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CONVEX BODIES AND CONVEXITY ON GRASSMANN CONES XI
SUBLINEAR FUNCTIONS

HERBERT BUSEMANN

A real valued function f(x) defined on a non-empty set M of the
n-dimensional affine space A" is sublinear if

k 13 %
(1) fle) £ X Aif(x;) for wyeM, x =3 hx;e M, 2,;20,> 4;=1,
=1 j=1 j=1
where £ is arbitrary. The function f(x) is sublinear of order m if (1)
holds for k=m and hence k < m.

If M is a convex set then sublinearity of order 2 means that f(x) is a
convex function and therefore has the two properties:

1) f(z) is sublinear and

2) f(x) is linearly bounded below, i.e., an affine (a not necessarily
homogeneous linear) function L(xz) in 4™ exists with L(x)<f(x) on M.

For arbitrary M the function f(x) is called convex if it has the proper-
ties 1) and 2), which is equivalent to requiring that f(z) can be extended
to a convex function on the convex hull M¥ of M, see [2].

Here we treat the basic questions with a new method and study in
particular the implications of 1) alone. For open MH it is shown in [2]
that for an f(x) which is linearly bounded below sublinearity of order
n+ 1 implies sublinearity. Here we prove

TrEOREM 1. If f() is sublinear of order n+ 1 then it is sublinear.

THEOREM 2. For some fized t, 1<t<n—1, and each point x € M let o
t-flat T, through x exist such that MnT,=MHEnT,. If f(x) is defined on
M and sublinear of order n—t+ 1 then it is sublinear.

Note that M nT,=MHEnT, holds when 7T, <M.

A simple observation which was overlooked in [2] shows that 1) im-
plies 2) in all interesting cases.
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TaEOREM 3. If M contains a relative interior point of MH and f(x) is
sublinear on M then f(x) is convex.

Thus it would be preferable to define convexity only for functions
defined on M with this property. We refrain from doing so in order to
conform with the other parts of this series.

If M is a union of lines through a fixed point then it satisfies this hypo-
thesis as well as that of Theorem 2 with ¢=1. Therefore any f(x) which
is absolutely homogeneous of degree p>1 and sublinear of order n is
convex.

The analogous question for positive homogeneous functions requires
some case distinctions, see Corollaries 2, 3.

2.
For brevity we write p € 4,, resp. o € 4,,* to indicate that p is an

m-tuple of reals g,,...,p,, With 37 ,0,=1 and g;20 resp. g;>0. The
proofs will be based on the following

LevmMma. In A7 let

k
y = zlﬂ.jyj, ).EA,C.
J=

Then for a suitable r there are numbers 0 € A+ and p'e d,, i=1,...,r,
such that
(2) éle"”jz Ay j=1,...Fk,
and for each ¢
(3) Y = 5:1”;% and the y; with ,u;:> 0 are independent .
j=

The set C in R of all o € 4,, for which y=2]'9=16]- y; is compact and con-
vex, hence is the convex hull of its extreme points. In particular

r
A=>0u, 0ed, u'anextreme point of C.
i=1

We claim that the u? satisfy the assertion. Since u?e C implies the equa-
tion in (3) we must show that the y; with u;>0 are independent. For
simplicity let ui> 0 for j<s and uf=0 for j>s. If, for example,

-1 8—1

Y = _Eejyj, 295"-1 )

J=1 J=1

then



CONVEX BODIES AND CONVEXITY ON GRASSMANN CONES ... 95

,u§+sgj 20, j=1,...,s6—1, ul—e =0 for |¢| < ¢

with a suitable ;>0 and

8_1 . .
Y= Zl(ﬂ}+ee,-)z/,~ + (Mg —e)ys -
j=
But this means that u® is not an extreme point of C.—For this proof,
which is shorter than the original one, I am indebted to W. Fenchel.

3.

Theorem 1 follows at once from the Lemma. For, if yzzjl‘:lljyj,
yeM, y;e M, Aed;, we introduce 0, u’® according to the Lemma.
For a given ¢ there are at most n+1 positive uj;. If f(z) is sublinear of
order n+1 we conclude using (2) that

f@) = 20:f@) = 3 0u5f () = 2 41 (y;) -
%)

This proof shows that Theorem 2 will follow if

s+1

(4) 1) £ X 1,1
p-

for y=2§-:112jy,- eM, y;e M, )€ 4}, and independent y;.

The hypothesis of Theorem 2 contains (4) for s<n—~¢. Let n—t<s
(=n). The y; span a non-degenerate s-simplex S with y as interior point
and § lies in an s-flat L. The ¢-flat T, intersects L in a flat D with
dimension

(5) d=zs+t—n =1, whence s—d =< n-t¢.

For d =t the flats 7', and L coincide and the assertion (4) follows from
the convexity of MnT, and n—t+12=2.

Let d<t. Then T',nS=DnA8 is a convex polyhedron, whose vertices
2y,...,2, lie in (s—d)-faces of § and also in M, because S<=MH and
MnT,=MEnT,. Then

g
(6) Yy =h§11uhzh7 mEe Aqy
and
(7) f@) = 3 unf(z)

because M n7T, is convex. Now, 2, lies on an (s—d)-face of S, so that

8+1
2= o}y "€ Ay, with at most s—d +1 positive g} .
i=1
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The hypothesis, (5), (6) and (7) yield

q 8+1 s+l s ¢
F@) S Xmaify), y=32 (Zﬂhe}‘)w-
h=1 j=1 Jj=1 \h=1

The J; in (4) are uniquely determined by y and the y;, whence 3, ,uhg;‘=
A;, and (4) follows.

4.

Let f(x) be defined on the arbitrary nonempty set M in A». For
x € MH put as in [2]

k
(8) gf(x) = infw=£17'xj z ij(xj)’ Ae Ak’ Z; € M ’
Jj=1

where k is arbitrary, possibly g.(xz)= —co. Applying the Lemma to x
and x; we find

k kE r . . .

Sufz) =3 3 0,uif () = min, 3 pif(z,)
J=1 J=11=1 J

and therefore

k
(9) gs(@) = inf,_p, zlljf(xj), Ae Af, x; e M, with independent x; .
J=

In particular we see, as proved in [2], that it suffices in (8) to take k=n+ 1.

It is easy to see (comp. [2]) that g/(x) is convex if finite. On the other
hand g/(z) is an extension of f(x) if f(x) is sublinear. To prove Theorem 3
it therefore suffices to show that g,(x) is finite if f(z) is sublinear and M
contains a relative interior point y of M#.

Because of sublinearity g,(y)=f(y) > —co. Let z be any other point of
MH, Since y is a relative interior point of M# a ze MH and 0<f<1
with y=(1—0)x+ 0z exist. If

h
1=1

k
2=z, zeM, ued;,
j=1

then by sublinearity
fly) = (1=0) Z;2:f (%) + 0 2505 (2))

or
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ihif () z 1=0)"f(y)—0 2if(z)],

so that g(z) is finite.

The hypothesis that M contains relative interior points of M ig
trivially satisfied in the frequently occurring case where M is open.
It also holds when M is a union of ¢-flats through a fixed point w. For,
assuming, without loss of generality, that dim M# =n, no supporting
hyperplane of M at w exists, so that w is an interior point of M*", More-
over M satisfies the hypothesis of Theorem 2. Therefore:

CoroLLARY 1. If M is a union of t-flats through a fized point and f(x)
is defined on M and sublinear of order nm—t+1, then f(x) is convex.

THEOREM 4. Let M be a union of rays with origin w and let f(z) be
defined on M and sublinear of order n.

If M possesses a supporting hyperplane then f(x) is sublinear but in
general not convex. If M possesses no supporting hyperplane and

n+l n+1

(1) f(w) = _Elmf(yj) for w = Zlﬂjyj, yeM, pedy,
J= J=

and independent y;, then f(x) is convex. The condition (10) cannot be
omitted.

Note that (10) holds when f(w)=minf(x).

A supporting plane of M passes through w so that in the first case w
is not an interior point of a nondegenerate n-simplex with vertices in M.
Because of the Lemma it suffices to prove (4) which holds for s < n since
we assume sublinearity of order n. Let s=n. Then y is an interior point
of the n-simplex §,, with vertices y,,...,¥,,;. The ray from w through
y intersects the boundary of S, in two points z,, 2, which lie on (n—1)-
faces of §,, and the proof proceeds as that of Theorem 2.

That f(x) need not be convex (when M does not contain an interior
point of MH) is shown in Section 6.

In the second case w is an interior point of M. It suffices again to
prove (4) for s=n. For y=w this is (10). Let y+w and use the previous
notation. If w is not an interior point of S,, then (4) follows as before.

If w lies in the interior of S, the ray from w through y intersects an
(n—1)-face of S, in a point 2, so that

Math. Scand. 24 — 7
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n+l
2= 0;Y; 0;€A,41, atleast onep;=0.
J=1

We express w in the form (10) and obtain with a suitable 0 <6 <1

= (1=0)w+0z = (1-0) Z;;9;+ 0 ;0,95 »

fy) = (1-0)f(w)+6f(2)
= (1=6) Z;uf () + 0 Zj0,f (9;) = Z; 2,1 (y;) »

because y and y; determine the 1; uniquely.

That f(x) need not be convex without (10) is clear: Let M cousist of
the nonnegative ai-axes R;, t=1,...,n, and the ray R: al=...=2a",
2¢<0. Put f(x)=0 on UR, and f(x)=2! on R.

The function f(x) is absolutely homogeneous of degree p> 0 if 0 € M + {0},
oM =M for o+ 0 and f(ox) = |x|?f(x) for all x. For p<1 the function is
not convex on any line through 0 unless it vanishes; therefore f(zx) is
not sublinear of order 2 unless f(x)=0.

The function f(x) is positive homogeneous of degree p>0 if 0 € M + {0},
aM =M for «>0 and f(ox)=0oPf(x) for « 2 0. For p<1 the function is
not sublinear of order 2 if it takes positive values and for p>1 if it
takes negative values. In most applications also a M =M for « <0, but
not always f(x)=f(—=x). If « M =M for x40 then p <1 and sublinearity
imply f(x)=0.

The most important special case of Corollary 1 is

COROLLARY 2. f(x) is convex if it is sublinear of order n and absolutely
homogeneous of degree p=1 or is positive homogeneous of degree p=1 and
oM =M also for «<0.

Theorems 3, 4 imply

COROLLARY 3. f(x) s convex if it is sublinear of order n, positive homo-
geneous of degree p>0 and M possesses a supporting hyperplane and con-
tains an interior point of M*.

f(x) is convex if it is sublinear of order m and positive homogeneous of
degree p>1 and M possesses no supporting plane.

f(@) is convex if sublinear of order n, positive homogeneous of degree 1
and linearly bounded below.

In the second part we have f(z) = 0 so that (13) holds. The third part
contains Theorem (11) in [2, p. 7] where it is assumed that ME\{0}
(owing to a misprint [2] states M) is open. To prove it we observe that
by hypothesis numbers u,,. . .,u,,c exist such that
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wxr—c=3,ur,—c=f(x) onlM.
Then u-x < f(x), because u-xy=f(x,)—9d, >0, would imply
oty — od = of(xg) = flowy) = u-(xxy) —¢ forall «>0.
Therefore, if 0=3;u,y;,
0 = w3y = Zips(wy;) = 20/ (Y;)

and (10) holds. If M possesses a supporting hyperplane we apply the
second part of Theorem 4 and that f(«) is linearly bounded below.

6.

The order of sublinearity in the hypotheses of Theorems 1, 2 and Corolla-
ries 1, 2, 3 cannot be lowered, although one might have expected the
contrary in Corollaries 2, 3 because their proofs do not fully use the
homogeneity of f(z). We show this with some simple examples.

Let M7 consist of the vertices xy,...,7,,; and an interior point z of
a nondegenerate simplex. Put f(x;)=0, f(x)=1; then f(x) is sublinear of
order n on M7 but not sublinear. For Theorem 2 take any (n—t)-flat
F and a ¢-flat 7" intersecting F in a point. In F take a set

Myt = {y1,e o« Ynpy}

and let M7 consist of the ¢-flats 7',,7 parallel to 7" through y,,y. Put
f@)=0o0on UT, and f(x)=1 on T. Then f(x) is sublinear of order n—t
but not n—¢+1.

Further examples are based on the following observation. Let f(y)
be defined on a set M’ in the hyperplane z*»=1 in A" and extend f(y)
to the cone M consisting of the rays from 0 through points of M’ by

flzy) = tf(y) for 720, ye M'.
For 0=3}_,%;x;, Ac A4} and x;€ M we have z;=0. If 0+x=3F_ 2z

) 75

redy,xeM, x;e M and x=1y, x;=71;y;, y€ M', y; € M’ then

k k
= -1 -1 =
Yy = zlr AT Y lr Mty=1,
j= =

J

because y*=y7=1. From the definition of f(z)

is equivalent resp. to
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Thus, if f(x) is linear resp. sublinear of order k£ on M’ then so is f(z) on M.

We use this first to show that f(x) need not be convex in the first
part of Theorem 4. Take M’ as an (n—2)-dimensional ellipsoid and
define f(x) on M’ in any way such that inff(y)= —oo. Then f(y) is
sublinear on M’, but not linearly bounded below. The same holds for
f(@).

Next take as M’ the set M}, t=1; then f(x) is sublinear of order
n—t but not n—¢+1. Thus we obtain an example for Corollary 1, and
for t=1, since f(x) is positive homogeneous of degree 1, also for the last
part of Corollary 3.

Let L; be the azi-axes and L the line a'=...=2" n>2. Put

M=Lu...uL, UL,

f@)=0o0n UL;, f(x)=|2Y?, p=1, on L. Then f(x) is sublinear of order
n—1 but not n. This takes care of Corollary 2 and the second part of
Corollary 3. Let M* be the subset of M in {x|2?>=0}. Then the restric-
tion of f(x) to M* settles the first part of Corollary 3 with p = 1, and for
0<p<1 we take f(x)= — (x})? on L;nM*, f(x)=0 on LnM*.

7.

The theory of functions which are convex on a nonconvex set was
developed specifically for the case, where the space is the linear space
V7 (also considered as affine space) of all r-vectors over 4™ (considered
as vector space) and M is the Grassmann cone G of all simple r-vectors
R (compare [2]). The maximal dimension of a flat contained in G7 is

7 = max(r+1,mn—r+1),

see [1, p. 300], and each point R of G} lies on a ¢}-flat through the origin.
Since dim V7 = (}) we deduce from Corollary 1:

CoRrROLLARY 4. 4 function f(R) which is defined on G} and sublinear of
order gy =(}) —max(r,n—r) is convex.

In the applications f(R) is positive (frequently absolutely) homogene-
ous of degree 1. According to a previous observation this alone would
not lead us to expect that ¢} can be replaced by a smaller number. How-
ever, there are infinitely many #}-flats in G} through each R and G7
has in other respects a very special structure. If we denote by o] the
smallest integer such that sublinearity of order o} guarantees convexity
for a function on G} which is positive homogeneous of degree 1, then
most likely of <gr. Possibly o} has a smaller order of magnitude than
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gy, that is, o} /g7 — 0 when n — co and max (r,n —r)/n < 0 < 1. For various
questions in the theory of convex bodies it would be important to know the
precise value of o}.

In the simplest case n=4, r=2 it is known that 0§ > 2 (see [2, p. 213])
and Corollary 4 gives o5 <gi=4. It seems probable that oj=3.
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