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TOPOLOGICAL GROUPS IN WHICH MULTIPLICATION
ON ONE SIDE IS DIFFERENTIABLE OR LINEAR

PER ENFLO

Our aim in this paper is to study Hilbert’s fifth problem for infinite-
dimensional groups. We will imitate the historical development for finite-
dimensional groups and so we study groups with a left-condition on the
group multiplication. In 1938 it was proved by Birkhoff [1] that locally
Banach local groups where (x,y) — x-y is continuously differentiable in
a sense defined below, are analytic local groups. In 1946 it was proved
by Segal [3] that locally Euclidean groups where x — x-y is differentiable
for fixed y, are Lie groups. Contrary to Birkhoff’s proof Segal’s proof is
valid only for finite-dimensional groups, since it makes use of Haar
measure and also for other reasons. The main result of this paper,
Theorem 2.1, shows how Segal’s theorem generalizes to the infinite-
dimensional case. We also give two types of counter-examples to show,
that only continuity of the group multiplication and left differentiability
do not imply analyticity. I wish to thank H. Radstrom, who suggested
that I should study infinite-dimensional groups, for helpful discussions
and stimulating interest.

Definitions.

Let f be a map from a Banach space B to a Banach space C. We say
that f has a strong Gateaux derivative at x,, if

If (@) =f@)ll = O(lx—=ll) as 2z,
and if there is a continuous linear operator »: B — C such that
ILf () —f () — u(@ — 0)|| = o(llx —2,]))

in every finite-dimensional subspace of B. We say that w is the Frechet
derivative of f at z,, if

I @)= f (@) —uw(@—2)l| = olle—x)l as z—z,.

We say that f is continuously Frechet differentiable, if « depends continu-
ously on z, in the norm topology for .

Received June 15, 1967.



196 PER ENFLO

A local group is called a left differentiable local group if it satisfies the
conditions 1) and 2a) below. It is called a local L-group (left linear group)
if it satisfies the conditions 1) and 2b) below. It is called an analytic
local group if it satisfies the conditions 1) and 2c¢) below.

1) A neighbourhood of the unit element is a neighbourhood of zero
in a Banach space and zero is unit element.

2a) x — z-y is continuously Frechet differentiable, if z and y are suffi-
ciently near zero.

2b) The group multiplication satisfies x y=y+7T,x where T, is a
linear transformation depending on y, if # and y are sufficiently near zero.

2¢) (x,y) - x-y is continuously Frechet differentiable, if  and y are
sufficiently near zero.

The above mentioned theorem by Birkhoff explains our choice of
terminology in the last definition.

An L-group is a group in which a neighbourhood of the unit element
is a local L-group.

1. Some elementary properties and examples of L-groups.

In a local L-group we have:

1) The operator T, is bounded since x — z-y=y-+ T x is continuous.
2) |||l is bounded for y in some neighbourhood of zero since (z,y) —
x-y is continuous at (0,0).

3)T,.,=T,T,. This follows from the associative law.

4) y -~ T, is continuous in strong operator topology for 7',. This
follows from the formula 7', — T xy=xy—x-y,+y,—y, Where the right
hand side tends to zero as y — y,.

5) If y —» T, is continuous at some point 7, in the norm topology for
T,, it is also continuous at the point z-y,, and so y - T, is continuous
in a neighbourhood of zero in the norm topology for 7',. This follows

from 1) and 3), since
”Tz~y_Tz-y0|| = TyTz_Tz/oTz” = ”Ty_Tyo” ”Tz”
which tends to zero as y — y,.

We now give two examples of L-groups which are not analytic local
groups.

ExampLE 1. Let G be the set of continuously differentiable real-
valued functions on [0,1] with f(0)=0, f(1)=1, f'(x)>0. As group
operation we take (f,9) —~fog and as metric we take d(f,g)=
sup|f'(x)—g'(z)]. In this way G becomes a topological group. For
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d(fog, fooge) < sup|f(g(x))-g (x fo (9(x))-g' ()] +
+sup|fo'(9(2)) g’ () = fo' (90(2)) - 9" ()] +
+sup |fo'(90(2)) -9 x) —fo'(90(2)) - 90" ()] -

As (f,9) = (fs,9,) all three terms become small, the middle term since
x — fy/(x) is uniformly continuous. The continuity of f— f-! follows
easily from the inequality

sup |(f ) (f @) — (fo™) (f@))] = sup|(f=1)'(f(@)) — (Fo=) (fo(@)| +
+sup|(fo=) (fol@)) = (fo=) (f(@))] -

By the mapping f — f—=, G is mapped isometrically onto a neighbour-
hood of the zero element in the Banach space, which consists of the con-
tinuously differentiable functions A on [0,1] with 2(0)=/(1)=0 and with
the norm |j4|=sup|h’(x)]. The image of G under this mapping is an
L-group since

hyhy = (hy+x)o(hy+2x) —x = hyo(hg+x) + hy = by + Th by,
where 7', is linear. But we observe that the group multiplication is not

uniformly continuous in any neighbourhood of the unit element as a
function @ x G -~ G. For

d(fog,foe) = sup|f(g9(x)) g’ (@) — f'(x)]
sup|(f'(9(x)) —f'(@)) -g'(@)] — sup|(g’(@)—1)-f'()|
and even if d(g,e) is small, this does not imply that the first term on the

right hand side is small since the f':s do not form an equicontinuous
family. In the same way we see that lim,_,, (|7, —T'[|=0 does not hold.

1\

ExampLE 2. We let (z,y) stand for an element in Ry, x € By, y € R,.
We define a group multiplication in R; in the following way:
(X1, 91) " (%0, Y2) = (¥ + 25,43+ V,,91) Where x — V, is a periodic one-para-
meter group of unitary linear transformations of R,. Let p be the smal-
lest positive number such that V,=1I. In this way R; becomes an L-
group. Since V,;,= —I, we see that (}p,y) (3p,y)=(p,0) and so (p,y)
has no square root for y =0, and many square roots for y=0. We see
that if z € R; and 240, then [[2"|| - o0 as n — oo for if z=(z,y) and x +0,
then |27 =||(n,y,)||Zn|x| and if x=0, then 2"=(0,ny). We also see
that if 2, € R, 2, € Ry, then |z;-2,|| < ||z1]| + [|25]. We now take the Hilbert
sum H of a sequence of such groups with periods p; - 0. The sum is a
Hilbert space with the norm ||2]|= (3 ||z;||*)}, where |lz;|| is the Euclidean
norm in R,. H is also an L-group. For if ¢ is an arbitrary positive number
and 2°¢€ H, w® e H, then
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2w = (2% w0 .., 250wy 2, W - ) s
where
100, . ..,0,230 wp0, 2% 1 wWhyrs- - )l
L 00,...,0,2)% 2% 15+ - 10,0 ., 0,wp% whyy,. - )l < de

if N is sufficiently large. Now if (2, w) is sufficiently near (2% w®), we have

IO, . ., 0,2x Wy 241 s, - |
S 0,...,0,25 250115+ - ) H (0.« o, 0, wp, Wh iy, -2 )] < 3E.

And then we also have
(21 w1 — 2,2 w0, . -:ZN—1'wN—1“‘z%r—1'w?v-1s 0,0,...)] < fe.

Thus if (z,w) is sufficiently near (20, uw?), |z-w—2%-w|<le+Je+ie=¢
and hence (z,w) —»z-w is continuous. The continuity of z —z-1 is
equally easy to show. It is obvious that the group multiplication satis-
fies z-w=w+7T,z Alsoin H, ||z"| - oo if 2+ 0 and so H does not contain
small subgroups. However in every neighbourhood of the unit element
there are elements z and w, with z4w and 22=w?. This shows that the
condition of uniform continuity in Theorem 2.2 below cannot be re-
moved. We also observe that 7', — I in the norm topology if z tends to
zero along a line of the form (fzy,¢z,,...,%2,,0,0,...). But also in this
case lim, o||T,— I||=0 does not hold.

In Examples 1 and 2 we have lim,_,||7,]|=1, but if we do not choose
V unitary in Ex. 2 we can get an L-group where this is not the case.
We can choose the one-parameter group of transformations of R, to be

( cos2nxp;,! @ sin2nxp; —1)
x> )
—a~!sin2nxp;~! cos2mxp;~1

where a > 1. However, Theorem 3.2 in this paper shows that the spectral
radius of 7, behaves well.

2. Groups with locally uniformly continuous group multiplication.

In this section we will often use the following well-known fact: If
f: B~ C is continuously Frechet differentiable in a sphere containing
z and y, then

(1) If @) =f @)l < supllf(te+ (1 —t)y)ll [z—yll.

THEOREM 2.1. A left differentiable local group is an analytic local group
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if and only if (x,y) - x-y is uniformly continuous in some neighbourhood
of the unit element.

(1) gives that the group multiplication in an analytic local group is
uniformly continuous in a neighbourhood of the unit element and so
we have only to show the converse. The theorem will follow from the
lemmas below. In the sequel we do not always explicitly point out in
how large a neighbourhood of zero we work.

Put 2-y=y+f,(x). The associative law gives

fz(y+fy(x)) = fz(y) +fyoz(x) .

Derivation with respect to z gives

L @+f@)ef,) @) = fy.(x) .
And if we put =0, we get

(2) I @) o £,/(0) = f,..(0)

Levma 1. In a left differentiable local group (z,y) — f,'(y) is continuous
tn the norm topology for f,'(y) if y — f,/(0) has a point of continuity.

Proor. Equation (2) gives: If y - f,’(0) is continuous at a point y,
then it is also continuous at y-2. We see this by keeping z fixed and
varying y in (2), for y - f,(y) is continuous. Thus y — f,/(0) is continu-
ous in a neighbourhood of zero. Since f,'(0) =1, this implies that f,'(0)~!
exists and that y — f,’(0)~ is continuous in a neighbourhood of zero.
By multiplying both sides of (2) to the right with f,'(0)~! we then get the
continuity of (z,y) - f,'(¥).

Let U be a sphere around zero in a left differentiable local group such
that (x,y) - @y is uniformly continuous in U x U. Put f,/(0)=T,.

Lemma 2. Let € be a positive number and let S be a closed sphere, S<U.
Then there is a closed sphere S’ <8 (with arbitrarily small radius) such that
for every ye S’

3) fim |7, — T, S 4e.

w—rYy

Proor. For ye 8 we have x-y=y+T x+r,/(x), where |r,(z)|<el||
for all z with |jz||<n-! where n depends on y. If M, is the set of y:s
for which n will work, we have S=U_, M,. Thus M, has interior
points for some =z, since a complete metric space is of the second cate-
gory. Let S’ be a closed sphere in #,. For y € 8’ we have (3). To see
thislet ye §', ze M, |Ir ()| £ &llx|| if [z <m~1. Now
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= [ly—2+(Ty =T, )x+r,(x)—7r,(2)|
z (T, Tz)xll—2ellxll lly—=ll

if |jz]|=min(n-1,m"1). Since the left hand side of this inequality tends
to zero uniformly in = as z -y, because of the uniformly continuous
group multiplication, we get Iim,_, |7, —T,||< 2e. Since M, is dense in
§’, the triangle inequality gives (3)

LemMma 3. If in a left differentiable local group (x,y) — x-y is uniformly
continuous in a neighbourhood of the unit element, then y — f,'(0) has a
point of continuity.

Proor. Let S, be a closed sphere in U, and if §,_; is defined let
S, <8 n—1 b€ a closed sphere with radius less than n-1, such that for all

Y €8y, fm |T,— T, < n-1.08,

w—>ry
is a point at which y — f,'(0) is continuous.
Lemma 1 and Lemma 3 give the important

Lemwma 4. If in a left differentiable local group (x,y) — x-y 18 uniformly
continuous in a neighbourhood of zero, then (z,y) — f,'(y) is continuous in

the norm topology for f,'(y).

In the sequel we show that the continuity of (z,y) — f,'(y) implies that
the left differentiable local group is an analytic local group.

LEMMA 5. Let B be a left differentiable local group. If
U = {@w)]| [l]|<0,|lw-yl <0}

18 a neighbourhood of (0,y) in Bx B such that ||f,'(w)—1|<e for (x,w)
in U, and if (2%, y-x2)e U for k=1,2,...,n—1, then

ly-z" —y —n(y-z—y)| = nely-z—yl.
Proor. From (1) we have
lly-2k+t — gy 2k — (y-2—y)|| = & + fly-2) — 2% — fraly) — (-2 —p)|
= |[far(y - 2) — far(y) — (-2 —y)l| < elly-z—yl .
Thus

n—1
ly-2m — y—n(y-z—y)| = IIkZO(y'ffc"+1 —y-ak— (y-z—y))l

n—1
ékzolly'x"“ —y- 2k — (y-x—y)| £ nell(y-xz—y)| .
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The lemma is proved.

Lemma 6. If in a left differentiable local group (z,y) — f,'(y) is continu-
ous, then x — y-x satisfies a first order Lipschitz condition uniformly in y,
if x and y are sufficiently small.

Proor. We first observe that if in every neighbourhood of zero there
are z, y and 2, with 2z and |ly-x —y-2|| > N|x —z|, then in every neigh-
bourhood of zero there are y and w, with w0 and |jy-w~y| > }N|jw|.
To see this define w by w-z=z2. If both x and 2z are small enough, then
lw|| < 2]jz—2|| from (1). Then

Wiwl| < lly-z—y-zl = lly-z—y-wa
= |lx + foly-w) —x = L)l < 2|y-w—yl,

where the last inequality also follows from (1).

Now choose an ¢, 0<e<1 and a §, such that ||f,'(y)—1||<e if |2]| <36
and |ly|| < 36 and such that |jy-x|| < 34 if |jy]| £ 6, ||z||< 5. We see by putting
y=0 in Lemma 5 that if |jz|| <8, then |x¥|<¢d for all £ such that
(1+¢)|x||k<d. For such k Lemma 5 also gives

30+06 2 |ly-a*—yll 2 k(1—e)lly-z—yll.
If (1+¢)|z]lk =0, we see that ||y -z —y||=0 (|jz|]) uniformly in y.

REMAREK. Lemma 4 and Lemma 6 show that continuity of (2,y) -~
[/ (y) is equivalent with local uniform continuity of (x,y) - z-y.

Lemma 7. If in o left differentiable local group (z,y) — f,'(y) is continu-
ous, then x — y-x has a Frechet derivative at x=0.

Proor. We first show that ¢ - y-fx, { =0, has a derivative at {=0.
Let 6 be a positive number. If we choose ¢ sufficiently small and after
that s sufficiently small, we get ||(sx)*1—tx||<d|tx|l. We see this by
putting y=0 and sz instead of z in Lemma 5. Then Lemma 6 gives

lly - (s2)* — y-tal| < Ko|ftal,

where K is the Lipschitz constant from Lemma 6. When we divide both
sides of it by ¢, this inequality becomes

= Kol .

“y-(sx)[""] ~y ytr—y
t ¢
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If t is sufficiently small, then
lly - (s2)) — y — [t]s)(y- sz~ y)l| < [¢/s1d]ly-sz—yl,
from Lemma 5. Thus we get
lly- (s2) — y — (t/s)(y- sz —y)ll < ([t/s]+67)S]ly-se—yll,

and if s is sufficiently small, the right hand side of this inequality is less
than 26ts~|ly-sx—y|| < 26¢K|z||. Division by ¢ in this inequality gives

. [¢/s] _ 8r —
lly (sx)t Y_YY ksl
, 8
These inequalities give
.t — . —_
”y ¥ T2 < 3Kl
s

but since ¢ is arbitrary this implies that ¢ — y-tx, £> 0 has a derivative
at t=0.
Now put lim, ot Yy tx—y)=H(x). We have
Yy (r+1tz) = y-tay-tz,
where x; > x as ¢ > 0. Thus
(tx+tz) — tx, tz—
hmy(ww:z) Y ytmyte—y

t—>0

= lim
t—>0

(y+tH(z)+o(t)) tz—y " y-tz+tH(x)+o(t) —y
= lim

= lim
t—0 ¢ —>0 4

since ||fr,(y)—I|| > 0 as t - 0. And

b

. ylz+tH(@)+o(t)—y
lim ;

t—0

= H(x)+H(z) .

Thus there is a linear operator H such that |ly-x—y— Hx||=o(|jx|) as =
tends to zero along a line. We also immediately get |H||< K and since
the estimates when we prove that ¢ — y-tx has a derivative at {=0 hold
uniformly for |jz||=1, we have

ly-x—y—Hz| = o(llel) as x—0.
The lemma is proved.

Proor or THEOREM 2.1. We now determine the Frechet derivative of
x —>y-x at #,. We recall that f, (0)=T, . When z >0 we have
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Y- (@ +2) = y (Taaz+olllall) o) = (y + HI7z + o(l])) -4
= y@ + [, HT 5 + o(|2])) -

From this we see that x — y-x is continuously Frechet differentiable for
fixed y. The simultaneous continuity of the partial derivatives of
(x,y) - -y follows i.e. from Lemma 4. Thus Theorem 2.1 is proved.

We also give the following theorem which is a generalization of a
lemma by Gleason (see [2 pp. 120-121]). Example 2 in Section 1 shows
the necessity of assuming a condition like local uniform continuity of the
group multiplication. We recall that if U is a set of ordered pairs (z,y),
Ulz] denotes the set of points y such that (x,y) e U.

TrEOREM 2.2. Let G be a topological group without small subgroups,
where the group multiplication is uniformly continuous in some neighbour-
hood of the unit element in some uniform structure for G. Then there is a
nesghbourhood W of e such that x € W, y € W and x%=y? implies x =1y.

Proor. Let U and V be members of the uniformity for ¢ such that
1) Ule] is a symmetric neighbourhood of e such that (U[e])? does not
contain a non-trivial subgroup;
2) (z,y) - xy is uniformly continuous for (z,y) € (Ule])* x (Ule])?;
3) V< U and (x,2,) € V and (y,y,) € V imply (zy,x.y,) € U if x,y,24,y, €
(UleD*

If 22=4? and a=2"1y, then zlax=a"' and z-lamx=a"™.

Suppose that the theorem is false. Then we can find « and y, x+y
and 22=y2? in such a neighbourhood of ¢ that a=x"1y € V[e] and such
that (z~1bx,b) € V for all b € (U[e])? since we have uniformly continuous
group multiplication in (Ule])* x (Ule])*

Now we have a™ € (U[e])? for all positive odd m and a™ € (Ule]) for all
positive even m. We prove this by induction. m=1 gives a e V[e]<
(Ule])®. Suppose that the proposition is valid for all integers <p. If p
is even, then a? € U[e] from the induction hypothesis and since a € Ule],
we have a?+! e (U[e])2. If p is odd, p+1 is even and at®@+V e (U[e])? from
the induction hypothesis. Then (z-lai®+Vz,qi®+D)e ¥V from (1), and
since (a¥P+V, q}@+)) e V, assumption 3) gives

(x—l a‘}@+1)xa‘l(l?+1), a%(ﬂ-l‘l)ai(ﬂ +1)) € U.

But z-lal®@+Dgqi®+D=¢ and so a?+! e Ule] which was to be proved.
But since U[e] is symmetric, a™ e (U[e])? for all integers m which contra-
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dicts our assumption that (U[e])? does not contain a non-trivial sub-
group. The theorem is proved.

3. Some theorems on local L-groups.

The results of this section are stated only for local L-groups. It would
however be interesting to extend especially Theorem 3.3 to a more
general class of left differentiable local groups. We begin by giving
another necessary and sufficient condition for a local L-group to be an
analytic local group than that of locally uniformly continuous group
multiplication. Since in a local L-group 7', — I in strong operator
topology as « — 0, we have

llo? — 22| = |lw+Tpx— 2] = |(T,—1D)a| = o(|z) as x>0

in every finite-dimensional subspace of the Banach space. Thus in a
local L-group x — x? has the strong Gateaux derivative xz — 2z at zero.

TaEOREM 3.1. A4 local L-growp is an analytic local group if and only if
x — 22 has a Frechet derivative at x=0.

Proor. It follows from Theorem 2.1 and the remark after Lemma 6
in the same section that a local L-group is an analytic local group if
and only if # — 7', is continuous in the norm topology for 7,. From the
observation 5 in section 1 we see that this is the case if and only if x -~ 7',
is continuous at =0 in the norm topology for 7',. Thus we show that
norm continuity of x — 7', at x=0 is equivalent with * — 22 having a
Frechet derivative at x=0. If x — 7', is continuous at =0 in the norm
topology for T, then

lle?— 22| = (T, — D)zl = o(|l=ll) as -0

and so # - «? has the Frechet derivative x — 2z at zero. Thus we have
only to show the converse. We first prove a lemma.

Lemma. If in a local L-group lim, , o||T,—I||=0 does not hold, then
there is also a line t — tx through zero where lim,__ |7, — I||= 0 does not hold.

Proor or THE LEMMA. Put = {z | |z||=1} and let J, be a sequence
of positive numbers §,, - 0. If |7, —I|| - 0 as  — 0 along every straight
line through zero, then for every ¢> 0 and every x € £ there is a d,, such
that |7, — || ¢ if |¢| <6, where §,, depends on x. Since the space X is
of the second category there is a set M < E where the same §,, will work
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and such that M has interior in E. Then also ||Ty,—I||<e if |t| <6, for
x € M since x —~ T, is continuous in strong operator topology for 7',.
Let y be an interior point of Uy, tM, then y=1-U,_, tM is a neigh-
bourhood of zero. We see that ||, —I|| < 3¢, if x belongs to this neigh-
bourhood of zero (and & is sufficiently small). This implies that
lim,_4||7,—I||=0. The lemma is proved.

Proor or THEOREM 3.1 CONTINUED. Now suppose that z — 22 has a
Frechet derivative at zero and that we have not lim, |7, —I||=0. We
consider a neighbourhood U of zero where | T, y| = k|ly|| for all x € U and
all y, and a line where lim,_, (|7, — I||>¢. We consider

ztxwrzte — 2z tw) = Ty T te —te + T, T Tyz— Ty 2,

X 7

where we choose ||z||=|z||. If we choose ¢ sufficiently small, we see that
|7y, Tt —tx|| < 6 |ltx||, where we can choose § arbitrary small. We can
choose arbitrary small elements ¢ and z such that [T,z —z||>¢]|jz|. But
then ||7,7,z—T,2||>ke|z|| and if we choose ¢ so small that ||T,z—z| <
tkellz]|, which is possible from our assumption on z — x2, we get
17,72 — 2| > kke|2|. And then |1, T,T,.z—T,.%| > tk*¢|z|. Thus we have

[zt~ 2 tx — 2(z-tx)|| > (3k2e—9)|2| ,

but since § and ¢ can be chosen arbitrary small this contradicts the
existence of a Frechet derivative of & — a? at zero.

We now give a theorem on the spectral radius ¢(7,) of 7,. The re-
mark after Example 2 in section 1 shows that the norm may not behave
so well.

TaEOREM 3.2. In a local L-group o(T,)=1+0(|z|) as « - 0.
Proor. If ||| <K for ||z <4, then |z*||<d if 0<n</(K|]).
see this we observe that if |a™| < mK||z|| <9, then
e+ = lle™ + T gmeel| = mKlil| + Kljal| = (m+ 1)Kl .
Now if n=4/(K|z|))], we have
K 2 o(Ty) = o((T)") = (o(T2)",

where the first inequality follows since the spectral radius does not ex-
ceed the norm, the first equality follows from observation 3 in Section 1,
and the second equality follows from the spectral mapping theorem.
And this formula gives o(7,) <1+ M|fz|, for some M. The inequality
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o(T,)21—N|z| for some N follows from the spectral mapping theorem
by taking inverses.

We conclude this section with a theorem on the non-existence of small
subgroups in a class of local L-groups. Let a local H-group be a local
L-group whose underlying Banach space has the property that every
bounded sequence contains a weakly convergent subsequence. Let U
be the sphere |z||< M.

TueOREM 3.3. If G is a local H-group such that x—' exists for x € U and
2 y=y+Tx for e U, ye U, then U does not contain a non-trivial sub-
group of G.

Proor. We assume that the theorem is false. Let {x"}%_ be a non-
trivial subgroup in U. We define z,=(x+2%*+...+2"')/n. Then
kol M. We have z,=((n—1L)z+ (n—2)T x+ ... +T " %)/n. Thus we
have

2y X—2, = x+T2,—2,
+ T.n-Dzx+T2n-2)x+...+T B
n

(m=Dzx+T, (n—2)x+...+T %
n

e+ T x+T 22+ ... +T, 1 o

n n
Thus |z, x—2,/|<M/n. Now 2z, contains a weakly convergent subse-
quence z, Wwhich converges to some z, |z|< M. Then
2o =2, = o+ T2, —2, — 2+T2—2 =202
in weak topology. But then
ez —2| < limz, -z —2,) = 0,

which is a contradiction. We immediately get the
CoroLLARY. A local H-group does not contain small subgroups.

REMARK. If in the L-group described in Example 1 we choose a func-
tion % and form the corresponding z, as in the proof of Theorem 3.3,
then the functions z, will converge pointwise to a function f with the
property (f+x)o (h+x)=f+x. If we consider the complex plane under
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multiplication, choose an y with |y| =1, y+1 and form the corresponding
2,, then z, will converge to zero.
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