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IDENTITIES CONNECTING ELEMENTARY DIVISOR
FUNCTIONS OF DIFFERENT DEGREES,
AND ALLIED CONGRUENCES

D. B. LAHIRI

1. Introduction.

This paper deals with the function ¢;(n), the sum of the kth powers
of the divisors of »; this function is referred to as the elementary divisor
function of degree k. There is a beautiful classical identity for the case
k=1 where of course o,(n) or o(n) appears. This relation [3, p.212]
may be stated as,

(1) o(n—0)—0c(n—1)—0c(n—2)+o(n—5)+o(n—"T7)—
—o(n—12)—o(n—15)+... = 0.

The identity is true with the understanding that ¢(0)=n, and o(m)=0
when m <0. The numbers 0,1,2,5,7,12,15,... appearing in the suc-
cessive terms of the series in (1) are the pentagonal numbers v given by

(2) v = fm(3m+1), m=0, +1, +2, +3, ...,

so that the typical term is + o(n —v). The sign to be attached to o(n—v)
is positive or negative according as v=v, or v=v, where

(3) vy = m(6bm+1) and v, = (2m+1)(3m+1);

here also m stands for any integer positive, zero or negative as in (2).

It is natural to enquire whether analogous identities exist for divisor
functions of higher degree. It is easily verified that replacement of o,
in (1) by just ¢, would not help in whatever manner o,(0) might be
defined; one may check by putting »=3, a case where the value of
0,(0) is irrelevant. One has therefore to look out for not so simple
expressions involving o,(n) for possible identities of more or less the
same type as the classical one. Such expressions actually exist, and it
will be noticed in the next section that the expressions obtained by the
author for the successful replacement of g(n) in (1) by other functions
not only involve o,(n) the divisor function of degree &k but also others
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of lower degree. Thus these identities connect the elementary divisor
functions of different degrees, namely, k=1,3,5,7,9.

Although simple replacement of ¢ in (1) by o, does not give a valid
identity yet it can be shown that a further replacement of the symbol =
by the symbol=yields valid albeit weaker relations, congruence rela-
tions for suitable moduli. Such congruences and others of an allied
nature will be derived from the identical relations.

Additional identities and congruences of more or less similar nature
including some which involve ag,,(n) and ¢,5(n) also exist. It is hoped
that these results will be published separately.

2. The main result.

We shall first explain certain summation notations. The symbol
Sv—n, denotes summation over the pentagonal numbers v=1v,, that is,
over

v =0,5,7,22,26,... ,

and similarly ¥,_, denotes summation over the pentagonal numbers
v=v,, that is, over
v = 1,2,12,15,35,40,... .

Also we shall use sums of the type

(4) 2[FF(n-v)],

where the summation is over all the pentagonal numbers v, with the
understanding that the sign to be attached to the term F(n—v) is
positive or negative according as v=v, or v=v;. In other words,

(5) SIFFn—v)]= > Fin—v)— 3 F(n—v).

v=1vg v=vy

To shorten the expressions which we shall come across we shall in what
follows write,

(6) 2[FFm)] = 3 [¥F(m)] =2 [FF(n-v)].

Thus in the first sum 3, _,[ F F(m)], m ranges over the values
n—0,n-1,n—-2,n-5n—-"7,n—-12,n—-15, ...,

n being considered fixed.
Using the above summation notations the classical identity (1) may
be restated in either of the following forms,
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(7) 2[Fon—v)] =0, where o(0) = n;

(8) 2

—

Fo(m)] = 0, where ¢(0) = n .
We now state the identities constituting our principal result.

THEOREM. For any prescribed value of n we have the identity,
2[FDm)] =0,
n—

where D(m) stands for any of the following expressions:

(T1) o(m) ,

(T2) 504(m)—18ma(m) ,

(T3) 7 65(m) — 150m o3(m) + 360m2o(m) ,

(T4) 5a,(m) — 294m o5(m) + 3780m2 g5(m) — 7560m3 o(m) ,

(T5) 11 04(m)— 1350m oy(m) + 45360m2gz(m) — 453600m8 o4(m) +
+816480mt o(m) ,

with the wnderstanding that the terms o,(0), k=1,3,5,7,9, if they appear
in the above identities (which happens only when n is a pentagonal number),
are given by

(T1') o(0) = =,

(T2") 505(0) = —12n2—n,

(T3") T05(0) = 19203+ 24n%+n ,

(T4") 504(0) = —3456nt—576n3—36n%2—n ,

(T5") 1164(0) = 331776n°+ 69120n%+ 576003 + 24002+ 5n;

and further o, (m) is supposed to be vanishing when m is negative.

It may be pointed out that here as also elsewhere (excepting the
last section 7) m*o,(m)=0 when m=0, «>0. It is also worth noting
that 0,(0), k>0, will not always be integral. It will also be recognized
that the case (T1) with D(m)=oc(m) gives the classical identity (8).

3. A lemma.

In connection with the lemma which we use to establish the above
theorem we require the symbols (,s), a,,, p(r) and w,, which are defined
below.

The function @, (x) has been defined by Ramanujan [4, p. 233] as

(9) ¢r,s(x) = § § [xrﬂsx“ﬁ = §nr08_r(n)xn .

a=1 f=1 n=1
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The author has slightly simplified this notation to @, ; in [1]. However,
in subsequent parts of this paper the author will follow the much simpler

notation (r,s) which has been also used rather extensively in his paper [2].
Thus

(10) (rs) = 3 wio,_(n)an

n=1

We define a, by the ‘pentagonal number’ theorem of Euler,

oo +00 oo
(11) f@) =TI 1—an) = 3 (= 1)madm@mid = ¥ q an .
n=1 -0 n=0
The function p(n) is the number of unrestricted partitions of n given by
(12) [f(@)]™* = 2 p(n)a”
n=0

The function u,, or simply u, has been defined previously by the
author [1] as,

(18) u, = (ngon’anx") (niop(n)x"> (z n'a x")/f

With the summation notation (4) explained in section 2 we can rewrite
(11) and (13) as,

(14) flx) = 20“ xt = 2[4—93”] ,
(15) u, = 3 [Fora®]/> [Fav].

We shall now state our lemma.

LemMMA. For each of the values r=1,2,3,4,5 the function u, is expressible
as a linear function of (a,b)’s as follows.

(L1) uy = —(0,1);
(L2) 120, = 5(0,3)—18(1,2)+(0,1);
(L3) 192w, = —7(0,5)+150(1,4)—10(0,3)—360(2,3) + 36 (1,2) —

(L4) 3456w, = 5(0,7)—294(1,6) + 21(0,5) + 3780(2,5) — 450(1,4) +
+15(0,3) —7560(3,4) + 1080(2,3) — 54(1,2) +(0,1);

(L5) 331776u; = —11(0,9)+1350(1,8)—100(0,7) — 45360(2,7) +
+5880(1,6)— 210(0, 5) + 453600(3,6) — 75600(2,5) +
+4500(1,4) —100(0, 3) — 816480 (4, 5) + 151200 (3,4) —
—10800(2,3) +360(1,2)—5(0, 1).
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These relations have been previously established by the author in
[1, p. 128], the only change being removal of the fractions appearing
there, and writing u, simply for u, , and (r,s) simply for @, .

4. Proof of the theorem.

It can be seen without difficulty that the set of five relations given
in the above lemma is equivalent to the following set

(16.) —uy = 0,13
(16.2) 120, +u, = 5(0,3)—18(1,2);
(16.3) —192u;— 24wy —u; = 7(0,5)—150(1,4)+360(2,3);

(16.4) 3456w, + 576us+ 361uy+ 1,

It

5(0,7)—294(1,6) + 3780(2,5) —
—17560(3,4);
(16.5) —331776uy— 69120u, — 5760wy — 240uy — 5u,

= 11(0,9)—1350(1,8)+45360(2,7) —
— 453600(3, 6) + 816480 (4,5) .

Making use of the relations (15) and (10) we obtain,
(17.1) =S [Fv2*)/ D [Fa’] = a(n)a™;
v v n=1

(17.2) S [F(20%+v)?]/ 3 [Fa?]

= 0202 [8a;5(n)—18no(n)la™;

n=1

(17.3) =3 [F(192v%+ 2402+ v)a?] /> [ Fav]

= § [705(n) — 1500 g4(n) + 360n2a(n)]2™ ;

n=1

(17.4) > [ F(3456v1+ 57603+ 36v2+v)a®] [ [ Fav]

= § [60,(n) —294ng5(n) + 3780n204(n) —

n=1

— 756008 6(n)]x”;

(17.5) =3 [T (3317760° + 6912004 + 57600° + 24002 + 5v)a] | 3 [ F 27
v v
o0

= Y [110y(n) — 13500 0,(n) + 4536002 045(n) — 4563600713 og(n) +

n=1

+ 816480nta(n)]z™ .
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Multiplying both sides of each of the above identities by >,[ F 2?]
and then equating the coefficients of a™ on both sides we establish the
different cases of the theorem given in section 2. It will be noted that
the coefficient of ™ on the new left hand side is zero when % is not a
pentagonal number. However, when # is such a number » the coefficient
of x"=2v on that side for any particular case is then transferred to the
right hand side with necessary changes in sign and branded as a suitable
multiple of ¢,(0) in such a manner that this transferred right hand
coefficient becomes equal to F .D(0), the sign being positive or negative
according as n=v=v, or n=v=0;.

5. Divisibility properties of > _. [ F 0,(m)].
We pass on now from the classical identity

(8) S[Fo(m)] = 0, where o(0)=n,

to congruences of similar form. These are easily derivable from our
theorem, and are shown in the following corollary.

CoRrOLLARY 1. T'he following congruences hold for any prescribed value
of n when the 0,(0)’s are assumed to be as specified below,

(C1.1) S[Fog(m)] =0 (mod2-3?%),
where 04(0) = —6n%+Tn;

(C1.2) S[Fogm)] =0 (mod2-3-5),
where o5(0) = n;

(C1.3) S[Foy(m)] =0 (mod2-3:7),
where 0,(0) = n;

(C1.4) S[Fogm)] =0 (mod2-33-5),
where g4(0) = —54n°—90n3 + 120n2+ 250 .

The divisibility properties of >, _.[F o,(m)] are more interesting
for the first and the last cases with k=3 and 9 than for the other two.
The congruences (C1.2) and (C1.3) are in a sense as deep as the classical
identity (8). If this identity is assumed to be known then these two
congruences follow from it fairly easily as parallel congruences hold on
a term by term basis as indicated below:
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(18)  o5(m)
(19)  0q(m)

o(m) (mod 2-3-5) as d°=d (mod2-3-5),
o(m) (mod 2-3-7) as d7 =d (mod 2-3-7);

nm

moreover, ¢;(0)=0(0)=0,(0) each being equal to n. The congruences
(C1.2) and (C1.3) can also be derived from cases (T3) and (T4) of the
theorem, without any direct appeal to the classical identity. One must
of course pay special attention to the value of FD(0), and in that
connection it is to be remembered that for all pentagonal numbers v,

(20) 208 —2v2—v = 0 (mod 5),

(21) 204 — 203 — 924w = 0 (mod 7);

(20) and (21) are required respectively for the congruences (C1.2) and
(C1.3).

The first and the last congruences of the corollary are deeper; an
appeal to the classical identity can take us only to the extent of proving
the congruences for the weaker moduli 2-3 and 2-3-5 instead of 2-32
and 2-3%-5 as shown in the corollary. To prove the stronger results
we need refer to the identities corresponding to cases (T2) and (T5)
of the theorem.

6. Further congruences involving >, . [ ¥ 0, (m)].

There exist functions F(m) such that for appropriate modulus
SnowlForm)] and Y, [FF(m)] belong to the same residue class
whatever be the value of n. This is demonstrated by the following
corollary (where (C. 2.3) is to be suitably interpreted when either side is
fractional).

COROLLARY 2. For all values of n,
(C2.1) S [Fosm)] = —30> [Fm2a(m)] (mod 2-3-52),
n—ov n—v
where o5(0)=6n3—18n%+43n;

(C2.2) S[Fos(m)] = —30> [Fmog(m)] (mod 23-32-5) ,

where ¢5(0)= —24n%—48n2+103n;

(02.3) S [Foym)] = 2943 3 [Fmog(m)] (mod 22-3%-7) ,
where 0,(0)=3(324n*—576n3—36n%—n);

(C2.4) > [Fog(m)] = 8370 > [F moy(m)] (mod 24-3%-5-7),

where 04(0)=129675+ 21607 — 360073 + 2064072+ 16495%.
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The method used for establishing these congruences is similar to that
used earlier for proving Corollary 1.

Congruences for 3, _.[ F o,(m)] for other interesting moduli are avail-
able for k=7 and 9. These are not quite as simple as the previous ones
as can be seen from the next corollary. These are provable by the
earlier methods.

CorOLLARY 3. For all values of n,
(C3.1) Z[+a7 m)] = 1262[+m2a3( 1+42 3 [ FmPo(m)]

n—v

(mod 2-3-72%) ,
where ¢,(0)=132n%+120n3—66n%—59n;
(C3.2) z [Fog(m)] = 540 3 [ Fm2as(m)]+270 3 [ F mia(m)]

n—v n—ov

(mod 2-38- 52)

where o4(0)=216n5+270n2— 9013+ 39012 —245n.

7. Congruences involving Y, _, [ ¥ m*o,(m)] only.

In the sums appearing on the left hand sides of the congruences
listed in Corollary 1 the coefficients of o4(m) or oy(n—v) are +1. This
is also true of the classical identity (8) or (7) with o(m)’s or a(n—v)’s.
It is therefore of some interest to note from the first congruence (C4.1)
of the next corollary that there is a linear function, also of o(m)’s or
o(n—v)’s but with other coefficients, which is divisible by 5 whatever
be the value of n. Also speaking about linear functions with coefficients
other than +1 we have another interesting congruence, the second one
(C4.2). It should be specially noted that in stating Corollary 4 we have
removed the earlier supposition that m%c,(m)=0 if m=0 for x>0,
(cf. section 2).

COROLLARY 4. For all values of n
(C4.1) > [Fma(m)] = 0 (mod 5),
n—v

where 0-0(0)= —n?+2n;

(C4.2) Z [Fmoym)] = D [F ] (mod 7),
n—v

where 0-04(0)= —n3—n2+2n, 02:0(0)=0

These congruences can be derived from the cases (T2) and (T3) of
the theorem by following more or less the earlier methods.
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