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MARKOV SETS

J. HOFFMANN-JORGENSEN

1. Introduction.

Kingman has introduced the notion of a regenerative event (see [2]).
A regenerative event is a family {E(t) | >0} of measurable sets in the
probability space, (2,.#,P), such that:

(1) P(N7_, E()) = P(E(t,)) P(N}_, B(t;—t))

for all ¢, ...,¢, with O<t;< ... <¢,.
In his papers [2] and [3] Kingman gives a detailed study of the analytic
properties of the function p(t)=P(E()), under the assumption:

(2) p(f)—>1 ast—->0+.

These results have important applications to Markov processes with
discrete state space, and one of the most important examples of a re-
generative event is

(3) E(t) = {X(t)=0},

where X is a Markov process with discrete state space and where 0
is a fixed state, such that X(0)=0 a.s. In this case p(t)= py(?).

If X is a Markov process with a general state space, and 0 is a fixed
state such that X(0)=0 a.s., then (3) of course still defines a regenerative
event, but in many cases we have p(t) =0 (for example if X(¢) has a con-
tinuous distribution, ¥¢>0). In this case (1) gives no information,
and (2) is not satisfied.

We shall here give a definition of a strong Markov set, which is more
restrictive than (1). We shall then construct a canonical strong Markov
process X, with X(0)=0 a.s., associated to the strong Markov set, such
that the strong Markov set itself is given by (3). In [5] Krylov and
Yuskevi¢ have worked along the same line, but in their definition of a
“Markov random set” they start with the canonical process, and the set
itself is not mentioned, which seems rather unnatural.

The problem was proposed to me by Professor P.-A. Meyer, and I
am indebted to him for his extended help and encouragement in con-
nection with this work.

Received May 1, 1968.

Math. Scand. 24 — 10



146 J. HOFFMANN-JORGENSEN

2. Definitions and basic lemmas.

Let (2,.#°,P) be a probability space, .# the completion under P
of #°, and (#,),,, an increasing family of ¢-algebras all contained
in .#, such that P restricted to .#, is complete, V>0, and (.#,) is right-
continuous, that is,

jt=ns>t¢/ﬂs=uﬂt+ Vth.

Let {0,|t=0} be a family of measurable translation operators in £,
that is, 6, is a map of Q into itself, such that

(i) 0,00, =10,,,Vt8 2 0; Oh(w)=0Vwel,

(ii) (¢, )~ 0 w) is (#,.x M, H#°)-measurable.

These data are fixed in the sequel.
A map T of 2 into [0,) is a stopping time if and only if {T'<¢} € .4,
Vt=0.
If T is a stopping time, then we define:
Mpy={Aec M| An{T<t}e M, Vt20}.
[T] = {(T(co),a)) | we{T< oo}} .
(See, for example, [6; IV, § 3]).
If K is a subset of R, x2, where R, =[0,), and R is a map of Q
into [0, 0], then we define:

(a) K°=1{t| (t,w)eK}.

(b) K;={o]| (Lo)eK}. L

() K = {(t,w)| t € K*}, where K is the closure of K”in R, .
(d) K(R) = {(t,w) | B(w)<oo, (t+R(w),w)e K}.

(e) Kg = {w]| (R(w),w)e K, R(w)<oo}.

@) K, =U, K, for AcR, .

(g) Og(w) = Ope)w) if B(w)< oo and undefined if B(w) = oo .

DerintrioN, A subset M, of R x £ is said to be a strong Markov set
if and only if
(i) M is progressively measurable with respect to (.#,) (see, for
example, [6; IV, D. 45]).
(ii) P(M,)=1.
(iil) 0, (M)=M, , Vt,8=0.
(iv) M* is right-closed Yw € 2.%)

* A subset B of R is right-closed, if it is closed in the topology generated by the right
closed intervals: [a,b), 0Sa<b<oo.
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(v) P(M,\M)=0 Vt=0.
(vi) If T is a stopping time with [T']< M, then

P(An0, Y (B)) = P(A)P(B) YAec M,
4 c {T<oo} VBe A .

Let X be a strong homogeneous Markov process w.r.t. (.#,) whose
paths are right-continuous, have left limits, and admit no fixed discon-
tinuities, and such that .#, is equal to the completion of the o-algebra
generated by {X(s) | 0=s=<t}, under P. If E is the state space and
X, € B, such that X(0)=x, a.s., then

M = {(t,0)| X(t,0)=1

is a strong Markov set, since:
(i) follows from the fact that X is progressively measurable. (See,

for example, [6; IV, T 47]).

(ii) follows from X(0)=z, a.s.

(iii) follows from X, ,=X,04,.

(iv) follows from the right-continuity of X.

(v) follows from the absense of fixed discontinuities of X.

(vi) follows from the strong Markov property:

P(An6,~Y(B)) = E{1, PXT(B)} = E{l, P, (B)} = P(4) P(B)
since [T]< M implies that X, =z, on {I <} and P, =P.

The main theorem of this paper states, that all strong Markov sets
are generated in this way.
In all that follows, M will denote a strong Markov set.

Lemma 1. Let T be a stopping time such that [T1= M and let F be a
M 5 x M-measurable, bounded map of 2x 2 into R. Then

F(w,0p(0)) P(do) = f P(dw’) f F(o',0") Pdw") .

{T< o0} {T'<oo}

Proor. Let H denote the set of all bounded .# ; x .# measurable func-
tions F satisfying the hypothesis of the lemma. Then H is clearly a vector
space, and H is closed under monotone, uniformly bounded, pointwise
limits.

By (vi) we have that 1, zeH, VAe My, YVBe.#. Hence the
lemma, follows from [6; I, T 20].

Lemma 2. If Be M and A € Mg such that A M, then
(2.1) P(An6,74(B)) = P(4) P(B) .



148 J. HOFFMANN-JORGENSEN

In particular we see that {M,|t>0} is a regenerative event in the sense
of [2], and we have

(2.2) PA)=00r1 VAc.H,,.
Proor. Let 2 be defined by:

s if weM,_,
28(“’)=Lo it wé M,

Then X, is a stopping time, such that [Z,]< M and

My ={Ae M| AnM,e M.
Since
0y (w) = O4w) Yoel,,

the lemma follows immediately from (vi), and from the fact that
My, =My and P(M,)=1.
Now let T* be the first exit time from M,
T*(w) = inf{t>0] t € M*}
(inf {J} = ), and let S be defined by
S = limsup M, = N, o M,
t—>0+

= {w | 0 is an accumulation point for M*} .

By [6; IV, T 52] we see that T'* is a stopping time, and it is easily seen
that
{T*>t+s} = {T*>s}n {T*00,>t}.
Since {T*>s} e .#, and is contained in M, we have from Lemma 2:
P(T*>t+8) = P(T*>s) P(T*>t) Vts20.
By [6; III, T9, T12 and No.24] we have that M e .#, Ve>0, hence
Se My, =M, and we get
LeMmma 3.
(8.1) P(S)y=0o0r1,
(3.2) qe[0,00] suchthat P(T*>1) = e ¢ Vi>0.

If ¢=0, then P(T*=o00)=1, and hence M“=R for a.a. w € #. This
case is the most trivial example of a strong Markov set and will be
excluded, that is:

In the following we assume that 0 <gq= oo,
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We shall now introduce some basic processes associated with the strong
Markov set M. Let

Si(w) = inf{s|s2t,(s,w) e M}, weR,
U (o) = sup{s| 0<s<t,(s,0) € M} if ¢28,(w),
)=\ undefined if  t<Syw),
_ | Siulw)=U\(w) if  128(w),
Vilw) = = undefined it t<Sy(o),
Tt a,0) =inf{s|s=28,(w),s-Ulw)=a}, wef,
S*(t,a,w) = ST(t,a,w)(w)> wep ,
U*(t,a,w) = UT(t,a,w)(w) , wep s
V*(t,a,w) = VT(t,a,w)(w)7 wel.

Here inf{@}=o00 and S =V =U,=co. If t=0 we shall drop ¢ in
T,8*% U* and V*,

If T(t,a,w)<oo, then T'(t,a,w)2S,(w)28y(w), hence U* and V* are
defined everywhere.

LeMMmA 4.

(4.1) (t,w) »—> S,(w) is B, x M-universally measurable.
(4.2) S, is a stopping time Yt=0 and [S,]s M.
(4.3) 8;(0(0))=8(w)—r Yo e Vt,rz0.

Proor. (4.1) Let a>0, then
{t,0) | 84(w)>a} = projg,,o{(s,t,0) | (s,0)e M, t<s<a}

and (4.1) follows from [6; III, T 9, T 12 and No.24].
(4.2) follows from [6; IV; T 52] and the right-closedness of M*.
(4.3) follows from: 0,~Y(M ,)=M,, . Vt,r=0.
\

LeMMA 5.

(5.1) (t,w) w—> U,(w) ts progressively measurable.
(5.2) Uy)(0(w))=U 1 p(w)—7 if S(w)St+r.
(5.3) tw> U,w) is right continuous on [Sp(w), ) for all we Q.

Proor. (5.3) follows immediately from the right-closedness of M.
(5.2) follows from 0, (M,)=M, ,V¥s20 and from the fact, that
Sy(0,(w)) =8 (w) —r.
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(5.1) follows from (5.3) and the easy fact that w w— U,(w) is A4 ,-measur-
able.

LeMMA 6.
(6.1) (t,w) w> V() is B, x M-universially measurable.
(6'2) Vt(er(w)) = Vt+r(w): "’f Sr(a)) St+r.

Proor. Immediate consequence of Lemmas 4 and 5.

LemMa 7. Let a, t and r be non-negative. Then

(7.1) T'(t,a) is a stopping time;

(7.2) T(t,a)=8,+T(a)obg,;

(7.3) T(t,0,0,(w))=T(t+r,a,0)—r Yo € 2;
(7.4) of a>0 and a,la, then T(¢,a,)|T(,a).

Proor. Let
T(w) =inf {t [t20,t- U, (w)=a}.
Then T is a stopping time (see, for example, [6; T 52]), and since
T(t,a) = St + TO 0;5';

we have that T'(¢,a) is stopping time (see, for example, [7; XV, (3.1)]
and [7; XIII, T 19]).

If So(w)=0, then T(w)=T(a,w). If r=_8,(w) < oo, then r e M* (M* is
right closed) and S, (w)=r. Hence

So(0,(w)) = S(w)—r =0,
and 7'(0g,(w))=T(a, 0g(w)), that is,
Tofs, = T(a)oby,,

and (7.1) and (7.2) are proved.

(7.3) follows easily from Lemma 4 and 5.

(7.4). It is obvious that T'(t,a,,w)=T(t,a,w)=r. If r=o there is
nothing to prove. Let r<oo, then by the right continuity of U

r—Uj(w)=a >0
that is, r § M“. Since M is right closed, there exists an e>0, so that
[r,r+e)nM® = 0.

Let ny=1, such that a,—a<eVn2=n,, then
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(T+8)—'Ur+s(w) =a+s
for a<s<e+a and
r = T(¢a0) £ Tta,w) <r+(a,—a) VYn2ng;

hence T'(¢,a,,w) | r=T(t a,w).

LevmMma 8. Let a, t and r be non-negative. Then

(8.1) S*(t,a) is a stopping time such that [S*(t,a)]< M ;
(8.2) S*(t,a,0,(w)) = S*(t+r,a,0)—r Voel;
(8.3) U*(t,a,0,(w)) = U*(¢t+r,a,0)—r Vwe;
(8.4) V*(t,a,0,(w)) = V*({t+r,a,0) Voef.

Proor. (8.1). Since S*(t,a)=_8,0 0y 4+ T (t,a) the result follows from
[7; XIII, T 19].
(8.2—4) are trivial consequences of the preceeding lemmas.

Levmwma 9. Let t and a be non-negative. Then
(9.1) S*¢,a) = S8*(@a)obg,+8,;

(9.2) U*(t,a) = U*(@)obg+8,;
(9.3) V*(t,a) = V*@a)o0g,.

Proor. Let r=8,(w)<oo. Then re M* and S,(w)=r, and
T(r,a,0) = inf{s|szr,s—Ulw)=a} = T(t,a,0).

From Lemma 8 we then have:

S*(t,a,0) = S8*(r,a,w) *(a, 0 (w))+7,
U*(t,a,0) = UX(r,a,0) = U*(a,0,()+r,
V*(t,a,0) = V¥r,a,0) = V¥a,0,(0)),

which proves the lemma.

LemMa 10. Let ay=sup{a |a=0, P(T(a) < oo)=1}. Then ay>0 and
1, O0=a<ay,
P(T(a) < oo) = { 0 e
Proor. Since T'(a) < T'(b), if 0<a<b< oo, we see that P(T(a)<co)=1
Ya € [0,a,). By an easy argument, it follows that

{T(@)=cc}n My = {T(a)28}n {T(a)obs,=0c0}n M.
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Since 7T'(a) and S, are both stopping times, we have
{T(@)z8; e, .
Since 7T'(a,w)= oo, implies S,(w) < oo, we have
{T(@)28;} < {S;<}.
Then (vi) gives us
P(T(a)=) = P(T(a)28,) P(T(a)= o).
Since §,=>t we get (by letting ¢ — oo)
P(T(a)= ) = P(T(a)= oo,

that is, P(T(a)<o)=0 or 1 Ya 20, hence P(T(a)<c)=0 Va € (ay, ).
Since ¢ >0, we have that

P(T*=00) = P(t—U,=0Vt) = 0.
We can therefore find a > 0 such that
Pt-U,saVt) <1,

hence P(T'(a)=)<1, and we get ag=a>0.

If ay<oo, then there exists a, | a, such that a,>a,. Further
T(a,)= o a.s., and by Lemma 7 we have T'(a,) | T'(a,), that is, T'(ay) = oo
a.s., and the lemma is proved.

Lemma 11. Let R be a M -measurable map of 2 into [0,00), and t=0.
Then
PS,>t=Ug) =0.

Proor. Since {S;>¢t=Ugplc M ,\M,, the lemma follows from (v).

LeEmMa 12. Let 0<u,s<t; O<v<ay;, Be#,; KeM,; and Ac A,
such that A< (v+t,00). Then

P(T(s,v)e A; V*(s,v)e B; K) = P(T(s,v) e A; K)P(V*(v) € B).
Here A, is the Borel subsets of [0,00), and .. is the Borel subsets of [0, ).

Proor. Clearly it is enough to prove the lemma when A =[v+p,)
with p>t.

Let we {v+p=T(s,v) <o}\{S,>p=U*(s,v)}. Then T'(s,v,0)>p.

If U*(s,v,0)=p, then S,(w)=p=T(s,v,w).

If U*(s,v,w)>p, then S (w) =< U*(s,v,w) T (s,v,w), since p>s.

So in any case S,(w) < 7'(s,v,w), and Spy(w) < oo.
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Let we {S,=T(s,v)<oo}. Since M* is disjoint from
(U*s,v,0), Tis,0,0)],
we have S,(w) < U*(s,v,w), hence
oo > T(s,0,0) = v+ U*(s,v,0) 2 Sp(w)+v = p+v.
From (vi) and Lemmas 7 and 10 we get
P(T(s,v) =00, Sy<0) = P(T(v)o g =00, S;< o)

= P(T(v)=o0) P(S;< ) = 0.
Since S,2=9, we have
P(T(s,v)=00,8,<0) = 0.
By Lemma 11 we have
P(p=U*(s,v)<8,) =0,
hence
(*) {T6v)elv+p,o)} = {S,<o0; 8,2T(s,v)} as. [P]
= {8, <o0; 8,2 U*(s,v)}.
If usp<S,, then Ke#g, and from (*) we see that
{fv+p=T(s,v)< o0}

belongs to .#g, and is contained in {8, <o} a.s. Since for obvious
reasons

V*(s,v,0) = V*(v,@sp(w)) Voe {S,<0;8,2U*(s,v)},
we get from (vi)

Pv+p=T(s,v)<o0; K; V*(s,v) € B)
= P(v+p=T(s,v)<oo; K) P(V*(v) € B),
and the lemma is proved.

Lemma 13. Let #; be the o-algebra generated by the family {U,|0<s<t},
and let
H(@w,B) = P(V*(v)e B), Be%,, v=0.

If t=20 and Be Z,, then a.s. we have:
P(V,eB|%) = P(V,eB|U) = H(t-U, B).

Proor. The proof runs along the same lines as the proof of Lemma 9
in [5]. First we note, that V*(-,w) is right-continuous on (0,c) (see,
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for example, the proof of point (7.4) in Lemma 7). This implies that
H(-,B) is right-continuous on (0,c0) for B=[c,d). Clearly it is enough
to prove that

*) P(V,eB;K) = fH(t—U,,B) P,
K

where K =N} {U, € (a;b;]}. For all 0=t <ty<...<t,=t, B=[c,d)
and a,<b,, a2<b2, . ak<bk
Since U,<s we may assume, that b;<¢;. Let {,=0, then

i=""
(ay,by] = j:l(ak,bk] N (b-1t;] -
Hence it is enough to prove (*) in the case where
(@, bx] € (j-3,t;]  for some j=1,...,k.

Let s=¢; and w=¢;_,, then tzs>u.

Case 1. (ay,bp]< (t;-3,t;] with 1<j<k and b, <.

Since U, (w)<t; implies U, (w)=U, [(0)=... =U,7.(w), we see that
K takes the form

K={U,=U;e(a,b}nK, = {U,€ (a,b]} n K,,

where Koe A, usa<b=s;b<t. Now let a,"=a<a,"<...<a} ,=b
be a partition of [a,b], such that a;"—a?,=(b—a)ln=d,, and put

" =t—am, j=1...,n+1,
T = T(am, 1™, j=1...,n+1,
47 = (am, }”+1], ji=1...,n,
A= {U,e d;”} j=1L...,n,
Br = {Tredr+1l, j=1,...,n,

D, = {U,=t; U,=r for some re (t,t+d,]}.

Let weB;™. Then a},, + 1" 2 T™(w) 2 ¢. lf r =T (), then r— U (w) =1,
hence M n (r—}" r]=0. Now, since r—l*<aj,,st<r, we find that

Uj(w) = Uw) =r=l;" € 4,
that is,
(4) Brc AM.

Let w e A*\B;*. Then r= San(w)_aj+1<tand (r,t] n M*=4@. Since
t+d, —r>l">0 and o ¢ B;j*, we see that (,t+d,]n M*+0, that is,

(8) U;;1 Apr\B < D, .
From the right continuity of U it follows that
(6) D, 0.
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From (4), (5), and (6) we get

(1) P(V,eB;Ue(ab]; Ko) = 37, P(V,eB; Ued; K,)
= llmn—>oo E;'L=1 P(Vt € B; Bjn; ‘KO) .
If weB;® then Sajn(w)ga]’.‘+1<t<T,~”(w)=r, hence 8, (w)=28,(w),
Uy(w)=U, (w) and
V¥@am™ I w) = Vo) = V(o).

J
By Lemma 12 we get, using u<a;™, (¢,t+d,]< (a;"+ 1, o) and };»>0,

(8) P(V,eB;Bn; Ky) = P(VXa™ ) € B, T(am L) e (4t +d,]; Ky)

Substituting (8) in (7) and using (4), (5) and (6) we get
P(V,eB;K) = lim,_,,, 37, P(Bn K,) H(l", B)

= lim, ,, 3", P(4;*n K,) H(;~, B)
= limn—>oo 2.?:1 P(l.;il st- Ut < l?'n; K) H(l]'n’ B)

= f H(t-U,B)dP,
K

where the last equality follows from right-continuity of H(-,B) in the
interval (0,o0) (note, that ¢ —U,>0 inside K).

Oase II. (ak, bk]g (tk—l’ tk]; bk::tk .
In this case we can write X on the form
K =K ,uK,,

where
K1= n‘;‘:} {Utj € (a;hbj]} n {Utk € (ajytk)} ’

Ky= N1 {Uy € @bk n (U=t} .
From Case I we find that

P(V, e B; Ky = fH(t—U,, B)dP.
K,

Let w e K,; if we M, \M, . Then V,(w)=0, and since P(M, \M,)=0,
we have
K, if 0eB

{Vi,eB; K,} = 0 if 0¢B a.s. [P].
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Hence we get (using the fact that H(0,B)=15(0))

P(Vy e B; K,) = 15(0) P(K,) = [ H(t,~U,, B) P,
K,

and since K, and K, are disjoint, the lemma is proved.

3. The canonical process.

We shall now divide the discussion into two parts, Case 1 with ¢ = oo,
and Case 2 with 0 < ¢ < co.

Case 1: q=oco,
In this case the canonical process X for M is defined by

X,(w) = t—U,(w) whenever t=8,(w).

Note that, since P(M,)=P(S,=0)=1, the process X ,(w) is defined for
all t=0 and for a.a. we Q.

Let E denote [0,a,) (see Lemma 10), equipped with the right-topology,
that is, the topology generated by the right closed intervals [a,b),
0<a<b=a,.

We shall now prove that X is a strong Markov process with state
space E; actually we will prove that X is a right-continuous Feller
process on E, with transition probabilities given by

P(t,2,4) = P(X,.pmeAd), t20,zcE, AcBE).

LemMA 14. The map t w—> X, (o) is a right-continuous map of [Sy(w), )
into B for a.a. we f.

Proor. Let ;= Sy(w) and ¢, | t,. Then by the right-continuity of U
we have X, (v) > X, (w) (in the usual topology of R).

If X, (w)=0, then X, (w)z X, (»)V,, hence X, (w) > X, (w) in the
right-topology of R.

If X, (w)>0, then t,¢& M“. By the right-closedness of M“, we can
find an e > 0, such that [{,,t,+€] is disjoint from M“, and hence

Xy(0) = Xp(w) + (t—ty), tyStsty+e.
Let n, be chosen such that t,<t,<t,+e Vn=n,. Then
X, (0) = Xy (0)+(t,—t) 2 Xy(w) Vnzng;

hence X, (w) - X, (w) in the right-topology. Since
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P(X,;za, for some t) = P(T(a,) <o) = 0,

we see that X,(w)e £ for all 120 for a.a. w.

Lemma 15. Let fe C(E). Then

(15.1) tw—s> P(t,x,f) = [30f(y) P(t,x,dy) is a right-continuous map of
[0,00) 2nto R,

(15.2) x~—> P(t,x,f) ts a continuous map of E into R.
Proor. First we note that a function g from £ into R is continuous,
if and only if g is a right-continuous function from [0,a,) into R (in the

usual topologies).
Let fe C(E). Then

P(t>x’f) = Ef(XHT(ac)) .

From Lemma 14 we immediately see, that (15.1) is fulfilled.
If 0<zy<a, and z, | x,, then from Lemmas 14 and 7 we get

P, x,,f) = P, xo.f) -
Now let x, | 0; then {T'(z,)}, is decreasing. Let
T(w) = lim,, ,  T(x,,) .
If we M,, then clearly [0,7(w)]< M®, hence

P(Tze) £ Plw] [0,e]s M),
= P(T*ze) =0 Ve>0,

since g=oco. Hence T'=0 a.s., and we have 7'(x,) { 0 a.s. As before
we therefore get

P(t,x,,.f) = P(t,0,f) as n—>oco,

and the lemma is proved.

Lemma 16.
(16.1) X s progressively measurable with respect to (M ).
(16.2) X,(0,(w)) = X, (@) if Sw) £ t+r (undefined if S (w)>t+7).
Lemma 17. Let us define
F(it,A) = P(X,ed), t20, AcBE);
then we have for t,h20, x € E and A € B(E):
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x4t

(17.1) P(i,z,A) = JF(t+x—w,A)H(x,dw) + 1@+ ) H(z, (z+1,00]).

(17.2) P(Xy,ed| X,8)=PX e d| F8)
_ {F(h+X,— V,A4) + V,—X,Zh,
Sl h+X) if Vi—X,;>h.
Proor. Let S=8*(x), T=T(x), and
Fo(o',0") = Ly p_gzq(@’) ]'A(XH-T(w')—S(w’)(w”)) .

Since S and T are stopping times such that Sz 7T, we find that 7T is
M g-measurable. Hence t+7'—8 is .#¢measurable, and since X is
progressively measurable, F' is .# 4 x .#-measurable. Let w € Q. Then,
by Lemma 6,

Fo(w, Os(w)) = 1(1+T—ng(w) lA(XHT(w)) .

Using the fact that 7'< oo a.s. we get from Lemma 1:

f Fo(o,05(0)) P(do) = P(X,,pe A, t+T—820)
- f P(do’) f Fy(o',0") P(do") .

Using the fact that V*(z,w)=x+8*(x,w)—T(x,w) we get

PXgedt4728) = [ PXiro pun € 4) Pldo)
{V*@)< t+a}
a+t

=f F(t+z—w,A) H(z,dw) .

If S(w)>t+4+T(w), then clearly X, (w)=¢+x, hence

PX, ped,8>t+T) = 1,t+z) P(S>t+T)
= 1,4(t+z) H(z, (x+¢,0]),
and (17.1) is proved.

Let Be %, and K € %, and define
Fio',0") = 15,(8(@") 1g(0’) 1o X psan(®’) »

where B,=Bn[0,t+%]. Then as in the proof of (17.1) we see that
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P(X,ncA;8,eB;8,st+h; K) = f Ft+h—8,(),4) Pdw) .
{Ste B} nK

Here we have used the fact that # < A,c A,

If Sy(w)>t+h, then X, (w)=h+X,(w). Hence, if By=Bn(f+h,oo]
we get

P(X,peA,S8,eB;8,>t+h; K) = f 1,(h+X,)dP.
{Spe Bo}nK

Now, since 8;=t—X,+ V, and B; U B,=B (disjoint union), we have

P(X,,eA;8,eB; K)

= j (I{V,—X,gh.)F(k‘l'Xr‘ Vi, 4)— Ly, x> 1,h+X,)dP
(SieB)nK

from which (17.2) follows.

We shall now prove a general lemma about Markov processes, which
is a slight modification of theorems 4.13, 4.14, 5.10, and 5.11 of [1].

Let F be a topological space, (%#,),,, an increasing sequence of
g-algebras all contained in .#, and Q(t,x,-) a probability measure on
(F,%(F))Ytz0Vxe F. Then we have

Lemma 18. Let (Y ;)20 be a right-continuous process, adapted to (¥ ) s~q,
and with state space F. We assume:
(a) ZB(F) is generated by C(F).
(b) ¢t~ Qt,2,f) is right-continuous, Vfe C(F) Vx e F.
(¢) x> Q(t,,f) is continuous, Yfe O(F) Yt 0.
(d) For all open non-empty O<F,3t=20: P(Y, e 0)>0.
(e) If AeB(F) and t,8=0, then

P(Y,eA|%) =0Q(sY,4) as.

Let ¥ * be the completion of ¥, under P, and ¥,=%} =N, ¥*.
Then we have:

(18.1) @ ¢ 18 complete under P, and right-continuous in t.

(18.2) @ satisfies the Kolmogorov-Chapman equation
Qt+s,2,4) = [Qty, A)Q.a.dy) VAeBE) VaeF Vis20.
F

(18.3) If T is a stopping time for (@,), Se@AT such that Sz T, and
AeB(F), then

P(Yge A | @) = QS—T,Y5, A) as.on{S<oo},
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that s, (Y ;)0 s @ strong Markov process with respect to (%), and
with Q as transition semi-group.

Proor. (18.1) is trivial, and in the usual way we see, that
P(Y; ,eA|¥* =Qs,Y,4) as.;

hence, without loosing generality, we can assume, that #,=% * Vt= 0.
Let ¢t,s20, fe C(F). Then

Qit+s.Y,f) = E(f(yt+s+u) I @u)
= E(Q(t’ysﬂuf) I @u) = E(Q(t’ysﬂuf) I Yu) .

Since Q(s,-,-) is the conditional distribution of Y, given Y, we have

Qt+3,Yf) = [Qt.9.0) Q.Y dy)
F

From this it follows that

©) Qt+s.mf) = [Qty.) Qoxdy) as. [HJ,
F

where H,, is the distribution of Y.

Let F, be the set of « € F such that (6) holds (here ¢,s and f are fixed).
By (d) and the above argument we get that F, is dense in F.

Let g(y)=Q(t,y.f), then by (c) g € O(F). Again by (c) we see that
both sides of (9) are continuous in x, and since they coincide on the dense
set Fy, they coincide everywhere. Hence (18.2) is proved.

The proof of (18.3) follows by an inspection of the proofs of the theo-
rems 4.13, 4.14, 5.10, and 5.11 of [1].

By definition we see immediately that & is the o-algebra generated
by {X,| 0=s=<t}. Let #* be the completion of % under P and

F = %:0 = ns>t'92;*’ t20;
then we have

THEOREM 1. In the case q=oo, the process (X,);»q is a strong Markov
process with respect to (%,) with transition semi-group P, that is,
1° P satisfies the Kolmogorov—Chapman equation:

P(t+s,3,4) = fP(t,y,A)P(s,x,dy) Vi,520 Ve e B VAec B(E).
E

2° If T is a stopping time for (f;), Se .9*:1', such that Sz T, and A e B(E),
then
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P(Xge A | %) = PS—T,Yp,A) as. on {S<oo}.
Furthermore we have:

3° ,9:7 1s complete under P and right-continuous in t.
4° {(t,w) | Xy(w)=0} = M.
5° X, = 0 a.s.

Proor. 4° and 5° follow immediately from the definition of X, and
in order to prove 1°, 2° and 3° we only have to check, that the con-
ditions (a)-(e) in Lemma 18 are fulfilled.

It is clear that %(E)=%([0,a,)), and since C(E)=20([0,a,)) we see
that (a) is fulfilled.

(b) and (¢) follow from Lemma 15.

(d) Let 0=a<b=ay; if P(X,€[a,b))=0 Vi Then

P(X, € [a,b) for some r rational) = 0,
and by the right-continuity of X in £ we get
P(X,€ [a,b) for some t20) = 0,
and hence from the definition of X
P(X,za for some t20) = P(T(a)<o) = 0,

which contradicts Lemma 10; hence there exists a £>0, such that
P(X € [a,b))> 0. Thus (d) is fulfilled.
(e) By (17.2) we have

PX, ,cA| %8, = {IA(8+Xt) if V,—X,>s.
By Lemma 13 we have
P(V,cB| %) = H(X,B).
Combining these two facts we get from (17.1)
P(XHseA | ,9';)
Xi+s

= [ Flo+X,—w,4) HX,dw)+ (s +X) H(X, (X +1,])
t

= P(S,Xt,A) >

and (e) is fulfilled.
Hence Theorem 1 is proved.

Math. Scand. 24 — 11
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Case 2: 0<g<oo.

In this case the process X, defined as in Case 1, is no longer strongly
Markovian. To see this we look at the stopping time 7'* in Lemma 3.
We put
if (T*(w),w)eM,

vy _ [ TH@)
*4(@) {oo if (T*(w),w)éM .

Then T** is a stopping time, such that [T**]c M. If
B={w|3a>0e[0,alc M},
then B e .# and

P(B) = P(Uu>0 nO§t§aMt) = limaeop(nogtgaMt)
— lim, ,P(T*>a) = 1.

Now we have by the definition of 7*:

674B) = {» | 3a>0, such that [T*(w),T*(w)+alcM} = 0.
Hence by (vi)

P({T** < 00} n 074(B)) = P(T** < ) P(B) = P(T**<o) = 0,

that is, (7*(w),w) & M for a.a. w. By the right-closedness of M we
get from this that

P(U;.:;l UZ°=n {XT*+1/IC=O}) =0.
And since
P(U:;l ;f:n{Xllk=0}) =1,

we see that X is not strongly Markovian.
We therefore have to define a new canonical process for this case,
and this can be done in the following way:

T*(w) = T*w) = inf{t>0]| t & M},

Y *¥(w) = Y*w) = inf{t>T*(w) | te M},
and by induction:

Tya(w) = inf{{>Y,*w) | t &M},

Yr (o) =if{>Tk ()| te M}

Then it is easily seen that

(@) Ty*SY *ST*< . ST *SY ¥sTE . S... (Y*=0),

(b) Y,*and T, * are stopping times and [Y,*]c M,
() M®=U;_ [Yr (w),T,*w)) for a.a. .
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Now we define the canonical process X* by

(o if te[Yy (0), T¥w)),
X ¥w) = ! 1+¢t—T *o) if te [Tn*zw), Y, ¥w)),

and the transition probabilities by

PX}pepn€d), l<z<ay+l,
P*(t,x,A) = { P(X} . € 4), z=1,
PX*eA), z=0,

for x e E*={0} U [l,a,+1) and A € Z(E*).

In Case 1 we only used the fact that g=o0 to prove that z, | 0 im-
plies T'(x,) | 0, and hence that P(t,z,f) is continuous at x=0, V{20,
Vfe C(E). In Case 2 we have T'(x,) y T*, if x, ¢ 0, and since we have
isolated 0, we find in exactly the same way as in Case 1:

TurorEM 2. In case 0<q < co, the process (X *),.q is a strong Markov
process with respect to (3" )izo with transition semi-group P*, that is:

1" P* satisfies the Kolmogorov—Chapman equation

PX(t+s,2,4) = f Px(t,y, A)P*(s,z,dy) Vt,20, Vz e E* VA c B(E*).
_E*

2" If T is a stopping time for (f/”\;), SE.?‘A"T, such that SzT, and
A € B(E*), then

P(X*e A | Fy) = PHS—T,Xp*A) as. on {S<oo).
Furthermore we have:

3 % is complete under P, and right-continuous in t;
4 {t] X *w)=0} = M* for a.a. w;
5 X*=0 as.

4. Some examples and remarks.

In [5], Krylov and Yuskevi¢ have taken the canonical process X(t) in
Section 3 as the definition of a Markov random set. They proved in [5]
that if X(f) is a Markov process, and if g=oo, then X(f) is strongly
Markovian (cf. [5; Lemma 1]). They also state that in some cases
with 0 < ¢ < oo, the process X(¢) is strongly Markovian (cf. [5; Lemma 1]),
which is actually wrong, as we saw in the introductory remark to Case 2
in Section 3.
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Theorem 1 in Section 3 states that if M is a strong Markov set with
g=oo, then M is a strong Markov set and X(t) is a Markov random
get in the sense of [5].

In [5] one can find a very deep discussion of Markov random sets in
the case g=oco. It is shown there that the Markov random sets may be
described completely by a certain function g on [0,a4,) and a non-
negative number «. The case 0 < g < o corresponds to the case that King-
man has considered in [2], [3] and [4].

The main purpose of this paper has been to give an intrinsic definition
of a strong Markov set, since the definition in [5] can hardly be used
in concrete examples.

We shall now describe a procedure for handling the case where the
translation operators 6, do not arise in a natural way. In the case
0<g<oo the translation operators are not really necessary, and one
may use (1) in Section 1 to derive the properties of the Markov set.
In the case ¢=o0, we can assume that M* is closed for all w € 2 (cf.
Theorem 1 in Section 3). Suppose, thus, that (2, .#, P), (#,);», and
M are given, such that

(i) P restricted to .#, is complete for all t= 0,
(ii) M is a subset of R, x £, such that M is progressively measurable
with respect to (.#;);~0,
(iii) M® is a closed subset of R, for all w e £,
(iv) P(My)=1.

Now let W denote the set of all closed subsets of R, and let

Uytw) = sup{s | s [0,f]nw}, if [0,]lnw+0,
olh,W) = undefined, if [0,{]nw=0,

N = {(t,w) | tew},

So(t,w) = inf{s | s e[t,o0) Nw}, for {,w)eR x W,

G, = a{Uy(s)| 0=s=<t}, for t20,
9° = o{Uys) | 05s<oo},
0,(w) = {u| ut+tew} for t=0 and weW.

Then clearly U(-,w) is right-continuous, Sy(-,w) is left-continuous and
N,={w| Uy, w)=t}. From this one easily deduces:

(a) N is progressively measurable with respect to (%,°);,-
(b) U, is progressively measurable with respect to (¥,°);,-
(c) If @ is any probability measure on (W, %°), and ¢ is the completion
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of ¥° with respect to @, then S, is (%, x ¢, #)-measurable, and
the map (¢, w) »—> 0,(w) is (Z, x %, ¥°)-measurable.

(d) 0,00, =0, for all t,s=0.

(e) 0Oy(w) = w, for all we W.

& 6, (N, =N, for all t,s=0.

Now we introduce a map g from 2 into W, defined by
Bw) = M®.

Let @ be the image measure of P under g, that is, @=p-P (it is easily
verified, that § is measurable with respect to (.#,, ¢,°) and (#, ¥°) for
all t20). Let ¥, and 4 be the completions of %,° and ¥°, respectively,
with respect to ¢. Let (compare with the definition of X)

Xo(t,w) =t — Uy(t,w) for (l,w)e R, xW.
Then
Xot.f(w)) = X(t,0) and BHY) = F

for all £z 0.

From the properties (a)-(f) it follows that (W, ¥, (9 )20, @ (0,120, N)
possesses all of the properties described in the definition of a strong
Markov set, except for the strong Markov property (vi) in the definition
on page 147. If N has this property, then X,(¢) is a strong Markov
process, and we deduce from the above argument that X(t) is a strong
Markov process.

The problem is therefore reduced to proving that N has property (vi)
on page 147.

We shall briefly mention two examples, which are, as well as the
above reduction, due to P.-A. Meyer (private communication).

1) Let Z(t) be a right-continuous stochastic process with independent
stationary increments, and assume Z(0)=0. Let M denote the set of
ladder points of the process Z(t), that is, (f,w)e M if and only if
Z(s,w) < Z(t,w) for all 0<s<t. Then M is strongly Markovian in the
above sense.

2) Let Z(t) be a right-continuous stochastic process with independent
positive stationary increments, such that Z(0)=0. Let M denote the
set, of values of Z(t), that is,

M = {(t,w) | Z(s,w)=t for some s=0}.

Then M is strongly Markovian in the above sense.
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It is fairly easy to prove, that (vi) on page 147 is satisfied in both
examples, whereas a direct verification of the fact, that they are Markov
random sets in the sense of [5], seems in essence to be equivalent to
proving Theorem 1 in Section 3.
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