows:

The distribution when n=4m+3 and $m \ge 0$ is given in the chart immediately below, and was given by H. Hanani in [2].

Next, for $n \equiv 1$ or 2 modulo 4 the integers $1, \ldots, n, n+2, \ldots, 2n, 2n+2$ are distributed into n pairs (c_r, d_r) with $d_r - c_r = r, r = 1, 2, \ldots, n$. For n = 4m + 1 and $m \ge 2$ the distribution is

r	c_{r}	d_{r}	
2α	$2m+1-\alpha$	$2m+1+\alpha$	$\alpha=1,2,\ldots,2m;$
1	7m + 3	7m + 4	
$1+2\alpha$	$6m+1-\alpha$	$6m+2+\alpha$	$\alpha=1,2,\ldots,m;$
2m + 3	6m + 1	8m + 4	
$2m+3+2\alpha$	$5m+1-\alpha$	$7m+4+\alpha$	$\alpha=1,2,\ldots,m-2;$
4m + 1	2m + 1	6m+2.	

The distribution for n = 4m + 2 and $m \ge 2$ is

Now let B be the set of all triples

$$\{x, x+r, x+n+d_r\}, \qquad r=1,\ldots,n; \ x=1,\ldots,6n+3,$$

where each number is taken modulo 6n+3, and let C be the set of all triples

$$\{x, x+2n+1, x+4n+2\}, \quad x=1,\ldots,2n+1.$$

Then the union D of B and C is a Steiner triple system. The number of distinct triples of D is at most n(6n+3)+2n+1=(6n+3)(6n+2)/6=s(s+1)/6, which is the correct number of triples for a Steiner triple system. It is therefore only necessary to verify that each pair $\{y,z\}$ of unequal numbers between 1 and 6n+3 occurs at least once in a triple of D. We omit this verification as it is very similar to the one at the end of section 2.

4. Further distributions and a lemma.

If $n \equiv 0$ or 1 modulo 4 then, as shown in charts 1 and 2 of section 2, it is possible to distribute the integers $1, \ldots, 2n$ into n pairs (e_r, f_r) with $f_r - e_r = r$, $r = 1, \ldots, n$ (putting $a_r = e_r$ and $b_r = f_r$ for $r = 1, \ldots, n$). For $n \equiv 2$ or 3 modulo 4 distributions are now given of the integers $1, \ldots, 2n-1, 2n+3$ into n pairs (e_r, f_r) with $f_r - e_r = r, r = 1, \ldots, n$. For n = 4m+2 and $m \ge 3$ the distribution is

r	e_{r}	${f}_{m{r}}$	
2α	$2m+2-\alpha$	$2m+2+\alpha$	$\alpha=1,2,\ldots,2m+1;$
1	7m + 5	7m + 6	
$1+2\alpha$	$6m+2-\alpha$	$6m+3+\alpha$	$\alpha=1,2,\ldots,m+1;$
2m + 5	6m+2	8m + 7	
$2m+5+2\alpha$	$5m+1-\alpha$	$7m+6+\alpha$	$\alpha=1,2,\ldots,m-3;$
4m + 1	2m + 2	6m+3.	

For n = 4m + 3 and $m \ge 1$ the distribution is

r	e_r	f_{r}	
2α	$2m+2-\alpha$	$2m+2+\alpha$	$\alpha=1,2,\ldots,2m+1;$
1	5m + 3	5m + 4	
$1+2\alpha$	$6m + 5 - \alpha$	$6m+6+\alpha$	$\alpha=1,2,\ldots,m;$
2m + 3	6m + 6	8m + 9	
$2m+3+2\alpha$	$5m+3-\alpha$	$7m+6+\alpha$	$\alpha=1,2,\ldots,m-1;$
4m + 3	2m + 2	6m + 5.	

Let E be the set of all triples

$$\{x, x+r, x+n+f_r\}, \qquad x=1,\ldots,6n+3; \ r=1,\ldots,n$$

where each number is taken modulo 6n+3. The set E is the foundation of several triple systems in the next two sections.

LEMMA. Let $\{y,z\}$ be a pair of unequal numbers between 1 and 6n+3 and let neither of the differences of $\{y,z\}$ be congruent to 3n+1 modulo 6n+3. Then $\{y,z\}$ is a subset of exactly one of the triples of E.

PROOF. It is clear that $(1,\ldots,n,n+e_1,\ldots,n+e_n,n+f_1,\ldots,n+f_n)$ is a permutation of $(1,\ldots,3n)$ if $n\equiv 0$ or 1 modulo 4 or of $(1,\ldots,3n-1,3n+3)$ if $n\equiv 2$ or 3 modulo 4. Since neither of the differences of $\{y,z\}$ are congruent to 3n+1 modulo 6n+3, one of the differences of $\{y,z\}$ is congruent modulo 6n+3 to one of $1,\ldots,3n$ and similarly one is congruent modulo 6n+3 to one of $1,\ldots,3n-1,3n+3$. We may therefore suppose that z-y is congruent modulo 6n+3 to one of $1,\ldots,3n$ if $n\equiv 0$ or 1 modulo 4 and to one of $1,\ldots,3n-1,3n+3$ if $n\equiv 2$ or 3 modulo 4. For some r, $1\leq r\leq n$, if z-y=r or $n+f_r$ then

$$\{y,z\} \subset \{y,y+r,y+n+f_r\} \in E$$

whilst if $z - y = n + e_r$ then

$$\{y,z\} \subset \{z-n-f_r,z-n-e_r,z\} \in E.$$

Therefore $\{y,z\}$ is a subset of at least one triple of E.

The number of triples in the set E is clearly at most n(6n+3) and so the number of distinct pairs contained by the triples of E is at most 3n(6n+3); equality here implies that no pair occurs in more than one triple of E. But each pair $\{y,z\}$ satisfying the conditions of the lemma is a subset of a triple of E, and the number of such pairs is clearly

$$\binom{6n+3}{2} - (6n+3) = 3n(6n+3).$$

Therefore no pair $\{y,z\}$ occurs in more than one triple of E.

5. Each pair in at least one triple.

Suppose that a set T of triples of elements of S has the following property P: each pair of elements is in at least one triple. An element $a \in S$ occurs at least once with every other element of S in a triple of T, and so the number of triples in which a occurs is at least $\lceil \frac{1}{2}(s-1) \rceil$, where

[x] denotes the smallest integer which is not less than x. Therefore the number |T| of triples of T is at least $\frac{1}{3}s[\frac{1}{2}(s-1)]$ and since the number of triples must be an integer we obtain

$$|T| \ge \left\lceil \frac{1}{3} s \left\lceil \frac{1}{2} (s-1) \right\rceil \right\rceil = \nu.$$

Fort and Hedlund [1] constructed inductively a triple system T of ν triples which had property P. We now give such a minimal triple system simply and explicitly, for all but a few small values of s. For completeness, we give all cases although cases 1 and 2 are given by Fort and Hedlund. We first observe that

$$v = \begin{cases} 6n^2 + n & \text{if } s = 6n + 1 \text{ ,} \\ 6n^2 + 4n + 1 & \text{if } s = 6n + 2 \text{ ,} \\ 6n^2 + 5n + 1 & \text{if } s = 6n + 3 \text{ ,} \\ 6n^2 + 8n + 3 & \text{if } s = 6n + 4 \text{ ,} \\ 6n^2 + 9n + 4 & \text{if } s = 6n + 5 \text{ ,} \\ 6n^2 + 12n + 6 & \text{if } s = 6n + 6 \text{ .} \end{cases}$$

Case 1. s = 6n + 1 or 6n + 3. Then a Steiner triple system on s elements has the property P and has ν elements.

Case 2. s = 6n + 2 or 6n + 4. To a Steiner triple system on the numbers $1, \ldots, s-1$ add the triples

$$\{s, x, x + \frac{1}{2}s\}, \quad x = 1, 2, \dots, \frac{1}{2}s - 1, \quad and \quad \{s, \frac{1}{2}s, 1\}.$$

The triple system obtained has the property P and contains ν triples.

Case 3. s = 6n + 5. Let F be the set of all triples

$$\{6n+4, 1+2\alpha(3n+1), 1+(2\alpha+1)(3n+1)\},$$
 $\alpha=1,2,\ldots,3n+1,$
 $\{6n+5, 1+(2\alpha+1)(3n+1), 1+(2\alpha+2)(3n+1)\},$ $\alpha=0,1,\ldots,3n+1,$

where the last two numbers in each triple are taken modulo 6n+3. The union G of E (defined in section 4), F and the set containing just the triple $\{6n+5,6n+4,3n+2\}$ contains $(6n+3)n+(3n+1)+(3n+2)+1=\nu$ triples and has property P.

To see that G has property P let $\{y,z\}$ be a pair of unequal numbers between 1 and 6n+5. If $\{y,z\} \subseteq \{6n+5,6n+4,3n+2\}$ then $\{y,z\}$ is a subset of a triple of G. Suppose therefore that $\{y,z\} \in \{6n+5,6n+4,3n+2\}$. Since (6n+3,3n+1)=1, each residue class modulo 6n+3 contains one of the numbers $1+\beta(3n+1)$, $\beta=2,3,\ldots,6n+3$, except for the residue

class which contains 3n+2. Therefore if (6n+4) or $(6n+5) \in \{y,z\}$ then $\{y,z\}$ is a subset of a triple of F. If $\{6n+4,6n+5\} \cap \{y,z\} = \emptyset$ and one of the differences of $\{y,z\}$ is congruent modulo 6n+3 to 3n+1 then $\{y,z\}$ is a subset of a triple of F, whilst if neither of the differences of $\{y,z\}$ is congruent to 3n+1 modulo 6n+3 then, by the lemma, $\{y,z\}$ is a subset of a triple of E. Since G is the union of E, F and $\{\{6n+5,6n+4,3n+2\}\}$ it follows that G has property P.

Case 4. s = 6n + 6. Let H be the set of all triples

$$\{6n+6,x,x+3n+2\}, \qquad x=1,2,\ldots,3n+2.$$

Then the union J of E (defined in section 4), F (defined in case 3 above), H and the set containing just the triple $\{6n+6,6n+5,6n+4\}$ contains $(6n+3)n+(3n+1)+2(3n+2)+1=\nu$ triples and has property P. The verification of this is omitted since it is similar that of case 3.

6. Each pair in at most one triple.

Now suppose that a set T of triples of elements of S has the following property Q: no pair of elements is in more than one triple. An element $a \in S$ occurs at most once with every other element of S in a triple of T, and so the number of triples in which a occurs is at most $\left[\frac{1}{2}(s-1)\right]$, where [x] denotes the largest integer not larger than x. Therefore the number |T| of triples of T is at most $\frac{1}{3}s\left[\frac{1}{2}(s-1)\right]$ and since the number of triples must be an integer we obtain

$$|T| \leq \left[\frac{1}{3}s\left[\frac{1}{2}(s-1)\right]\right]$$
 .

J. Schönheim [4] has shown that, if

$$\mu = \begin{cases} \left[\frac{1}{3} s \left[\frac{1}{2} (s-1) \right] \right] & \text{for} \quad s \equiv 5 \pmod{6} \text{,} \\ \left[\frac{1}{3} s \left[\frac{1}{2} (s-1) \right] \right] - 1 & \text{for} \quad s \equiv 5 \pmod{6} \text{,} \end{cases}$$

then $|T| \leq \mu$, and further, in all cases he constructed a triple system T of μ triples which had the property Q. We now give such a maximal triple system simply and explicitly for all but a few small values of s. For completeness again, we give the construction in all cases, although cases 1 and 2 are given by Schönheim. We first observe that

$$\mu \,= \left\{ \begin{aligned} &6n^2-2n & & if \ s=6n \ , \\ &6n^2+n & & if \ s=6n+1 \ , \\ &6n^2+2n & & if \ s=6n+2 \ , \\ &6n^2+5n+1 & & if \ s=6n+3 \ , \\ &6n^2+6n+1 & & if \ s=6n+4 \ , \\ &6n^2+9n+2 & & if \ s=6n+5 \ . \end{aligned} \right.$$

Case 1. s = 6n + 1 or 6n + 3. Then a Steiner triple system on s elements has the property Q and has μ elements.

Case 2. s = 6n or 6n + 2. From a Steiner triple system on s + 1 elements delete all triples containing a particular element. The triple system remaining has the property Q and has μ elements.

Case 3. s = 6n + 4. Let K be the set of all triples

$$\{6n+4, x, x+3n+1\}, \quad x=1,\ldots,3n+1.$$

Then the union L of E (defined in section 4) and K contains $(6n+3)n+3n+1=\mu$ triples and also has property Q. This is easily verified using the lemma.

Case 4. s = 6n + 5. Let M be the set of all triples

$$\{6n+4, 1+2\alpha(3n+1), 1+(2\alpha+1)(3n+1)\},\$$

 $\{6n+5, 1+(2\alpha+1)(3n+1), 1+(2\alpha+2)(3n+1)\},\$ $\alpha=1,\ldots,3n+1$,

where the last two numbers of each triple are taken modulo 6n+3. The union N of E (defined in section 4) and M contains $(6n+3)n+2(3n+1)=\mu$ triples and also has property Q. Again, this is easily verified using the lemma.

Added in proof.

Let E' be the set of all triples $\{x, x+3i+1, x+6i+3\}$, $x=1, \ldots, 6n+3$, $i=0, \ldots, n-1$, where each number is taken modulo 6n+3. Then E' can be used instead of E, whenever E was used, since E' also satisfies the lemma. The advantage of E' over E is that E' has a simpler construction.

REFERENCES

- M. K. Fort, Jr., and G. A. Hedlund, Minimal coverings of pairs by triples, Pacific J. Math. 8 (1958), 709-719.
- 2. H. Hanani, A note on Steiner triple systems, Math. Scand. 8 (1960), 154-156.
- E. Netto, Lehrbuch der Combinatorik, Zweite Auflage, Erweitert und mit Anmerkungen versehen von V. Brun und Th. Skolem, Berlin, 1927. Reprint New York, 1958.
- J. Schönheim, On maximal systems of k-tuples, Studia Sci. Math. Hungar. 1 (1966), 363-368.
- Th. Skolem, On certain distributions of integers in pairs with given differences, Math. Scand. 5 (1957), 57-68.
- 6. Th. Skolem, Some remarks on the triple systems of Steiner, Math. Scand. 6 (1958), 273-280.