MARKOV SETS

J. HOFFMANN-JØRGENSEN

1. Introduction.

Kingman has introduced the notion of a regenerative event (see [2]). A regenerative event is a family $\{E(t) \mid t>0\}$ of measurable sets in the probability space, (Ω, \mathcal{M}, P) , such that:

(1)
$$P(\bigcap_{i=1}^{n} E(t_i)) = P(E(t_1)) P(\bigcap_{i=2}^{n} E(t_i - t_1))$$

for all $t_1, ..., t_n$ with $0 < t_1 < ... < t_n$.

In his papers [2] and [3] Kingman gives a detailed study of the analytic properties of the function p(t) = P(E(t)), under the assumption:

(2)
$$p(t) \to 1 \quad \text{as } t \to 0+.$$

These results have important applications to Markov processes with discrete state space, and one of the most important examples of a regenerative event is

(3)
$$E(t) = \{X(t) = 0\},\,$$

where X is a Markov process with discrete state space and where 0 is a fixed state, such that X(0) = 0 a.s. In this case $p(t) = p_{00}(t)$.

If X is a Markov process with a general state space, and 0 is a fixed state such that X(0) = 0 a.s., then (3) of course still defines a regenerative event, but in many cases we have $p(t) \equiv 0$ (for example if X(t) has a continuous distribution, $\forall t > 0$). In this case (1) gives no information, and (2) is not satisfied.

We shall here give a definition of a strong Markov set, which is more restrictive than (1). We shall then construct a canonical strong Markov process X, with X(0) = 0 a.s., associated to the strong Markov set, such that the strong Markov set itself is given by (3). In [5] Krylov and Yuškevič have worked along the same line, but in their definition of a "Markov random set" they start with the canonical process, and the set itself is not mentioned, which seems rather unnatural.

The problem was proposed to me by Professor P.-A. Meyer, and I am indebted to him for his extended help and encouragement in connection with this work.

Received May 1, 1968.

2. Definitions and basic lemmas.

Let $(\Omega, \mathcal{M}^{\circ}, P)$ be a probability space, \mathcal{M} the completion under P of \mathcal{M}° , and $(\mathcal{M}_{t})_{t\geq 0}$ an increasing family of σ -algebras all contained in \mathcal{M} , such that P restricted to \mathcal{M}_{t} is complete, $\forall t\geq 0$, and (\mathcal{M}_{t}) is right-continuous, that is,

$$\mathcal{M}_t = \bigcap_{s>t} \mathcal{M}_s = \mathcal{M}_{t+} \quad \forall t \geq 0$$
.

Let $\{\theta_t \mid t \ge 0\}$ be a family of measurable translation operators in Ω , that is, θ_t is a map of Ω into itself, such that

(i)
$$\theta_t \circ \theta_s = \theta_{t+s} \, \forall t, s \ge 0; \, \theta_0(\omega) = \omega \, \forall \omega \in \Omega$$
,

(ii)
$$(t, \omega) \leadsto \theta_t(\omega)$$
 is $(\mathcal{B}_+ \times \mathcal{M}, \mathcal{M}^{\circ})$ -measurable.

These data are fixed in the sequel.

A map T of Ω into $[0,\infty)$ is a stopping time if and only if $\{T \leq t\} \in \mathcal{M}_t$, $\forall t \geq 0$.

If T is a stopping time, then we define:

$$\mathcal{M}_T = \left\{ A \in \mathcal{M} \mid A \cap \{T \leq t\} \in \mathcal{M}_t \, \forall \, t \geq 0 \right\}.$$

$$[T] = \left\{ (T(\omega), \omega) \mid \omega \in \{T < \infty\} \right\}.$$

(See, for example, [6; IV, § 3]).

If K is a subset of $R_+ \times \Omega$, where $R_+ = [0, \infty)$, and R is a map of Ω into $[0, \infty]$, then we define:

- (a) $K^{\omega} = \{t \mid (t, \omega) \in K\}$.
- (b) $K_t = \{\omega \mid (t, \omega) \in K\}$.
- (c) $\overline{K} = \{(t, \omega) \mid t \in \overline{K^{\omega}}\}$, where $\overline{K^{\omega}}$ is the closure of K^{ω} in R_{+} .
- (d) $K(R) = \{(t, \omega) \mid R(\omega) < \infty, (t + R(\omega), \omega) \in K\}$.
- (e) $K_R = \{ \omega \mid (R(\omega), \omega) \in K, R(\omega) < \infty \}$.
- (f) $K_A = \bigcup_{s \in A} K_s$ for $A \subseteq R_+$.
- (g) $\theta_R(\omega) = \theta_{R(\omega)}(\omega)$ if $R(\omega) < \infty$ and undefined if $R(\omega) = \infty$.

DEFINITION. A subset M, of $R_+ \times \Omega$ is said to be a strong Markov set if and only if

- (i) M is progressively measurable with respect to (\mathcal{M}_t) (see, for example, [6; IV, D. 45]).
- (ii) $P(M_0) = 1$.
- (iii) $\theta_s^{-1}(M_t) = M_{t+s} \ \forall t, s \ge 0.$
- (iv) M^{ω} is right-closed $\forall \omega \in \Omega.*$)

^{*} A subset B of R_+ is right-closed, if it is closed in the topology generated by the right closed intervals: [a,b), $0 \le a < b < \infty$.

- (v) $P(\overline{M}_t \setminus M_t) = 0 \ \forall t \ge 0.$
- (vi) If T is a stopping time with $[T] \subseteq M$, then

$$\begin{split} P\big(A \cap \theta_T^{-1}(B)\big) &= P(A) \; P(B) \quad \ \forall \, A \in \mathcal{M}_T \; , \\ A &\subseteq \{T < \infty\} \qquad \forall \, B \in \mathcal{M} \; . \end{split}$$

Let X be a strong homogeneous Markov process w.r.t. (\mathcal{M}_t) whose paths are right-continuous, have left limits, and admit no fixed discontinuities, and such that \mathcal{M}_t is equal to the completion of the σ -algebra generated by $\{X(s) \mid 0 \le s \le t\}$, under P. If E is the state space and $x_0 \in E$, such that $X(0) = x_0$ a.s., then

$$M = \{(t, \omega) \mid X(t, \omega) = x_0\}$$

is a strong Markov set, since:

- (i) follows from the fact that X is progressively measurable. (See, for example, [6; IV, T 47]).
 - (ii) follows from $X(0) = x_0$ a.s.
 - (iii) follows from $X_{t+s} = X_t \circ \theta_s$.
 - (iv) follows from the right-continuity of X.
 - (v) follows from the absense of fixed discontinuities of X.
 - (vi) follows from the strong Markov property:

$$P(A \cap \theta_{T}^{-1}(B)) = E\{1_{A} P_{X_{T}}(B)\} = E\{1_{A} P_{x_{0}}(B)\} = P(A) P(B)$$

since $[T] \subseteq M$ implies that $X_T \equiv x_0$ on $\{T < \infty\}$ and $P_{x_0} = P$.

The main theorem of this paper states, that all strong Markov sets are generated in this way.

In all that follows, M will denote a strong Markov set.

LEMMA 1. Let T be a stopping time such that $[T] \subseteq M$ and let F be a $\mathcal{M}_T \times \mathcal{M}$ -measurable, bounded map of $\Omega \times \Omega$ into R. Then

$$\int\limits_{\{T<\infty\}} F\big(\omega,\theta_T(\omega)\big)\,P(d\omega) = \int\limits_{\{T<\infty\}} P(d\omega')\int\limits_{\Omega} F(\omega',\omega'')\,P(d\omega'')\;.$$

PROOF. Let H denote the set of all bounded $\mathcal{M}_T \times \mathcal{M}$ measurable functions F satisfying the hypothesis of the lemma. Then H is clearly a vector space, and H is closed under monotone, uniformly bounded, pointwise limits.

By (vi) we have that $1_{A\times B}\in H$, $\forall A\in \mathcal{M}_T$, $\forall B\in \mathcal{M}$. Hence the lemma follows from [6; I, T 20].

Lemma 2. If $B \in \mathcal{M}$ and $A \in \mathcal{M}_s$ such that $A \subseteq M_s$, then

$$(2.1) P(A \cap \theta_s^{-1}(B)) = P(A) P(B).$$

In particular we see that $\{M_t \mid t>0\}$ is a regenerative event in the sense of [2], and we have

$$(2.2) P(A) = 0 or 1 \forall A \in \mathcal{M}_{0+}.$$

PROOF. Let Σ_s be defined by:

$$\Sigma_s(\omega) = \begin{cases} s & \text{if } \omega \in M_s, \\ \infty & \text{if } \omega \notin M_s. \end{cases}$$

Then Σ_s is a stopping time, such that $[\Sigma_s] \subseteq M$ and

$$\mathcal{M}_{\Sigma_s} = \left\{ A \in \mathcal{M} \;\middle|\; A \cap M_s \in \mathcal{M}_s \right\}.$$

Since

$$\theta_{\Sigma_s}(\omega) = \theta_s(\omega) \quad \forall \omega \in M_s$$

the lemma follows immediately from (vi), and from the fact that $\mathcal{M}_{0+} = \mathcal{M}_0$ and $P(M_0) = 1$.

Now let T^* be the first exit time from M,

$$T^*(\omega) = \inf\{t > 0 \mid t \in M^{\omega}\}\$$

 $(\inf\{\emptyset\} = \infty)$, and let S be defined by

$$\begin{split} S &= \limsup_{t \to 0+} \, M_{\,t} = \, \bigcap_{\epsilon > 0} \, M_{(0,\,\epsilon)} \\ &= \, \{ \omega \mid \, 0 \, \text{ is an accumulation point for } M^\omega \} \,. \end{split}$$

By [6; IV, T 52] we see that T^* is a stopping time, and it is easily seen that

$$\{T^* > t + s\} = \{T^* > s\} \cap \{T^* \circ \theta_s > t\}.$$

Since $\{T^* > s\} \in \mathcal{M}_s$ and is contained in M_s we have from Lemma 2:

$$P(T^* > t + s) = P(T^* > s) P(T^* > t) \quad \forall t, s \ge 0.$$

By [6; III, T9, T12 and No.24] we have that $M_{(0,\epsilon)} \in \mathcal{M}_{\epsilon} \forall \epsilon > 0$, hence $S \in \mathcal{M}_{0+} = \mathcal{M}_0$, and we get

LEMMA 3.

- (3.1) P(S) = 0 or 1.
- (3.2) $\exists q \in [0,\infty]$ such that $P(T^* > t) = e^{-qt} \quad \forall t > 0$.

If q=0, then $P(T^*=\infty)=1$, and hence $M^{\omega}=\mathbb{R}$ for a.a. $\omega \in \mathcal{M}$. This case is the most trivial example of a strong Markov set and will be excluded, that is:

In the following we assume that $0 < q \le \infty$.

We shall now introduce some basic processes associated with the strong Markov set M. Let

$$\begin{split} S_t(\omega) &= \inf \big\{ s \ \big| \ s \geqq t, (s, \omega) \in M \big\} \,, & \omega \in \varOmega \,\,, \\ U_t(\omega) &= \left\{ \begin{array}{ll} \sup \big\{ s \ \big| \ 0 \leqq s \leqq t, (s, \omega) \in M \big\} & \text{if} \quad t \trianglerighteq S_0(\omega) \,\,, \\ \text{undefined} & \text{if} \quad t \lessdot S_0(\omega) \,\,, \\ V_t(\omega) &= \left\{ \begin{array}{ll} S_t(\omega) - U_t(\omega) & \text{if} \quad t \trianglerighteq S_0(\omega) \,\,, \\ \text{undefined} & \text{if} \quad t \trianglerighteq S_0(\omega) \,\,, \\ \text{i$$

Here $\inf\{\emptyset\} = \infty$ and $S_{\infty} \equiv V_{\infty} \equiv U_{\infty} \equiv \infty$. If t = 0 we shall drop t in T, S^*, U^* and V^* .

If $T(t,a,\omega)<\infty$, then $T(t,a,\omega)\geq S_t(\omega)\geq S_0(\omega)$, hence U^* and V^* are defined everywhere.

LEMMA 4.

- (4.1) $(t,\omega) \rightsquigarrow S_t(\omega)$ is $\mathscr{B}_+ \times \mathscr{M}$ -universally measurable.
- (4.2) S_t is a stopping time $\forall t \geq 0$ and $[S_t] \subseteq M$.
- $(4.3) \ S_t \big(\theta_r(\omega)\big) = S_{t+r}(\omega) r \ \forall \, \omega \in \Omega \ \forall \, t, r \geq 0.$

Proof. (4.1) Let a > 0, then

$$\{(t,\omega) \mid S_t(\omega) > a\} = \operatorname{proj}_{\mathbf{R}_+ \times \Omega} \{(s,t,\omega) \mid (s,\omega) \in M, \ t \leq s \leq a\}$$

and (4.1) follows from [6; III, T 9, T 12 and No.24].

- (4.2) follows from [6; IV; T 52] and the right-closedness of M^{ω} .
- (4.3) follows from: $\theta_r^{-1}(M_t) = M_{t+r} \forall t, r \ge 0$.

LEMMA 5.

- (5.1) $(t, \omega) \leadsto U_{\bullet}(\omega)$ is progressively measurable.
- (5.2) $U_t(\theta_r(\omega)) = U_{t+r}(\omega) r \text{ if } S_r(\omega) \leq t + r.$
- (5.3) $t \leadsto U_t(\omega)$ is right continuous on $[S_0(\omega), \infty)$ for all $\omega \in \Omega$.

PROOF. (5.3) follows immediately from the right-closedness of M^{ω} . (5.2) follows from $\theta_r^{-1}(M_s) = M_{s+r} \forall s \ge 0$ and from the fact, that $S_0(\theta_r(\omega)) = S_r(\omega) - r$.

(5.1) follows from (5.3) and the easy fact that $\omega \leadsto U_t(\omega)$ is \mathcal{M}_t -measurable.

LEMMA 6.

(6.1) $(t,\omega) \rightsquigarrow V_t(\omega)$ is $\mathcal{B}_+ \times \mathcal{M}$ -universially measurable.

(6.2)
$$V_t(\theta_r(\omega)) = V_{t+r}(\omega)$$
, if $S_r(\omega) \leq t+r$.

PROOF. Immediate consequence of Lemmas 4 and 5.

LEMMA 7. Let a, t and r be non-negative. Then

- (7.1) T(t,a) is a stopping time;
- (7.2) $T(t,a) = S_t + T(a) \circ \theta_{S_t};$
- (7.3) $T(t,a,\theta_r(\omega)) = T(t+r,a,\omega) r \ \forall \omega \in \Omega;$
- (7.4) if a > 0 and $a_n \downarrow a$, then $T(t, a_n) \downarrow T(t, a)$.

PROOF. Let

$$T(\omega) = \inf \{t \mid t \ge 0, t - U_t(\omega) = a\}.$$

Then T is a stopping time (see, for example, [6; T 52]), and since

$$T(t,a) = S_t + T \circ \theta_{S_t}$$

we have that T(t,a) is stopping time (see, for example, [7; XV, (3.1)] and [7; XIII, T 19]).

If $S_0(\omega)=0$, then $T(\omega)=T(a,\omega)$. If $r=S_t(\omega)<\infty$, then $r\in M^\omega$ (M^ω is right closed) and $S_r(\omega)=r$. Hence

$$S_0(\theta_r(\omega)) = S_r(\omega) - r = 0,$$

and $T(\theta_{S_t}(\omega)) = T(a, \theta_{S_t}(\omega))$, that is,

$$T \circ \theta_{S_t} = T(a) \circ \theta_{S_t}$$
,

and (7.1) and (7.2) are proved.

(7.3) follows easily from Lemma 4 and 5.

(7.4). It is obvious that $T(t, a_n, \omega) \ge T(t, a, \omega) = r$. If $r = \infty$ there is nothing to prove. Let $r < \infty$, then by the right continuity of U

$$r - U_r(\omega) = a > 0$$

that is, $r \notin M^{\omega}$. Since M^{ω} is right closed, there exists an e > 0, so that

$$[r,r+e)\cap M^{\omega}=\emptyset.$$

Let $n_0 \ge 1$, such that $a_n - a < e \forall n \ge n_0$, then

$$(r+s) - U_{r+s}(\omega) = a+s$$

for $a \leq s < e + a$ and

$$r = T(t, a, \omega) \le T(t, a_n, \omega) \le r + (a_n - a) \quad \forall n \ge n_0;$$

hence $T(t, a_n, \omega) \downarrow r = T(t, a, \omega)$.

LEMMA 8. Let a, t and r be non-negative. Then

- (8.1) $S^*(t,a)$ is a stopping time such that $[S^*(t,a)] \subseteq M$;
- (8.2) $S^*(t,a,\theta_r(\omega)) = S^*(t+r,a,\omega)-r \quad \forall \omega \in \Omega;$
- $(8.3) \ \ U^*(t,a,\theta_r(\omega)) \ = \ U^*(t+r,a,\omega) r \qquad \forall \, \omega \in \Omega;$
- $(8.4) \ \ V^*\bigl(t,\alpha,\theta_r(\omega)\bigr) \ = \ V^*(t+r,\alpha,\omega) \qquad \quad \forall \, \omega \in \Omega \, .$

PROOF. (8.1). Since $S^*(t,a) = S_0 \circ \theta_{T(t,a)} + T(t,a)$ the result follows from [7; XIII, T 19].

(8.2-4) are trivial consequences of the preceding lemmas.

Lemma 9. Let t and a be non-negative. Then

- $(9.1) S^*(t,a) = S^*(a) \circ \theta_{S_t} + S_t;$
- (9.2) $U^*(t,a) = U^*(a) \circ \theta_{S_t} + S_t$;
- $(9.3) \ V^*(t,a) \ = \ V^*(a) \circ \theta_{S_t} \, .$

PROOF. Let $r = S_t(\omega) < \infty$. Then $r \in M^{\omega}$ and $S_r(\omega) = r$, and

$$T(r,a,\omega) = \inf\{s \mid s \ge r, s - U_s(\omega) = a\} = T(t,a,\omega)$$
.

From Lemma 8 we then have:

$$\begin{array}{lll} S^*(t,a,\omega) &= S^*(r,a,\omega) &= S^*(a,\theta_r(\omega)) + r \;, \\ U^*(t,a,\omega) &= U^*(r,a,\omega) &= U^*(a,\theta_r(\omega)) + r \;, \\ V^*(t,a,\omega) &= V^*(r,a,\omega) &= V^*(a,\theta_r(\omega)) \;, \end{array}$$

which proves the lemma.

LEMMA 10. Let $a_0 = \sup\{a \mid a \ge 0, P(T(a) < \infty) = 1\}$. Then $a_0 > 0$ and

$$P\big(T(a)<\infty\big) \ = \ \left\{ \begin{array}{ll} 1, & 0 \leq a < a_0 \ , \\ 0, & a_0 \leq a < \infty \ . \end{array} \right.$$

PROOF. Since $T(a) \le T(b)$, if $0 \le a \le b < \infty$, we see that $P(T(a) < \infty) = 1$ $\forall a \in [0, a_0)$. By an easy argument, it follows that

$$\{T(a) = \infty\} \cap M_0 = \{T(a) \ge S_t\} \cap \{T(a) \circ \theta_{S_t} = \infty\} \cap M_0.$$

Since T(a) and S_t are both stopping times, we have

$${T(a) \ge S_t} \in \mathscr{M}_{S_t}$$
.

Since $T(a, \omega) = \infty$, implies $S_t(\omega) < \infty$, we have

$$\{T(a) \ge S_t\} \subseteq \{S_t < \infty\}.$$

Then (vi) gives us

$$P(T(a) = \infty) = P(T(a) \ge S_t) P(T(a) = \infty)$$
.

Since $S_t \ge t$ we get (by letting $t \to \infty$)

$$P(T(a) = \infty) = P(T(a) = \infty)^2$$
,

that is, $P(T(a) < \infty) = 0$ or $1 \forall a \ge 0$, hence $P(T(a) < \infty) = 0 \forall a \in (a_0, \infty)$. Since q > 0, we have that

$$P(T^* = \infty) = P(t - U_t = 0 \ \forall t) = 0$$
.

We can therefore find a > 0 such that

$$P(t-U_t \leq a \ \forall t) < 1,$$

hence $P(T(a) = \infty) < 1$, and we get $a_0 \ge a > 0$.

If $a_0 < \infty$, then there exists $a_n \downarrow a_0$ such that $a_n > a_0$. Further $T(a_n) = \infty$ a.s., and by Lemma 7 we have $T(a_n) \downarrow T(a_0)$, that is, $T(a_0) = \infty$ a.s., and the lemma is proved.

Lemma 11. Let R be a \mathcal{M} -measurable map of Ω into $[0,\infty)$, and $t \ge 0$. Then

$$P(S_t > t = U_R) = 0$$
.

PROOF. Since $\{S_t > t = U_R\} \subseteq \overline{M}_t \setminus M_t$, the lemma follows from (v).

Lemma 12. Let $0 \le u, s \le t$; $0 < v < a_0$; $B \in \overline{\mathcal{B}}_+$; $K \in \mathcal{M}_u$; and $A \in \mathcal{B}_+$ such that $A \subseteq (v+t,\infty)$. Then

$$P(T(s,v) \in A; V^*(s,v) \in B; K) = P(T(s,v) \in A; K) P(V^*(v) \in B)$$
.

Here \mathscr{B}_+ is the Borel subsets of $[0,\infty)$, and $\overline{\mathscr{B}}_+$ is the Borel subsets of $[0,\infty]$.

PROOF. Clearly it is enough to prove the lemma when $A = [v + p, \infty)$ with p > t.

Let $\omega \in \{v + p \le T(s, v) < \infty\} \setminus \{S_p > p = U^*(s, v)\}$. Then $T(s, v, \omega) > p$.

If $U^*(s, v, \omega) = p$, then $S_p(\omega) = p \le T(s, v, \omega)$.

If $U^*(s,v,\omega) > p$, then $S_p(\omega) \le U^*(s,v,\omega) \le T(s,v,\omega)$, since p > s.

So in any case $S_p(\omega) \leq T(s, v, \omega)$, and $S_p(\omega) < \infty$.

Let $\omega \in \{S_p \leq T(s,v) < \infty\}$. Since M^{ω} is disjoint from

$$(U^*(s,v,\omega), T(s,v,\omega)]$$
,

we have $S_p(\omega) \leq U^*(s, v, \omega)$, hence

$$\infty \, > \, T(s,v,\omega) \, = \, v + U^*(s,v,\omega) \, \geqq \, S_p(\omega) + v \, \geqq \, p + v \; . \label{eq:spectrum}$$

From (vi) and Lemmas 7 and 10 we get

$$\begin{split} P\big(T(s,v) = \infty, \ S_s < \infty\big) \ = \ P\big(T(v) \circ \theta_{S_s} = \infty, \ S_s < \infty\big) \\ = \ P\big(T(v) = \infty\big) \ P(S_s < \infty) \ = \ 0 \ . \end{split}$$

Since $S_n \geq S_s$ we have

$$P(T(s,v)=\infty, S_n < \infty) = 0$$
.

By Lemma 11 we have

$$P(p = U^*(s, v) < S_n) = 0$$
,

hence

$$\begin{split} (*) & \quad \{T(s,v) \in [v+p,\infty)\} = \, \{S_p < \infty \, ; \, S_p \leqq T(s,v)\} \quad \text{a.s. } [P] \\ & = \, \{S_p < \infty \, ; \, S_p \leqq U^*(s,v)\}. \end{split}$$

If $u \leq p \leq S_p$, then $K \in \mathcal{M}_{S_p}$, and from (*) we see that

$$\{v+p \le T(s,v) < \infty\}$$

belongs to \mathscr{M}_{S_p} and is contained in $\{S_p<\infty\}$ a.s. Since for obvious reasons

$$V^*(s,v,\omega) = V^*(v,\theta_{S_n}(\omega)) \quad \forall \, \omega \in \{S_p < \infty; \, S_p \leq U^*(s,v)\} \,,$$

we get from (vi)

$$P(v+p \le T(s,v) < \infty; K; V^*(s,v) \in B)$$

$$= P(v+p \le T(s,v) < \infty; K) P(V^*(v) \in B),$$

and the lemma is proved.

Lemma 13. Let \mathcal{F}_t be the σ -algebra generated by the family $\{U_s \mid 0 \le s \le t\}$, and let

$$H(v,B) = P(V^*(v) \in B), \quad B \in \overline{\mathscr{B}}_+, \ v \ge 0.$$

If $t \ge 0$ and $B \in \overline{\mathcal{B}}_+$, then a.s. we have:

$$P(V_t \in B \mid \mathcal{F}_t) = P(V_t \in B \mid U_t) = H(t - U_t, B) .$$

PROOF. The proof runs along the same lines as the proof of Lemma 9 in [5]. First we note, that $V^*(\cdot,\omega)$ is right-continuous on $(0,\infty)$ (see,

for example, the proof of point (7.4) in Lemma 7). This implies that $H(\cdot,B)$ is right-continuous on $(0,\infty)$ for B=[c,d). Clearly it is enough to prove that

$$(*) P(V_t \in B; K) = \int_K H(t - U_t, B) dP,$$

where $K = \bigcap_{j=1}^{k} \{U_{t_j} \in (a_j, b_j]\}$. For all $0 \le t_1 < t_2 < \ldots < t_k = t$, B = [c, d) and $a_1 < b_1, a_2 < b_2, \ldots, a_k < b_k$.

Since $U_s \leq s$ we may assume, that $b_i \leq t_i$. Let $t_0 = 0$, then

$$(a_k,b_k] = \bigcup_{j=1}^k (a_k,b_k] \cap (t_{j-1},t_j].$$

Hence it is enough to prove (*) in the case where

$$(a_k, b_k] \subseteq (t_{j-1}, t_j]$$
 for some $j = 1, \dots, k$.

Let $s=t_j$ and $u=t_{j-1}$, then $t \ge s > u$.

Case I. $(a_k, b_k] \subseteq (t_{j-1}, t_j]$ with $1 \le j \le k$ and $b_k < t$.

Since $U_{t_k}(\omega) < t_j$ implies $U_{t_k}(\omega) = U_{t_{k-1}}(\omega) = \ldots = U_{t_j}(\omega)$, we see that K takes the form

$$K = \{U_t = U_s \in (a,b]\} \cap K_0 = \{U_t \in (a,b]\} \cap K_0$$

where $K_0 \in \mathcal{M}_u$, $u \le a < b \le s$; b < t. Now let $a_1^n = a < a_2^n < \ldots < a_{n+1}^n = b$ be a partition of [a, b], such that $a_j^n - a_{j-1}^n = (b-a)/n = d_n$, and put

$$\begin{array}{lll} l_j{}^n &= t - a_j{}^n \,, & j = 1, \dots, n+1 \,, \\ T_j{}^n &= T(a_j{}^n, \, l_j{}^n) \,, & j = 1, \dots, n+1 \,, \\ \varDelta_j{}^n &= (a_j{}^n, \, a_{j+1}^n] \,, & j = 1, \dots, n \,, \\ A_j{}^n &= \{U_i \in \varDelta_j{}^n\} \,, & j = 1, \dots, n \,, \\ B_j{}^n &= \{T_j{}^n \in \varDelta_j{}^n + l_j{}^n\} \,, & j = 1, \dots, n \,, \\ D_n &= \{U_i = t \,; \, U_r = r \, \, {\rm for \, \, some } \, r \in (t, t + d_n] \} \,. \end{array}$$

Let $\omega \in B_j^n$. Then $a_{j+1}^n + l_j^n \ge T_j^n(\omega) \ge t$. If $r = T_j^n(\omega)$, then $r - U_r(\omega) = l_j^n$, hence $M^{\omega} \cap (r - l_j^n, r] = \emptyset$. Now, since $r - l_j^n \le a_{j+1}^n \le t < r$, we find that

$$U_t(\omega) = U_r(\omega) = r - l_j^n \in \Delta_j^n,$$

that is,

$$(4) B_j^n \subseteq A_j^n.$$

Let $\omega \in A_j^n \setminus B_j^n$. Then $r = S_{a_j^n}(\omega) \le a_{j+1}^n < t$ and $(r,t] \cap M^\omega = \emptyset$. Since $t + d_n - r \ge l_j^n > 0$ and $\omega \notin B_j^n$, we see that $(t,t+d_n] \cap M^\omega \ne \emptyset$, that is,

$$\bigcup_{j=1}^n A_j^n \setminus B_j^n \subseteq D_n.$$

From the right continuity of U it follows that

$$(6) D_n \downarrow \emptyset.$$

From (4), (5), and (6) we get

(7)
$$P(V_t \in B; U_t \in (a,b]; K_0) = \sum_{j=1}^n P(V_t \in B; U_t \in \Delta_j^n; K_0)$$

= $\lim_{n \to \infty} \sum_{j=1}^n P(V_t \in B; B_j^n; K_0)$.

If $\omega \in B_j^n$, then $S_{aj^n}(\omega) \le a_{j+1}^n < t < T_j^n(\omega) = r$, hence $S_r(\omega) = S_t(\omega)$, $U_t(\omega) = U_r(\omega)$ and

$$V^*(a_i^n, l_i^n, \omega) = V_r(\omega) = V_t(\omega)$$
.

By Lemma 12 we get, using $u \le a_i^n$, $(t, t+d_n] \subseteq (a_i^n + l_i^n, \infty)$ and $l_i^n > 0$,

(8)
$$P(V_t \in B; B_j^n; K_0) = P(V^*(a_j^n, l_j^n) \in B, T(a_j^n, l_j^n) \in (t, t + d_n]; K_0)$$

= $P(B_i^n \cap K_0) H(l_i^n, B)$.

Substituting (8) in (7) and using (4), (5) and (6) we get

$$\begin{split} P(\boldsymbol{V}_t \! \in \! B \, ; K) &= \lim_{n \to \infty} \sum_{j=1}^n P(B_t{}^n \cap K_0) \, H(l_j{}^n, \, B) \\ &= \lim_{n \to \infty} \sum_{j=1}^n P(A_j{}^n \cap K_0) \, H(l_j{}^n, \, B) \\ &= \lim_{n \to \infty} \sum_{j=1}^n P(l_{j-1}^n \! \leq \! t - U_t \! < \! l_j{}^n; \, K) \, H(l_j{}^n, \, B) \\ &= \int\limits_K H(t - U_t, B) \, dP \; , \end{split}$$

where the last equality follows from right-continuity of $H(\cdot, B)$ in the interval $(0, \infty)$ (note, that $t - U_t > 0$ inside K).

Case II. $(a_k, b_k] \subseteq (t_{k-1}, t_k]; b_k = t_k$.

In this case we can write K on the form

$$K = K_1 \cup K_2,$$

where

$$\begin{split} K_1 &= \; \bigcap_{j=1}^{k-1} \; \{U_{t_j} \in (a_j,b_j]\} \cap \{U_{t_k} \in (a_j,t_k)\} \;, \\ K_2 &= \; \bigcap_{j=1}^{k-1} \; \{U_{t_l} \in (a_j,b_j]\} \cap \{U_{t_k} \!=\! t_k\} \;. \end{split}$$

From Case I we find that

$$P(V_{t_k} \in B; K_1) = \int_{K_1} H(t - U_t, B) dP.$$

Let $\omega \in K_2$; if $\omega \in \overline{M}_{t_k} \setminus M_{t_k}$. Then $V_{t_k}(\omega) = 0$, and since $P(\overline{M}_{t_k} \setminus M_{t_k}) = 0$, we have

$$\{\boldsymbol{V}_{t_k}\!\in\!\boldsymbol{B}\,;\,\boldsymbol{K}_2\} = \left\{\begin{matrix} \boldsymbol{K}_2 & \text{if } 0\in\boldsymbol{B} \\ \boldsymbol{\varnothing} & \text{if } 0\notin\boldsymbol{B} \end{matrix}\right. \text{ a.s. } [P]\,.$$

Hence we get (using the fact that $H(0,B) = 1_B(0)$)

$$P(V_{t_k}\!\in\!B\,;\,K_2)\,=\,1_B(0)\;P(K_2)\,=\,\int\limits_{K_2}H(t_k-U_{t_k},\,B)\;dP\;,$$

and since K_1 and K_2 are disjoint, the lemma is proved.

3. The canonical process.

We shall now divide the discussion into two parts, Case 1 with $q = \infty$, and Case 2 with $0 < q < \infty$.

Case 1: $q = \infty$.

In this case the canonical process X for M is defined by

$$X_t(\omega) = t - U_t(\omega)$$
 whenever $t \ge S_0(\omega)$.

Note that, since $P(M_0) = P(S_0 = 0) = 1$, the process $X_t(\omega)$ is defined for all $t \ge 0$ and for a.a. $\omega \in \Omega$.

Let E denote $[0, a_0)$ (see Lemma 10), equipped with the right-topology, that is, the topology generated by the right closed intervals [a, b), $0 \le a < b \le a_0$.

We shall now prove that X is a strong Markov process with state space E; actually we will prove that X is a right-continuous Feller process on E, with transition probabilities given by

$$P(t,x,A) = P(X_{t+T(x)} \in A), \quad t \ge 0, x \in E, A \in \mathcal{B}(E).$$

LEMMA 14. The map $t \rightsquigarrow X_t(\omega)$ is a right-continuous map of $[S_0(\omega), \infty)$ into E for a.a. $\omega \in \Omega$.

PROOF. Let $t_0 \ge S_0(\omega)$ and $t_n \downarrow t_0$. Then by the right-continuity of U we have $X_{t_n}(\omega) \to X_{t_0}(\omega)$ (in the usual topology of R).

If $X_{t_0}(\omega) = 0$, then $X_{t_n}(\omega) \ge X_{t_0}(\omega) \, \forall_n$, hence $X_{t_n}(\omega) \to X_{t_0}(\omega)$ in the right-topology of R.

If $X_{t_0}(\omega) > 0$, then $t_0 \notin M^{\omega}$. By the right-closedness of M^{ω} , we can find an e > 0, such that $[t_0, t_0 + e]$ is disjoint from M^{ω} , and hence

$$X_{t}(\omega) = X_{t_0}(\omega) + (t - t_0), \quad t_0 \leq t \leq t_0 + e.$$

Let n_0 be chosen such that $t_0 \le t_n \le t_0 + e \ \forall n \ge n_0$. Then

$$X_{t_n}(\omega) = X_{t_0}(\omega) + (t_n - t_0) \ge X_{t_0}(\omega) \quad \forall n \ge n_0;$$

hence $X_{t_n}(\omega) \to X_{t_0}(\omega)$ in the right-topology. Since

$$P(X_t \ge a_0 \text{ for some } t) = P(T(a_0) < \infty) = 0$$
,

we see that $X_t(\omega) \in E$ for all $t \ge 0$ for a.a. ω .

LEMMA 15. Let $f \in C(E)$. Then

- (15.1) $t \rightsquigarrow P(t,x,f) = \int_0^{a_0} f(y) P(t,x,dy)$ is a right-continuous map of $[0,\infty)$ into \mathbb{R} ,
- (15.2) $x \rightsquigarrow P(t,x,f)$ is a continuous map of E into R.

PROOF. First we note that a function g from E into R is continuous, if and only if g is a right-continuous function from $[0,a_0)$ into R (in the usual topologies).

Let $f \in C(E)$. Then

$$P(t,x,f) = Ef(X_{t+T(x)}).$$

From Lemma 14 we immediately see, that (15.1) is fulfilled.

If $0 < x_0 < a_0$ and $x_n \downarrow x_0$, then from Lemmas 14 and 7 we get

$$P(t,x_n,f) \rightarrow P(t,x_0,f)$$
.

Now let $x_n \downarrow 0$; then $\{T(x_n)\}_{1}^{\infty}$ is decreasing. Let

$$T(\omega) = \lim_{n \to \infty} T(x_n, \omega)$$
.

If $\omega \in M_0$, then clearly $[0,T(\omega)] \subseteq M^{\omega}$, hence

$$P(T \ge e) \le P(\omega \mid [0, e] \subseteq M^{\omega}),$$

= $P(T^* \ge e) = 0 \quad \forall e > 0,$

since $q = \infty$. Hence T = 0 a.s., and we have $T(x_n) \downarrow 0$ a.s. As before we therefore get

$$P(t, x_n, f) \to P(t, 0, f)$$
 as $n \to \infty$,

and the lemma is proved.

LEMMA 16.

- (16.1) X is progressively measurable with respect to (\mathcal{M}_t) .
- $(16.2) \quad X_t \big(\theta_r(\omega)\big) \, = \, X_{t+r}(\omega) \ \ \text{if} \ \ S_r(\omega) \, \leqq \, t+r \ \ (undefined \ \ if \ \ S_r(\omega) > t+r) \ .$

LEMMA 17. Let us define

$$F(t,A) = P(X_t \in A), \quad t \ge 0, \ A \in \mathcal{B}(E);$$

then we have for $t, h \ge 0$, $x \in E$ and $A \in \mathcal{B}(E)$:

$$(17.1) \quad P(t,x,A) = \int\limits_{x}^{x+t} F(t+x-w,A) \; H(x,dw) \; + \; 1_{A}(x+t) H(x,\,(x+t,\infty]).$$

$$\begin{aligned} (17.2) \quad & P(X_{t+h} \in A \mid X_t, S_t) = P(X_{t+h} \in A \mid \mathcal{F}_t, S_t) \\ & = \left\{ \begin{aligned} & F(h + X_t - V_t, A) & \text{if } V_t - X_t \leq h \\ & 1_A(h + X_t) & \text{if } V_t - X_t > h \end{aligned} \right. . \end{aligned}$$

PROOF. Let $S = S^*(x)$, T = T(x), and

$$F_0(\omega', \omega'') = 1_{\{t+T-S \ge 0\}}(\omega') 1_A(X_{t+T(\omega')-S(\omega')}(\omega''))$$
.

Since S and T are stopping times such that $S \ge T$, we find that T is \mathcal{M}_S -measurable. Hence t+T-S is \mathcal{M}_S -measurable, and since X is progressively measurable, F is $\mathcal{M}_S \times \mathcal{M}$ -measurable. Let $\omega \in \Omega$. Then, by Lemma 6,

$$F_0(\omega, \theta_S(\omega)) = \mathbf{1}_{\{t+T-S\geq 0\}}(\omega) \mathbf{1}_A(X_{t+T}(\omega)).$$

Using the fact that $T < \infty$ a.s. we get from Lemma 1:

$$\begin{split} \int\limits_{\Omega} F_0(\omega,\theta_S(\omega)) \; P(d\omega) \; &= \; P(X_{t+T} \in A, \, t+T-S \geqq 0) \\ &= \int\limits_{\Omega} P(d\omega') \int\limits_{\Omega} F_0(\omega',\omega'') \; P(d\omega'') \; . \end{split}$$

Using the fact that $V^*(x,\omega) = x + S^*(x,\omega) - T(x,\omega)$ we get

$$\begin{split} P(X_{t+T} \in A,\, t+T & \geqq S) \, = \, \int\limits_{\{V^*(x) \le t+x\}} P(X_{t+x-V^*(x,\,\omega)} \in A) \; P(d\omega) \\ & = \, \int\limits_x^{x+t} F(t+x-w,A) \; H(x,dw) \; . \end{split}$$

If $S(\omega) > t + T(\omega)$, then clearly $X_{t+T}(\omega) = t + x$, hence

$$P(X_{t+T} \in A, S > t+T) = 1_{A}(t+x) P(S > t+T)$$

= 1_{A}(t+x) H(x, (x+t, \infty]),

and (17.1) is proved.

Let $B \in \overline{\mathscr{B}}_+$ and $K \in \mathscr{F}_t$, and define

$$F_1(\omega',\omega'') = 1_{B_1}(S_t(\omega')) 1_K(\omega') 1_A(X_{t+k-S_t(\omega')}(\omega'')),$$

where $B_1 = B \cap [0, t+h]$. Then as in the proof of (17.1) we see that

$$P(X_{t+h} \in A \; ; \; S_t \in B \; ; \; S_t \leq t+h \; ; \; K) \; = \; \int\limits_{\{S_t \in B_1\} \; \cap \; K} F\big(t+h-S_t(\omega),A\big) \; P(d\omega) \; .$$

Here we have used the fact that $\mathscr{F}_t \subseteq \mathscr{M}_t \subseteq \mathscr{M}_{S_t}$.

If $S_t(\omega) > t+h$, then $X_{t+h}(\omega) = h + X_t(\omega)$. Hence, if $B_2 = B \cap (t+h, \infty]$ we get

$$P(X_{t+h} \in A, S_t \in B; S_t > t+h; K) = \int_{\{S_t \in B_0\} \cap K} 1_A(h+X_t) dP.$$

Now, since $S_t = t - X_t + V_t$ and $B_1 \cup B_2 = B$ (disjoint union), we have

$$P(X_{t+h} \in A; S_t \in B; K)$$

$$= \int\limits_{\{S_t \in B\} \cap K} \left(\mathbf{1}_{\{V_t - X_t \le h\}} F(h + X_t - V_t, A) - \mathbf{1}_{\{V_t - X_t > h\}} \ \mathbf{1}_A (h + X_t) \right) dP$$

from which (17.2) follows.

We shall now prove a general lemma about Markov processes, which is a slight modification of theorems 4.13, 4.14, 5.10, and 5.11 of [1].

Let F be a topological space, $(\mathscr{Y}_t)_{t\geq 0}$ an increasing sequence of σ -algebras all contained in \mathscr{M} , and $Q(t,x,\cdot)$ a probability measure on $(F,\mathscr{B}(F)) \ \forall t\geq 0 \ \forall x\in F$. Then we have

LEMMA 18. Let $(Y_t)_{t\geq 0}$ be a right-continuous process, adapted to $(\mathcal{Y}_t)_{t\geq 0}$, and with state space F. We assume:

- (a) $\mathscr{B}(F)$ is generated by C(F).
- (b) $t \rightsquigarrow Q(t,x,f)$ is right-continuous, $\forall f \in C(F) \ \forall x \in F$.
- (c) $x \rightsquigarrow Q(t,x,f)$ is continuous, $\forall f \in C(F) \ \forall t \geq 0$.
- (d) For all open non-empty $\emptyset \subseteq F$, $\exists t \ge 0$: $P(Y_t \in \emptyset) > 0$.
- (e) If $A \in \mathcal{B}(F)$ and $t,s \ge 0$, then

$$P(Y_{t+s} \in A \mid \mathcal{Y}_t) = Q(s, Y_t, A)$$
 a.s.

Let \mathscr{Y}_t^* be the completion of \mathscr{Y}_t under P, and $\widehat{\mathscr{Y}}_t = \mathscr{Y}_{t+0}^* = \bigcap_{s>t} \mathscr{Y}_s^*$. Then we have:

- (18.1) $\hat{\mathscr{Y}}_t$ is complete under P, and right-continuous in t.
- (18.2) Q satisfies the Kolmogorov-Chapman equation

$$Q(t+s,x,A) \,=\, \int\limits_F Q(t,y,A)Q(s,x,dy) \quad \, \forall A \in \mathcal{B}(F) \ \, \forall x \in F \ \, \forall t,s \geqq 0 \;.$$

(18.3) If T is a stopping time for $(\hat{\mathscr{Y}}_t)$, $S \in \hat{\mathscr{Y}}_T$ such that $S \geq T$, and $A \in \mathscr{B}(F)$, then

$$P(Y_S \in A \mid \hat{\mathscr{Y}}_T) = Q(S - T, Y_T, A)$$
 a.s. on $\{S < \infty\}$,

that is, $(Y_t)_{t\geq 0}$ is a strong Markov process with respect to $(\hat{\mathscr{Y}}_t)_{t\geq 0}$ and with Q as transition semi-group.

PROOF. (18.1) is trivial, and in the usual way we see, that

$$P(Y_{t+s} \in A \mid \mathscr{Y}_t^*) = Q(s, Y_t, A)$$
 a.s.;

hence, without loosing generality, we can assume, that $\mathscr{Y}_t = \mathscr{Y}_t^* \ \forall t \geq 0$. Let $t,s \geq 0, \ f \in C(F)$. Then

$$\begin{split} Q(t+s,\boldsymbol{Y}_{u},f) &= E\big(f(\boldsymbol{Y}_{t+s+u}) \mid \mathcal{Y}_{u}\big) \\ &= E\big(Q(t,\boldsymbol{Y}_{s+u},f) \mid \mathcal{Y}_{u}\big) = E\big(Q(t,\boldsymbol{Y}_{s+u},f) \mid \boldsymbol{Y}_{u}\big) \;. \end{split}$$

Since $Q(s,\cdot,\cdot)$ is the conditional distribution of Y_{s+u} given Y_u , we have

$$Q(t+s,\boldsymbol{Y}_{u},f) \, = \, \int\limits_{\boldsymbol{F}} Q(t,y,f) \; Q(s,\boldsymbol{Y}_{u},dy) \; . \label{eq:Q}$$

From this it follows that

(9)
$$Q(t+s,x,f) = \int_{F} Q(t,y,f) \ Q(s,x,dy) \quad \text{a.s. } [H_u] ,$$

where H_u is the distribution of Y_u .

Let F_0 be the set of $x \in F$ such that (6) holds (here t, s and f are fixed). By (d) and the above argument we get that F_0 is dense in F.

Let g(y) = Q(t, y, f), then by (c) $g \in C(F)$. Again by (c) we see that both sides of (9) are continuous in x, and since they coincide on the dense set F_0 , they coincide everywhere. Hence (18.2) is proved.

The proof of (18.3) follows by an inspection of the proofs of the theorems 4.13, 4.14, 5.10, and 5.11 of [1].

By definition we see immediately that \mathscr{F}_t is the σ -algebra generated by $\{X_s \mid 0 \le s \le t\}$. Let \mathscr{F}_t^* be the completion of \mathscr{F}_t under P and

$$\hat{\mathscr{F}}_t = \mathscr{F}_{t+0}^* = \bigcap_{s>t} \mathscr{F}_s^*, \quad t \ge 0;$$

then we have

THEOREM 1. In the case $q = \infty$, the process $(X_t)_{t \geq 0}$ is a strong Markov process with respect to $(\widehat{\mathcal{F}}_t)$ with transition semi-group P, that is, 1° P satisfies the Kolmogorov-Chapman equation:

$$P(t+s,x,A) \ = \ \int\limits_E P(t,y,A) P(s,x,dy) \quad \forall t,s \geqq 0 \ \forall x \in E \ \forall A \in \mathscr{B}(E) \ .$$

2° If T is a stopping time for $(\hat{\mathscr{F}}_t)$, $S \in \hat{\mathscr{F}}_T$, such that $S \geq T$, and $A \in \mathscr{B}(E)$, then

$$P(X_S \in A \mid \hat{\mathscr{F}}_t) = P(S - T, Y_T, A)$$
 a.s. on $\{S < \infty\}$.

Furthermore we have:

 $\begin{array}{ll} 3^{\circ} & \hat{\mathscr{F}}_{t} \ is \ complete \ under \ P \ and \ right\text{-}continuous \ in \ t. \\ 4^{\circ} & \{(t,\omega) \mid X_{t}(\omega)=0\} = \ \overline{\!M} \ . \end{array}$

$$4^{\circ} \{(t,\omega) \mid X_t(\omega) = 0\} = \overline{M}.$$

$$5^{\circ} X_0 = 0 \ a.s.$$

PROOF. 4° and 5° follow immediately from the definition of X, and in order to prove 1°, 2° and 3° we only have to check, that the conditions (a)-(e) in Lemma 18 are fulfilled.

It is clear that $\mathscr{B}(E) = \mathscr{B}([0,a_0))$, and since $C(E) \supseteq C([0,a_0))$ we see that (a) is fulfilled.

- (b) and (c) follow from Lemma 15.
- (d) Let $0 \le a < b \le a_0$; if $P(X_t \in [a,b)) = 0 \ \forall t$. Then

$$P(X_r \in [a,b) \text{ for some } r \text{ rational}) = 0$$
,

and by the right-continuity of X in E we get

$$P(X_t \in [a,b) \text{ for some } t \ge 0) = 0$$
,

and hence from the definition of X

$$P(X_t \ge a \text{ for some } t \ge 0) = P(T(a) < \infty) = 0$$
,

which contradicts Lemma 10; hence there exists a t > 0, such that $P(X_t \in [a,b)) > 0$. Thus (d) is fulfilled.

(e) By (17.2) we have

$$P(X_{t+s} \in A \mid \mathcal{F}_t, S_t) = \begin{cases} F(s+X_t-V_t, A) & \text{if } V_t-X_t \leq s, \\ 1_A(s+X_t) & \text{if } V_t-X_t > s. \end{cases}$$

By Lemma 13 we have

$$P(V_t \in B \mid \mathscr{F}_t) = H(X_t, B)$$
.

Combining these two facts we get from (17.1)

$$\begin{split} P(\boldsymbol{X}_{t+s} \in A \mid \mathscr{F}_{t}) \\ &= \int\limits_{t}^{X_{t+s}} F(s + \boldsymbol{X}_{t} - \boldsymbol{w}, A) \; H(\boldsymbol{X}_{t}, d\boldsymbol{w}) + 1_{A}(s + \boldsymbol{X}_{t}) \; H(\boldsymbol{X}_{t}, \; (\boldsymbol{X}_{t} + t, \infty]) \\ &= P(s, \boldsymbol{X}_{t}, A) \; , \end{split}$$

and (e) is fulfilled.

Hence Theorem 1 is proved.

Math. Scand. 24 - 11

Case 2: $0 < q < \infty$.

In this case the process X, defined as in Case 1, is no longer strongly Markovian. To see this we look at the stopping time T^* in Lemma 3. We put

$$T^{**}(\omega) = \begin{cases} T^{*}(\omega) & \text{if } (T^{*}(\omega), \omega) \in M, \\ \infty & \text{if } (T^{*}(\omega), \omega) \notin M. \end{cases}$$

Then T^{**} is a stopping time, such that $[T^{**}] \subseteq M$. If

$$B = \{ \omega \mid \exists a > 0 \in [0, a] \subseteq M^{\omega} \},$$

then $B \in \mathcal{M}$ and

$$P(B) = P(\bigcup_{a>0} \bigcap_{0 \le t \le a} M_t) = \lim_{a \to 0} P(\bigcap_{0 \le t \le a} M_t) = \lim_{a \to 0} P(T^* > a) = 1.$$

Now we have by the definition of T^* :

$$\theta_{T^*}^{-1}(B) = \{\omega \mid \exists a > 0, \text{ such that } [T^*(\omega), T^*(\omega) + a] \subseteq M\} = \emptyset.$$

Hence by (vi)

$$P(\{T^{**} < \infty\} \cap \theta_{T^*}^{-1}(B)) = P(T^{**} < \infty) P(B) = P(T^{**} < \infty) = 0$$

that is, $(T^*(\omega), \omega) \notin M$ for a.a. ω . By the right-closedness of M we get from this that

$$P\!\!\left(\bigcup_{n=1}^{\infty}\bigcup_{k=n}^{\infty}\left\{X_{T^{\star+1/k}}\!=\!0\right\}\right)=0$$
 .

And since

$$P(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} \{X_{1/k} = 0\}) = 1$$
,

we see that X is not strongly Markovian.

We therefore have to define a new canonical process for this case, and this can be done in the following way:

$$\begin{split} T_1^*(\omega) &= T^*(\omega) = \inf\{t > 0 \mid t \notin M^\omega\} \,, \\ Y_1^*(\omega) &= Y^*(\omega) = \inf\{t > T_1^*(\omega) \mid t \in M^\omega\} \,, \end{split}$$

and by induction:

$$T_{n+1}^*(\omega) = \inf\{t > Y_n^*(\omega) \mid t \notin M^\omega\},$$

$$Y_{n+1}^*(\omega) = \inf\{t > T_{n+1}^*(\omega) \mid t \in M^\omega\}.$$

Then it is easily seen that

(a)
$$T_1^* \le Y_1^* \le T_2^* \le \dots \le T_n^* \le Y_n^* \le T_{n+1}^* \le \dots$$
 $(Y_0^* = 0),$

(b)
$$Y_n^*$$
 and T_n^* are stopping times and $[Y_n^*] \subseteq M$,

(c)
$$M^{\omega} = \bigcup_{n=1}^{\infty} [Y_{n-1}^{*}(\omega), T_{n}^{*}(\omega)]$$
 for a.a. ω .

Now we define the canonical process X^* by

$$\boldsymbol{X}_t{}^*(\omega) \,=\, \left\{ \begin{array}{ll} 0 & \text{if } t \in [\boldsymbol{Y}_{n-1}^*(\omega),\, \boldsymbol{T}_n{}^*(\omega)) \;, \\ 1 + t - \boldsymbol{T}_n{}^*(\omega) & \text{if } t \in [\boldsymbol{T}_n{}^*(\omega),\, \boldsymbol{Y}_n{}^*(\omega)) \;, \end{array} \right.$$

and the transition probabilities by

$$P^*(t,x,A) \; = \; \left\{ \begin{array}{ll} P(X_{t+T(x-1)}^* \in A), & 1 < x < a_0 + 1 \,, \\ P(X_{t+T^*}^* \in A), & x = 1 \,, \\ P(X_t^* \in A), & x = 0 \,, \end{array} \right.$$

for $x \in E^* = \{0\} \cup [1, a_0 + 1)$ and $A \in \mathcal{B}(E^*)$.

In Case 1 we only used the fact that $q = \infty$ to prove that $x_n \downarrow 0$ implies $T(x_n) \downarrow 0$, and hence that P(t,x,f) is continuous at x = 0, $\forall t \geq 0$, $\forall f \in C(E)$. In Case 2 we have $T(x_n) \downarrow T^*$, if $x_n \downarrow 0$, and since we have isolated 0, we find in exactly the same way as in Case 1:

Theorem 2. In case $0 < q < \infty$, the process $(X_t^*)_{t \ge 0}$ is a strong Markov process with respect to $(\widehat{\mathcal{F}}_t)_{t \ge 0}$ with transition semi-group P^* , that is:

1' P* satisfies the Kolmogorov-Chapman equation

$$P^*(t+s,x,A) = \int\limits_{E^*} P^*(t,y,A) P^*(s,x,dy) \ \ \forall t,s \geqq 0, \ \forall x \in E^*, \ \forall A \in \mathscr{B}(E^*) \ .$$

2' If T is a stopping time for $(\hat{\mathscr{F}}_t)$, $S \in \hat{\mathscr{F}}_T$, such that $S \geq T$, and $A \in \mathscr{B}(E^*)$, then

$$P(X_S^* \in A \mid \hat{\mathscr{F}}_T) = P^*(S - T, X_T^*, A) \text{ a.s. on } \{S < \infty\}.$$

Furthermore we have:

3' $\hat{\mathcal{F}}_t$ is complete under P, and right-continuous in t;

4'
$$\{t \mid X_t^*(\omega) = 0\} = M^{\omega} \text{ for a.a. } \omega;$$

5' $X_0^* = 0$ a.s.

4. Some examples and remarks.

In [5], Krylov and Yuškevič have taken the canonical process X(t) in Section 3 as the definition of a Markov random set. They proved in [5] that if X(t) is a Markov process, and if $q = \infty$, then X(t) is strongly Markovian (cf. [5; Lemma 1]). They also state that in some cases with $0 < q < \infty$, the process X(t) is strongly Markovian (cf. [5; Lemma 1']), which is actually wrong, as we saw in the introductory remark to Case 2 in Section 3.

Theorem 1 in Section 3 states that if M is a strong Markov set with $q = \infty$, then \overline{M} is a strong Markov set and X(t) is a Markov random set in the sense of [5].

In [5] one can find a very deep discussion of Markov random sets in the case $q = \infty$. It is shown there that the Markov random sets may be described completely by a certain function g on $[0,a_0)$ and a nonnegative number α . The case $0 < q < \infty$ corresponds to the case that Kingman has considered in [2], [3] and [4].

The main purpose of this paper has been to give an intrinsic definition of a strong Markov set, since the definition in [5] can hardly be used in concrete examples.

We shall now describe a procedure for handling the case where the translation operators θ_t do not arise in a natural way. In the case $0 < q < \infty$ the translation operators are not really necessary, and one may use (1) in Section 1 to derive the properties of the Markov set. In the case $q = \infty$, we can assume that M^{ω} is closed for all $\omega \in \Omega$ (cf. Theorem 1 in Section 3). Suppose, thus, that (Ω, \mathcal{M}, P) , $(\mathcal{M}_t)_{t \geq 0}$ and M are given, such that

- (i) P restricted to \mathcal{M}_t is complete for all $t \ge 0$,
- (ii) M is a subset of $R_+ \times \Omega$, such that M is progressively measurable with respect to $(\mathcal{M}_t)_{t\geq 0}$,
- (iii) M^{ω} is a closed subset of R_{+} for all $\omega \in \Omega$,
- (iv) $P(M_0) = 1$.

Now let W denote the set of all closed subsets of R_+ , and let

$$\begin{split} U_0(t,w) &= \left\{ \begin{array}{ll} \sup \left\{ s \mid s \in [0,t] \cap w \right\}, & \text{if } [0,t] \cap w \neq \emptyset \text{ ,} \\ \text{undefined,} & \text{if } [0,t] \cap w = \emptyset \text{ ,} \\ \end{array} \right. \\ N &= \left\{ (t,w) \mid t \in w \right\}, \\ S_0(t,w) &= \inf \left\{ s \mid s \in [t,\infty) \cap w \right\}, & \text{for } (t,w) \in R_+ \times W \text{ ,} \\ \mathcal{G}_t^{\circ} &= \sigma \{ U_0(s) \mid 0 \leq s \leq t \}, & \text{for } t \geq 0 \text{ ,} \\ \mathcal{G}^{\circ} &= \sigma \{ U_0(s) \mid 0 \leq s < \infty \} \text{ ,} \\ \theta_t(w) &= \{ u \mid u + t \in w \}, & \text{for } t \geq 0 \text{ and } w \in W \text{ .} \end{split}$$

Then clearly $U_0(\cdot, w)$ is right-continuous, $S_0(\cdot, w)$ is left-continuous and $N_t = \{w \mid U_0(t, w) = t\}$. From this one easily deduces:

- (a) N is progressively measurable with respect to $(\mathscr{G}_t^{\circ})_{t\geq 0}$.
- (b) U_0 is progressively measurable with respect to $(\mathscr{G}_t^{\circ})_{t\geq 0}$.
- (c) If Q is any probability measure on (W, \mathcal{G}°) , and \mathcal{G} is the completion

of \mathscr{G}° with respect to Q, then S_0 is $(\mathscr{B}_{+} \times \mathscr{G}, \overline{\mathscr{B}})$ -measurable, and the map $(t, w) \rightsquigarrow \theta_{\ell}(w)$ is $(\mathscr{B}_{+} \times \mathscr{G}, \mathscr{G}^{\circ})$ -measurable.

- (d) $\theta_t \circ \theta_s = \theta_{t+s}$, for all $t, s \ge 0$.
- (e) $\theta_0(w) = w$, for all $w \in W$.
- (f) $\theta_t^{-1}(N_s) = N_{t+s} \text{ for all } t, s \ge 0.$

Now we introduce a map β from Ω into W, defined by

$$\beta(\omega) = M^{\omega}$$
.

Let Q be the image measure of P under β , that is, $Q = \beta \cdot P$ (it is easily verified, that β is measurable with respect to $(\mathcal{M}_t, \mathcal{G}_t^{\circ})$ and $(\mathcal{M}, \mathcal{G}^{\circ})$ for all $t \geq 0$). Let \mathcal{G}_t and \mathcal{G} be the completions of \mathcal{G}_t° and \mathcal{G}° , respectively, with respect to Q. Let (compare with the definition of X)

$$X_0(t,w) = t - U_0(t,w)$$
 for $(t,w) \in R_+ \times W$.

Then

$$X_0(t,\beta(\omega)) = X(t,\omega)$$
 and $\beta^{-1}(\mathscr{G}_t^{\circ}) = \mathscr{F}_t$

for all $t \ge 0$.

From the properties (a)–(f) it follows that $(W, \mathcal{G}, (\mathcal{G}_t)_{t\geq 0}, Q, (\theta_t)_{t\geq 0}, N)$ possesses all of the properties described in the definition of a strong Markov set, except for the strong Markov property (vi) in the definition on page 147. If N has this property, then $X_0(t)$ is a strong Markov process, and we deduce from the above argument that X(t) is a strong Markov process.

The problem is therefore reduced to proving that N has property (vi) on page 147.

We shall briefly mention two examples, which are, as well as the above reduction, due to P.-A. Meyer (private communication).

- 1) Let Z(t) be a right-continuous stochastic process with independent stationary increments, and assume Z(0)=0. Let M denote the set of ladder points of the process Z(t), that is, $(t,\omega) \in M$ if and only if $Z(s,\omega) \leq Z(t,\omega)$ for all $0 \leq s \leq t$. Then \overline{M} is strongly Markovian in the above sense.
- 2) Let Z(t) be a right-continuous stochastic process with independent positive stationary increments, such that Z(0) = 0. Let M denote the set of values of Z(t), that is,

$$M = \{(t, \omega) \mid Z(s, \omega) = t \text{ for some } s \ge 0\}$$
.

Then \overline{M} is strongly Markovian in the above sense.

It is fairly easy to prove, that (vi) on page 147 is satisfied in both examples, whereas a direct verification of the fact, that they are Markov random sets in the sense of [5], seems in essence to be equivalent to proving Theorem 1 in Section 3.

REFERENCES

- E. B. Dynkin, Die Grundlagen der Theorie der Markoffschen Prozesse, Springer-Verlag, Berlin · Heidelberg, 1961.
- J. F. C. Kingman, The stochastic theory of regenerative events, Z. Wahrscheinlichkeitstheorie 2 (1964), 180-224.
- J. F. C. Kingman, Some further analytic results in the theory of regenerative events,
 J. Math. Anal. Appl. 11 (1965), 422-433.
- J. F. C. Kingman, A continuous analogue of the theory of recurrent events, Bull. Amer. Math. Soc. 69 (1963), 268-272.
- N. V. Krylov and A. A. Juškevič, Markov random sets, Trudy Moskov. Mat. Obšč. 13 (1965), 114-135 (= Trans. Moscow Math. Soc. 13 (1965), 127-153).
- 6. P.-A. Meyer, Probabilités et potentiel, Hermann, Paris 1966.
- P.-A. Meyer, Processus de Markov (Lecture Notes in Mathematics 26), Springer-Verlag, Berlin · New York, 1967.

UNIVERSITY OF AARHUS, DENMARK