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BORSUK-ULAM TYPE THEOREMS FOR PROPER
Z,-ACTIONS ON (MOD p HOMOLOGY) »-SPHERES

HANS JORGEN MUNKHOLM

0. Introduction.
In 1933 Borsuk [1] proved the following

Borsuk-UrAM THEOREM. For any map f: 8® — R™ there is an x e S
such that f(x)=f(—x).

In 1955 Bourgin and (independently) Yang published proofs of the
following generalization (see [2], [3], and [16]).

BoURGIN-YANG THEOREM. For any map f: 8* — R¥ the covering dimen-
sion of
A(f) = {ze 8| flx)=f(-2)}

s at least n—k.
In 1960 Conner and Floyd generalized the result further (see [7]
and [8]). They proved what here will be called

CoNNER-FLoYD THEOREM. Let T be a fixed point free, differentiable
involution on the n-sphere S™, and let f: 8 —~ M* be a continuous map
into a differentiable k-manifold M*. Suppose that

(0.1) fe=0: H (S"; Z,) -~ H, (M*; Z,) .
Then the covering dimension of

AT,f) = {we S| fz)=fT)}

18 at least n—k.

In [8] Conner and Floyd ask the following questions:

1. Can all differentiability hypotheses be eliminated ?

2. Can 8™ be replaced by a closed n-manifold which is a mod2 hom-
ology n-sphere ?

3. Can M* be replaced by non-manifolds ?
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It also seems natural to ask the following

4. QUESTION. Let G be a finite group of order |G| > 2 acting properly
on the n-sphere 8™ via the map u: 8" x ¢ — §*. For any map f: S* - Mm
into a compact, topological m-manifold M™ let

A(p; f) = {ze 8| f(x)=f(xg) for all g G}.

Is the covering dimension of A(u ; f) necessarily 2n—(|G|—1)m?

REMARKS. A condition analogous to (0.1) does not appear because
for n= (|G| —1)m and |G| =3 it would automatically be true (and for
n < (|G| —1)m there is no question).

Covering dimension (abbreviated covdim) is taken in the sense of [14],
say ; it does not really matter in which sense it is taken since cohomological
dimension (see [6]) rather than covdim will be used.

In this paper, questions 1, 2, and 4 are treated. The (partial) answers
obtained are:

Question 1: Yes.

Question 2: For the Bourgin-Yang theorem (and certain other cases):
Yes.

Question 4: For G =Z,, p prime, and with Z,-orientability of M™: Yes
(see also the Note at the end of this section).

Question 1 was already considered in [12].
More precisely, a theorem (see section 4) which has the following two
corollaries will be proved.

Mop p ConNNER-FLOYD THEOREM. Let u:S"xZ, —S" be a proper
action of the cyclic group of prime order p on the n-sphere. Consider a map
[: 8% — M™ into a compact, topological m-manifold M™. If p=2, assume
that

fa=0: Ho(S%; Z,) > Hy(M" 5 Z,)

and if p is odd, assume that M™ is Z,-orientable. Then the cohomological
dimension (with coefficients Z,) of

A(psf) = {@e S| f(@)=f(ag) for all g Z,)

s at least n— (p— 1)m.

Mop p BOURGIN-YANG THEOREM. Let S be a closed n-manifold which
ts @ modp homology n-sphere. Let p: F"xZ, > S be a proper action
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of Z,. Then for any map f: ™ - R™ the cohomological dimension
(coefficients Z,) of

A(p; f) = {we ™| f(x)=f(xg) for all ge Z,}
18 at least n— (p—1)m.

The proof will be based upon ideas dating back to Yang [16]; they
were also used by Conner and Floyd in [8].

Note (added just before printing). Using obstruction theory it is
easy to prove the following:

Let k£ be an odd, non-prime number +9 and let p: 8%x Z, - S* be
the standard action. Then there exists a map f:S8* —~ R such that
A5 f)=20.

It seems possible to obtain some positive results (for maps S* - R,
n large, and Z,-action on S*) by using K-theory characteristic classes.
I hope to return to this in a future publication.

1. Notation.

Let @ be a finite group of order |G|=k+1. If |G| is even, let ¢=2,
and if |G| is odd, let q be an arbitrary prime. By H,, H*, H* we denote
singular homology, singular cohomology and Alexander—Spanier cohom-
clogy, respectively; if no coefficients are mentioned, Z, is understood.
For Alexander—Spanier cohomology we shall freely change between the
two definitions given by Spanier (p.289 and p. 308 of [15]). By
¢: H* - H* we denote the natural transformation given on p. 289 of [15].

The word manifold will be taken to mean a Z, -orientable topological
manifold; cc-manifold will mean a closed (that is, compact and without
boundary) and connected manifold. For any compact pair (4,B) in
a Zgorientable n-manifold M, there is the Alexander-Spanier duality
isomorphism

7: H(M-B, M~A4)-> H"?(4,B),

defined via the slant product as in [15].

A G-space X will mean a space X together with a map u: X xG - X
(written u(x,g)=2xg) such that x(gh)=(xg)k and xl=z. As usual
u (or X) is called proper if

(3:1;: xg::x) = g=l.

For G-spaces X, and X, let X, x; X, be the quotient space (X, x X,)/¢
where G acts diagonally on X; x X,. If Y is any space, let Y& be the
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product of |G| copies of Y; writing its elements as 3,y(g)g it is a G-space
under the action

(Zy@)9)h = S y@)gh = X y(gh)g .

In Y@ there is the G-invariant (and G-trivial) subspace

AY = {3 y(9)g | y(g)=y(1) for all g e G}

(the “diagonal”). If y, is a base point of Y, then AY and Y@ receive
*=3y,9 as a base point.

Fix a cc-manifold %" which is a modgq homology n-sphere, and let
u: S*x G - S be a proper Z, -orientation-preserving action of G upon
& For any map f: " — Y put

Ap s f) = {ge I | f(x)=f(xg) for all g G}.

Associated with u there is a vector bundle &, described as follows.
Take IG to be the augmentation ideal of the group algebra RG, that is,
IG consists of those Yr(g)g € RG for which ¥r(9)=0. Now &, is ob-
tained by screwing in I¢ as fibre in the principal G-bundle ¥ -~ ¥7/Q,
that is,

§, = (F"xelG - LG .

It is easily seen that &, is Z, -orientable. Hence &, has a (modq) Euler
class

eg(&,) € HKF|@).

As noticed in the introduction, cohomological dimension with co-
efficients A (A being some abelian group) is taken in the sense of [6];
it will be abbreviated cd(-;4). If X is a compact, proper G-space, then

cd(X;4) = cd(X/G;4) .

To see this, cover X by closed subsets X; chosen so small that the
projection X — X/G gives a homeomorphism when restricted to X,.
The above equality then follows immediately from the sum-theorem
and the monotonicity property of ed(-;4) (see [6], theorem 4.1 and
lemma 2.2 together with remark 2.11). The inequality

cd(X;4) < covdim(X)

(see [6]) shows that it is actually better to work with cd than with
covdim.

Finally a map f: " — Y is called nice provided the following holds:
There is a map f,: ¥ - Y and a point y, € Y such that
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(1.1) o/,
where ~ means “homotopic to”’, and
(1.2) Ve P fi(rg) + y, for at most one ge @ .

Notice that any map f: " — Y is nice under either of the following
conditions:
(1.3) Fro= Sn

(1.4) Y is contractible (especially for ¥ = Rm™) .

2. The main proposition.

2.1. PROPOSITION. Let f: S — M™ be a map into a compact m-mani-
Jfold M™. Suppose that

(2.1) cd(A(u;f)|6G;Zy) < n—km ,
(2.2) J s nice ,

(2.3) fe=0: H (") - H, (M™),
Then

(2.4) )™ = 0.

ReMARKS. 1. If n < km, then ¢ (£,)™ € H™ (S "|() = 0; therefore, assume
from now on that n = km.

2. With n = km condition (2.3) is trivially fulfilled unless G'=Z, and
m=mn (of course I do not want to consider G=1, by the way I also
tacitly assume n >0, m > 0).

3. One may, and we do take M™ a cc-manifold. In fact, if M™ is not
connected one just has to regard f as a map into the relevant component
of M™. And if M™ has a non-empty boundary one considers f as a map
into DM™, (DM™="“the double of M™” consists of two copies of Mm™
identified along their boundaries. DM™ is a manifold because the
boundary of Mm™ is collared in M™, see [4].)

4. The assumption (2.1) implies that

(2.1') Hr*m( A(u,f)/G) = 0.

This weaker assumption is the one that is actually used in the proof.
Dicression 1. Before turning to the proof of the proposition, we

consider the special case of maps f: & > R™ (to get this as a special

case notice that f(&) is contained in a sufficiently big closed disc in
Rm™). There is the |G|m-dimensional Z -orientable vector bundle
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n = (L xaR"G - F£*|QF)
containing the trivial |G|-dimensional vector bundle

e = (L xgdR™ - F|QR)
as a subbundle. The quotient 7/¢ is easily seen to be

mé, = E®...OF,

(the direct sum of m copies of £,). Hence there is a short exact sequence
of vector bundles

FrxgARm —> Pn x(,RmG T Prxg(IG)m
i———» RLE «—m—J

The map f induces a cross-section s of #, namely
s(x@) = ( > flxg1) )

s P xgARM) = A(u;f)[G

and

This means that ns is a cross-section of m&, which is zero only above
A(p;f)/G. Hence the (modgq) Euler class of mé&, satisfies

(2.5) e, &)™ € Im[HM(F|G, F7|G— A(u.f)|G) - Ho™(FG)] .
By definition of H, (2.1') means that
lim H*~*m(U) = 0
—_
as U ranges over all open neighbourhoods of A(u;f)/G in &#*/G. For
any x e H»*m(%#"|@) one can then find an open U,2A(u;f)/G such
that
(2.6) z € Im[H*(F"|@,U,) - H*™(F"Q)]
From (2.5) and (2.6) follows that the cup-product-map
(2.7) egE U —: Hnlm(5n[G)  H(F7Q)

vanishes. In a (Z, -orientable) manifold, however, the cup-product-
pairing to the top-dimension is non-singular (using field coefficients).
Hence (2.7) implies that e (£,)™=0.

The proof of the proposition is divided into 3 lemmas. The first one
of these gives a condition for the vanishing of e, (¢,)™ in terms of S
and M™. It is motivated by the following



BORSUK-ULAM TYPE THEOREMS ... 173

DierEssion 2. Suppose for a moment that &, u, and M™ are dif-
ferentiable. There are the imbeddings

i J
Fxgx & S xgdM < S x, MG,

where * is the basepoint of MG corresponding to some basepoint of M.
Also & " x o* is identified with %"/¢ in a canonical way, and it is not
hard to see that under this identification

¥y = mé, ,

where » is the normal bundle of the imbedding j.
Consider then the commutative diagram (for any G-space X let
X = y n X GX )

H, ., (HMG) <" H,  (AM)-> H,, (MG, G- *)

g
Him(M@) L
B l
Hém(AM) . Hem(x)

It is well known (see, for example, [11]) that the (modg) Euler class
of » is

eq(v) = J*(7)jx0 s

where ¢ is the orientation class of AM. Hence e,(£,)=i*e,(v) vanishes
if and only if the inclusion

has
(2~8) Hn+m(.7,) =0.

The first lemma states that this is still true if all differentiability
hypotheses are dropped.

2.2. LEMMA. (2.4) and (2.8) are equivalent.
Proor. Let D, be an open disc around m, in M, and let j* be the
inclusion '+ A0 — (@ MG—D6).

It is an easy consequence of “compact support’” (see lemma 12, p. 204
of [15]) that (with D, sufficiently small) (2.8) is equivalent to

(2.9) Hyol") = 0.
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Then look at the commutative diagram below. Here D, is a closed disc
around my in M with D, contained in the interior of D,, D is the closure
of D,, D the boundary of D and (DG) the boundary of DG. The map

"t

4" is the inclusion of A(D) in (DG), and a,b,c,d denote maps in-
duced by inclusion.

H,,(AM) 2

Hn+m(m’ A(M—Dl))‘*b‘—’ Hn+m(m’ hG_DlG)
~1 ~
jand | exc X | exc

H, w(ADy, A(Dy=Dy)) = H,.( DG, DG — D,G)

<~
@
(——<b
D

— e d —
Hn+m-—1(A(D2_D1)) Hn+m—1(D2(]_‘D1G)
ad l (def retr) & | (defretr)
Hn+m—1(A (D)) —_—“‘_ji—’ Hn+m—1((—Ty)

The map @ is monic, because A(M —D,) is an (n-+m)-manifold with
boundary (so that H,,,(4(M —D,))=0). The isomorphisms labelled
exc are given by exciding AM —AD, and MG—D,G, respectively.
By 0 we denote boundaries; they are monic because

H'n+m(A—1)2) = Hn+m(D—2G) =0

(4D, and D,G are G-equivariantly contractible so that AD, and D,G
are homotopy-equivalent to *="/G). The deformation retractions
(defretr) referred to are obtained as follows. Take D, to be a disc in
Rm™ of radius ¢ (¢=1,2); the formula

&(z, 2 d(g)g.t) = (2, X min {1, (ld(g)||™*~ 1)t+1} d(g)g)
defines a map
g: Lrx(D,G—DG)xI -~ L (D,G—D,Q) .
Since, for each ¢, (-,-,t) is G-equivariant, there is an induced map
¢ (D@ —DyG)xI -~ DG —D\G;

it is easily seen that ¢ gives deformation retractions from D,Gd—D,G

onto (D@) and from A(D,— D) onto A(D).
If (in the diagram) j,'' =0, then kerc+0; it follows that kerj,”’ 0.
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Since H,,,,_,(4(D))=Z,, this implies that j,”’=0. Conversely, it is
obvious that j,"’ =0 implies j,''=0. This means that (2.9) is equivalent
to

(2.10) Hyma(5) = 0.

Of course (2.10) is equivalent to
(2.11) HrAm=1(5"") = 0,

Now recall the vector bundles ¢, 7, and &,. Clearly the (total spaces
of the) sphere bundles associated with ¢ and 5 may be taken as

S(e) = AD) (=F"xqz4D),
S(n) = (DG) (=F"xq(DG)),

e

and with these identifications ;' becomes the inclusion S(e)<S(%).
There is then the commutative diagram

-

Hn+m=1(8(e)) —o Hm(B(e), S(e)) {_ H (@)
I @ T (incD)* B —yeq(Eum
Hm=(S(n) —> H7(Bly), () <~ H~+(#7G)

ks

Here B(e) and B(n) are the ball bundles. The coboundaries 6 and ¢’
are iso and epic, respectively (use the long exact sequences). By @
and @' we denote Thom isomorphisms. Commutativity (at any rate
up to sign) of the right hand square follows from a direct computation
using three facts, namely:

1) e®mé, =,
2) Thom classes are multiplicative,

3) e,(&,)™ may be described as the image of the Thom class of mé&,
under the composition

H*m(B(me,), S(mé,)) Hin(B(mé,)) 7, fem(5n)G) |

Recalling that the cup-product pairing to the top dimension in H*(#"/G)
is non-singular one reads off from the diagram that

(2.4) e (&)™ =0
is equivalent to
(2.11) Hram=1(4"") = 0,

This finishes the proof of lemma 2.2.
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This lemma ties e (£,)™ up with the manifolds (<™ and M™) in question.
The next thing to do is to bring the given map f: " - M™ into the
picture. This is done by introducing the map s: #*/G - M@, defined
by the formula

8(z@) = (2,3 flzg=)g)@ .
Observe that s is a cross-section in the fiber bundle
(MG=%F"xg MG —~ G .

Also notice that s is a homeomorphism onto its image and that

s71(4 A(p; )G

Lemma 2.3. Let f satisfy (2.2) and (2.3); then

(2.4) elE )™ =
if and only if the composition

(212) H,,,(4M) 2> H,,(MG) "> Hin(MG) "> Him(Sn|G)

Ill'

vanishes.

Proor. In view of lemma 2.2 it suffices to prove that the diagram

H, ., (dH) 2 H,,,(6) - H=w(MG) > Hm(5G)

lj.' i(ji)' -
Y =
H,.. MG MG-%) ———— Hkm(x) « 1

commutes (recall that * has been identified with #*/G). If the dotted
arrow is filled in by (ji)*, then the rectangle commutes, so it suffices
to prove the triangle commutative, and that is where (2.2) and (2.3)
come in. By (2.2) there is a point mye M and a map f,: " - M such
that f~f, and, for each x € ™, f,(xg)+m, for at most one ge G. It
follows that s is homotopic to a cross section s,: /@ — MG which
factors through (M), where

<

I

(M@), = {3 m(g)g | at most one m(g) +me} = MG .

There results a commutative diagram
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My, ——2 3 ya

1

L7 [ P Y

in which ¢,, ¢, (and ji) are inclusions, s, is a factorization of s,, and p
is induced by the projection ¥ x (M@G), - L™

If x e H*(MG@G), put o’ =p*(ji)*x—i,*z; then
(2.13) ¥’ =0 and s*r = (ji)*x—s*x.
Hence commutativity of the triangle in question will follow from
(2.14) ¥’ = 0 implies s*x' = 0.
To prove (2.14) two cases are considered.

Case 1. |G|>2. There is a relative homeomorphism
x: S (M,my) — ((BI6),,%)
given by the formula

(x,m) = (x,m- 1+ mog)G' .
g+1
From this and the Kiinneth formula one gets

Hm((MG)y, %) = H(M,me) @ Ho™(M,mg) = 0.

Therefore, the #,* appearing in (2.14) is monic. But then (2.14) is
trivially true.

Case 2. G=Z,. Here k=1, so H*™(M,m,)#0, and the above argument,
does not work. Instead one looks at the following commutative diagram

H™((MZ),,%) -2 Hm(MZy);) > Hm(%)

T p2* l 8*

H™(MZy),/ % %) —> H™ (S| Z,)

Here p, is induced by the projection " x (MZy), - (MZ,); and F is
induced by F: & - (MZ,),, where

Math. Scand. 24 — 12
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F(x) = 3 folzg™)g -

Precisely as in [8, pp. 87-88] or in [12, proof of lemma 2.3] it is shown
that p,* is an isomorphism and that F*=0. But then s,*j,* =0 and (2.14)
follows by exactness of the row.

The final step in the proof of proposition 2.1 is
Lemma 2.4. If f satisfies (2.1'), then (2.12) holds.

Proor. Let ¢ be the orientation class of AM and put
@ = 8*(P)po .

By the so-often-referred-to non-singularity of the cup-product-pairing
to HY(& /@) it suffices to prove that

p U — : Hrkm(PnG) ~ HY(S™|GF)

vanishes. Hence let x € H»*m(%"/@). As in digression 1 there is an
open U,2 A(u;f)/G such that

(2.6) x € Im[H (|G, U,) - HrFn(Fr|Q)]

holds. Now choose a closed neighbourhood V of A(u;f)/G with V< U,,.
There is then a neighbourhood W of AM (in MG) with s-}{(W)c V.
Thus s gives a map

(LG, FG-V) -~ (MG, MG-W),
and one gets a commutative diagram
— H,y (W) > Hon(JG, MG — W) s HEon(F2|@, S7)G—T)
H, .\ m(AM)
i, H, o G) —2— Hon(JG) —=— HFm($n|R)
from which it is seen that
(2.15) ¢ € Im[HFG, S|G~TV) > Hom(FF)] .

Since
(LG-VyuU, = &G,

(2.6) and (2.15) imply that pux=0 as desired.

Hereby proposition 2.1 is proved. Borsuk-Ulam-type theorems can
be derived from it by computing e,(£,)™. This is done in the next section.
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3. Computation of e,(£,)™ .

In this section ¢,(£,)™ is computed for all proper actions u: S* x G — S»
of some G upon S” and for all values of m. For actions u: " x G - Fn
only partial results have been obtained.

ProrosiTioN 3.1. In the following cases, e,(&,)"=+0:
(3.1) G=2%Z, and nz(@—1ym,
(3.2) G =12, m=1 and nz3.

If G is periodic (hence especially if Fm=_8"), then there are no other cases
with e, (&,)™ % 0.

Proor. This is divided into small steps; it is always assumed that
n 2 (|G| —1)m. Notice that the rings H*(G) and H*(¥"/F) coincide in
dimensions <n (see, for example, p. 356 of [5]); this makes it possible
to carry out most of the computations within H*(G).

SteP 1. If G is not ¢-primary, then e, (&,)=0.

Choose a g¢-Sylow subgroup G, of G. Further let ¢: G,cG and
7: S |G, - S|G be inclusion and projection, respectively. There is then
a commutative diagram

. > Hi(G) - H(S"G) - HI"(G) - H+G) — ...
; o> n* L* T
e 5 |
. -~ Hi(G) - Hi(S"G,) -~ Hi™G,) -~ HIG,) - ...

with the rows exact (see, for example, p. 358 of [5]) and ¢* monic
(p- 259 of [5]). From the diagram one sees that

a*: HIG-Y(9nG) - HIGl-l(yn/Gq)

is monic. Hence we just have to prove that e (x*&,)=0.

By (30.14) of [9], RG, modules are isomorphic precisely when they
have the same characters. An easy computation of characters then shows
that

1G = [G: GG, D ([G: G,]—1)Ryy,
(as RG,modules). Here R, is the the trivial RG,-module. But then
a*(&,) splits off ([¢:G/)]—1) trivial line bundles and e, (n*£,)=0.
Now we concentrate on periodic g-primary groups; these are the

cyclic groups Z, and (for ¢=2) the generalized quaternion groups @2*
of order 2= 8 (see p. 262 of [5]).
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StEP 2. If G=Q2* with 23, then e,(£,)=0.

Recall that @2* has generators a, b and relations a2* =1, b2=0a2"",
bab-l=qa-1. There are three mon-trivial 1-dimensional R@Q2*-modules
By, R, R, given by their associated representations 7';: Q2% -~ Z, as
follows:

Ty(a) = -1, Tyb)= 1,
Tola) = 1, Tod) = -1,
Tya) = —1, Tyb) = —1.

Clearly R;=R,QR,, and
B ®R,® (B,®R,) = Ri® R, D R,
is a submodule of IQ2* With A; denoting the real line bundle
(L™ gea By - F[Q2°) it follows that 1,D1,D (4,®2,) is a subbundle of
&, Hence ¢e,(£,) contains
K = e)(2,@20:D(4®12,)) = ex(dy)?es(Ay) + ea(y) €5(A2)?

as a factor.
In [18] it is shown that

H*(Q2%) = Zy[x,y,w)/I,,
where
degx = degy = 1, degw = 4,

Iy = {#+ay+y%9°)
I, = {2?+xy,y3} for a>3.

But then (no matter what is ey(;)) one gets K=0. And e,(£,)=0 as
promised.
SteP 3. If G=Z,, then ¢,(§,)™=0 unless
a=l,n=(@—1ym or g¢g=2,a=2,m=1,n=3.
Make the complex numbers C into a CZ ~module by the formula
¢g = exp (2a(—1)}g~*)c
(g a generator of Z,). If ¢=2, make the real line R into an RZ,.,-module
using the formula rg = —r. If 1is the principal Z »-bundle (" - S/ Z ),
consider the complex [real] line bundle
20 = (yn XanC - eyn/zq"‘) ’
[Ag = (& ngaR > P Zgs)]
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obtained by screwing in C' [R] as fiber in 1. Also for any complex vector
bundle { denote its underlying real vector bundle by p(¢), and let
be the complex tensor product of I copies of ¢.

A comparison of characters reveals the following isomorphisms of
RZ -modules

IZ,
17

CRIOR0)®..0(080CR...00), qodd,
RelCo(Ce0)®...0(C8...00), ¢=2,
from which one gets immediately

(3.3) & =0l)@ (AN D ... D oAt ), q odd,

(34) £ = 1@ olic)® A D ... ® o™,  q=2.

Using well-known properties of Euler classes these in turn imply

(3.5) eq(&,) )l e ()@, g odd ,
(3.6) es(&,) = (2"“1 -1)! ez(lc)zm‘lez(lza), q=2.
Since

an—l(yn/zqa) =7

q

(if n>g*—1 this is a fact about H*(Z,); for n=¢*—1 it is a fact about
the (Z,-orientable) manifold y"/an), the numerical factors in (3.5)
and (3.6) will kill e,(£,) except for ¢ odd and a«=1 or ¢g=2 and x<2.
Hence step 3 may be finished by showing that e,(&,)"=0for m>1, ¢=2,
and «>1. But this is obvious since ey,(1z)?=0 (recall that the one-
dimensional generator of H*(Z,s) has vanishing square when « > 1).

The above 3 steps prove the last part of the proposition. The first
part will be proved in the next three steps.
Step 4. With G=Z, and ¢q odd, ¢,(¢,)"+0 for all m with nz(g—1L)m.

Using Lefschetz fixed point theorem in the form given on p. 224
of [10], say, it is easily seen that n must be odd. Hence n is actually
> (¢—1)m, and all computations can take place in H*(Z,). Since

e )™ = (( g-1)) !)m e (Ag)ia-om

e (Ac) € HXZy)

with

and
H*(Z,) = A(z) @ Zy(pr)

for any non-zero xe HY(Z,), it is sufficient to show that ,(4¢) is non-zero.
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To do so identify the set of isomorphism classes of principal Z -bundles
over S*[Z, with
HY%*|Z,) = HYZ,)
(for this identification, see [11]). Then A becomes a generator of HY(Z,)
(a cross section of 4 would give rise to a Z,-equivariant map & —» Z,
which is nonsense). Therefore f140. But g1 is precisely e,(A) (this is
most easily seen in the universal example S¥ — SN/Z ).

Step 5. With G=2Z, one has ey(£,)™+0 for all m with n=m.

Since
92(5,‘)'” = ey(Ap)™
and
H*(Zy) = Z,[]

with  one-dimensional, it suffices to show that e,(iz)+0 (if n=m use
non-singularity of the cup-product-pairing to the top-dimension). But
€x(Ap) = wy(lg) = 4

under the identification of H(#"/Z,) with the set of isomorphism classes
of principal Z,-bundles over #"/Z,. Hence it is enough to see that A
does not admit a section. This is obvious (as above in step 4).

Step 6. With G=Z, one has es(&,) 0.

Here
es(&,) = ex(AR)es(de)
and

H*(Zy) = A(2) Q Z,[y]
with x one-dimensional and y two-dimensional. Hence one just has

to prove that
P ex(do) % 0 % ey(Az) -
This is left to the reader.

4. The main theorem.
From propositions 2.1 and 3.1 one derives the following

THEOREM 4.1. Let pu: " x Z,, > S be a proper action. Let f: S — Y™
be a mice map into an m-manifold M™. If p=2, assume that

f*=0 : H‘n(yn H Z2) '»Hn(Mm 5 Zz) .
Then
cd(A(x;f) 2 n—(p—1)m.
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Proor. Any Z,-action on &™ is automatically Z,-orientation preser-
ving.

The two theorems in the introduction are immediate corollaries
(in view of the remarks after the definition of nice).

There is of course also a mod4 Borsuk—-Ulam theorem for nice maps
s - S,

5. Concluding remarks and an example.

I present first an example showing that the inequality in the modp
Borsuk—Ulam theorem cannot in general be strengthened. View §2n+1
as the unit sphere in €+, and let Z, act upon §%*+! via multiplication
by the powers of a p™ root of unity . Define

f = (fl,. . ’fm) . S2n+l . Rm

k

filzgs- - -52,) = Im (2 0, (Zti—1)s + - +» zki—l)) ,

y=1

by the formulae

where k=3}(p—1), Imz denotes the imaginary part of the complex
number z, and ¢, is the »™ elementary symmetric polynomial. The
defining condition for A(u ; f) then reads

k k
Im (2 02— + - o> 2i-1)0" — 2 0,(Zpti—pys - - -» zki—l)) =0

v=1 y=1
forj=1,2,...,p,t=1,2,...,m. This system of equations may be solved
as follows. Introduce the polynomials
%
Q) = zla'v(zk(i—l)" cosZgg) (BF—1) .
The defining equations for A(u ; f) then read
Qo) eR for j=1,2,...,p, 1=12,...,m.

1t is easy to prove that if @ is a complex polynomial of degree k= }(p—1)
taking real values for all p™ roots of unity, then @ is a real constant.
The solution of the defining equations for A(u ; f) therefore is

O'y(zk(i_l),...,zki_l) = 0, v=1,2,...,k, 7:=].,2,-..,m,
that is,
A(u ;s f) = {(20r- - -+2y) €82 | 2= .. =231 =0}.

This is a sphere of dimension 2(n—km+1)—1=2n+1—(p—1)m, hence
of cohomological dimension 2n+ 1 —(p—1)m.
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Finally a few remarks concerning theorem 4.1:

The most obvious Z,-action on a modp homology n-sphere is obtained
as follows. Let [ be prime to p and take the usual Z-action on §2n+1,
Factoring out the Z;-action gives an

Fam+l Szn+1/ Zl — L12n+1
(a lens space) and there remains a proper Z,-action
Ill . Ll2n+1 X Zp - L12n+1 .

It seems unlikely that every map f: L2+l - M™ ghould be nice.
However, it is easily seen that whether f is nice or not, one has

cd(A(u;f), Z,) 2 @n+1) — (p—Ljm .

In fact, one just has to use the modp Borsuk-Ulam theorem on the
composition

St %, gemiijz S prm
with Z,-action u’ on 8%#+! and notice that

A fr)|Zy = Au; f) -
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