CONVEX BODIES AND CONVEXITY ON GRASSMANN CONES XI SUBLINEAR FUNCTIONS

HERBERT BUSEMANN

1.

A real valued function f(x) defined on a non-empty set M of the n-dimensional affine space A^n is sublinear if

(1)
$$f(x) \leq \sum_{j=1}^{k} \lambda_j f(x_j)$$
 for $x_j \in M$, $x = \sum_{j=1}^{k} \lambda_j x_j \in M$, $\lambda_j \geq 0$, $\sum_{j=1}^{k} \lambda_j = 1$,

where k is arbitrary. The function f(x) is sublinear of order m if (1) holds for k=m and hence $k \le m$.

If M is a convex set then sublinearity of order 2 means that f(x) is a convex function and therefore has the two properties:

- 1) f(x) is sublinear and
- 2) f(x) is linearly bounded below, i.e., an affine (a not necessarily homogeneous linear) function L(x) in A^n exists with $L(x) \le f(x)$ on M.

For arbitrary M the function f(x) is called *convex* if it has the properties 1) and 2), which is equivalent to requiring that f(x) can be extended to a convex function on the convex hull M^H of M, see [2].

Here we treat the basic questions with a new method and study in particular the implications of 1) alone. For open M^H it is shown in [2] that for an f(x) which is linearly bounded below sublinearity of order n+1 implies sublinearity. Here we prove

Theorem 1. If f(x) is sublinear of order n+1 then it is sublinear.

Theorem 2. For some fixed t, $1 \le t \le n-1$, and each point $x \in M$ let a t-flat T_x through x exist such that $M \cap T_x = M^H \cap T_x$. If f(x) is defined on M and sublinear of order n-t+1 then it is sublinear.

Note that $M \cap T_x = M^H \cap T_x$ holds when $T_x \subseteq M$.

A simple observation which was overlooked in [2] shows that 1) implies 2) in all interesting cases.

Received January 27, 1968.

This work was supported by a grant from the National Science Foundation, U.S.A.

THEOREM 3. If M contains a relative interior point of M^H and f(x) is sublinear on M then f(x) is convex.

Thus it would be preferable to define convexity only for functions defined on M with this property. We refrain from doing so in order to conform with the other parts of this series.

If M is a union of lines through a fixed point then it satisfies this hypothesis as well as that of Theorem 2 with t=1. Therefore any f(x) which is absolutely homogeneous of degree $p \ge 1$ and sublinear of order n is convex.

The analogous question for positive homogeneous functions requires some case distinctions, see Corollaries 2, 3.

2.

For brevity we write $\varrho \in \Delta_m$ resp. $\varrho \in \Delta_{m}^+$ to indicate that ϱ is an m-tuple of reals $\varrho_1, \ldots, \varrho_m$ with $\sum_{i=1}^m \varrho_i = 1$ and $\varrho_i \ge 0$ resp. $\varrho_i > 0$. The proofs will be based on the following

LEMMA. In A^n let

$$y = \sum_{j=1}^k \lambda_j y_j, \quad \lambda \in \Delta_k.$$

Then for a suitable r there are numbers $\theta \in \Delta_r^+$ and $\mu^i \in \Delta_k$, $i = 1, \ldots, r$, such that

(2)
$$\sum_{i=1}^{r} \theta_i \mu_j^i = \lambda_j, \quad j = 1, \dots, k,$$

and for each i

(3)
$$y = \sum_{j=1}^{k} \mu_j^i y_j$$
 and the y_j with $\mu_j^i > 0$ are independent.

The set C in \mathbb{R}^k of all $\sigma \in \Delta_k$ for which $y = \sum_{j=1}^k \sigma_j y_j$ is compact and convex, hence is the convex hull of its extreme points. In particular

$$\lambda = \sum_{i=1}^{r} \theta_i \mu^i, \quad \theta \in \Delta_r^+, \quad \mu^i \text{ an extreme point of } C.$$

We claim that the μ^i satisfy the assertion. Since $\mu^i \in C$ implies the equation in (3) we must show that the y_j with $\mu^i_j > 0$ are independent. For simplicity let $\mu^i_j > 0$ for $j \leq s$ and $\mu^i_j = 0$ for j > s. If, for example,

$$y_s = \sum_{j=1}^{s-1} \varrho_j y_j, \quad \sum_{j=1}^{s-1} \varrho_j = 1$$
,

then

$$\mu_i^i + \varepsilon \varrho_i \ge 0, \quad j = 1, \dots, s - 1, \quad \mu_s^i - \varepsilon \ge 0 \text{ for } |\varepsilon| \le \varepsilon_0$$

with a suitable $\varepsilon_0 > 0$ and

$$y = \sum_{j=1}^{s-1} (\mu_j^i + \varepsilon \varrho_j) y_j + (\mu_s^i - \varepsilon) y_s.$$

But this means that μ^i is not an extreme point of C.—For this proof, which is shorter than the original one, I am indebted to W. Fenchel.

3.

Theorem 1 follows at once from the Lemma. For, if $y = \sum_{j=1}^{k} \lambda_j y_j$, $y \in M$, $y_j \in M$, $\lambda \in \Delta_k$, we introduce θ , μ^i according to the Lemma. For a given i there are at most n+1 positive μ_j^i . If f(x) is sublinear of order n+1 we conclude using (2) that

$$f(y) = \sum \theta_i f(y) \le \sum_{i,j} \theta_i \mu_j^i f(y_j) = \sum \lambda_j f(y_j).$$

This proof shows that Theorem 2 will follow if

(4)
$$f(y) \leq \sum_{i=1}^{s+1} \lambda_i f(y_i)$$

for $y = \sum_{i=1}^{s+1} \lambda_i y_i \in M$, $y_i \in M$, $\lambda \in \Delta_{s+1}^+$ and independent y_i .

The hypothesis of Theorem 2 contains (4) for $s \le n-t$. Let n-t < s ($\le n$). The y_j span a non-degenerate s-simplex S with y as interior point and S lies in an s-flat L. The t-flat T_y intersects L in a flat D with dimension

(5)
$$d \ge s+t-n \ge 1$$
, whence $s-d \le n-t$.

For d=t the flats T_y and L coincide and the assertion (4) follows from the convexity of $M \cap T_y$ and $n-t+1 \ge 2$.

Let d < t. Then $T_y \cap S = D \cap S$ is a convex polyhedron, whose vertices z_1, \ldots, z_q lie in (s-d)-faces of S and also in M, because $S \subseteq M^H$ and $M \cap T_y = M^H \cap T_y$. Then

(6)
$$y = \sum_{h=1}^{q} \mu_h z_h, \quad \mu \in \Delta_q,$$

and

$$f(y) \le \sum \mu_h f(z_h)$$

because $M \cap T_y$ is convex. Now, z_h lies on an (s-d)-face of S, so that

$$z_h = \sum_{j=1}^{s+1} \varrho_j^h y_j, \quad \varrho^h \in \varDelta_{s+1}, \text{ with at most } s-d+1 \text{ positive } \varrho_j^h \ .$$

The hypothesis, (5), (6) and (7) yield

$$f(y) \leq \sum_{h=1}^{q} \mu_h \sum_{j=1}^{s+1} \varrho_j^h f(y_j), \quad y = \sum_{j=1}^{s+1} \left(\sum_{h=1}^{q} \mu_h \, \varrho_j^h\right) y_j.$$

The λ_j in (4) are uniquely determined by y and the y_j , whence $\sum_h \mu_h \varrho_j^h = \lambda_j$, and (4) follows.

4.

Let f(x) be defined on the arbitrary nonempty set M in A^n . For $x \in M^H$ put as in [2]

(8)
$$g_f(x) = \inf_{x = \sum \lambda_j x_j} \sum_{i=1}^k \lambda_j f(x_j), \quad \lambda \in \Delta_k, \ x_j \in M,$$

where k is arbitrary, possibly $g_f(x) = -\infty$. Applying the Lemma to x and x_i we find

$$\sum_{j=1}^k \lambda_j f(x_j) = \sum_{j=1}^k \sum_{i=1}^r \theta_i \mu_j^i f(x_j) \ge \min_i \sum_j \mu_j^i f(x_j)$$

and therefore

(9)
$$g_f(x) = \inf_{x = \sum \lambda_j x_j} \sum_{j=1}^k \lambda_j f(x_j), \quad \lambda \in A_k^+, \ x_j \in M, \ with \ independent \ x_j.$$

In particular we see, as proved in [2], that it suffices in (8) to take k = n + 1.

It is easy to see (comp. [2]) that $g_f(x)$ is convex if finite. On the other hand $g_f(x)$ is an extension of f(x) if f(x) is sublinear. To prove Theorem 3 it therefore suffices to show that $g_f(x)$ is finite if f(x) is sublinear and M contains a relative interior point y of M^H .

Because of sublinearity $g_f(y) = f(y) > -\infty$. Let x be any other point of M^H . Since y is a relative interior point of M^H a $z \in M^H$ and $0 < \theta < 1$ with $y = (1 - \theta)x + \theta z$ exist. If

$$egin{aligned} x &= \sum\limits_{i=1}^h \lambda_i x_i, & x_i \in M_j, \ \lambda \in arDelta_h \ , \ \\ z &= \sum\limits_{j=1}^k \mu_j z_j, & z_j \in M, \ \mu \in arDelta_k \ , \end{aligned}$$

then by sublinearity

$$f(y) \leq (1-\theta) \sum_{i} \lambda_{i} f(x_{i}) + \theta \sum_{j} \mu_{j} f(z_{j})$$

$$\sum_{i} \lambda_{i} f(x_{i}) \geq (1-\theta)^{-1} [f(y) - \theta \sum_{i} f(z_{i})],$$

so that $g_f(x)$ is finite.

5.

The hypothesis that M contains relative interior points of M^H is trivially satisfied in the frequently occurring case where M^H is open. It also holds when M is a union of t-flats through a fixed point w. For, assuming, without loss of generality, that $\dim M^H = n$, no supporting hyperplane of M at w exists, so that w is an interior point of $M^{I'}$. Moreover M satisfies the hypothesis of Theorem 2. Therefore:

COROLLARY 1. If M is a union of t-flats through a fixed point and f(x) is defined on M and sublinear of order n-t+1, then f(x) is convex.

Theorem 4. Let M be a union of rays with origin w and let f(x) be defined on M and sublinear of order n.

If M possesses a supporting hyperplane then f(x) is sublinear but in general not convex. If M possesses no supporting hyperplane and

(10)
$$f(w) \leq \sum_{j=1}^{n+1} \mu_j f(y_j)$$
 for $w = \sum_{j=1}^{n+1} \mu_j y_j, y_j \in M, \mu \in \Delta_{n+1}^+$

and independent y_j , then f(x) is convex. The condition (10) cannot be omitted.

Note that (10) holds when $f(w) = \min f(x)$.

A supporting plane of M passes through w so that in the first case w is not an interior point of a nondegenerate n-simplex with vertices in M. Because of the Lemma it suffices to prove (4) which holds for s < n since we assume sublinearity of order n. Let s = n. Then y is an interior point of the n-simplex S_n with vertices y_1, \ldots, y_{n+1} . The ray from w through y intersects the boundary of S_n in two points z_1, z_2 which lie on (n-1)-faces of S_n and the proof proceeds as that of Theorem 2.

That f(x) need not be convex (when M does not contain an interior point of M^H) is shown in Section 6.

In the second case w is an interior point of M. It suffices again to prove (4) for s=n. For y=w this is (10). Let $y \neq w$ and use the previous notation. If w is not an interior point of S_n , then (4) follows as before.

If w lies in the interior of S_n the ray from w through y intersects an (n-1)-face of S_n in a point z, so that

$$z = \sum_{j=1}^{n+1} \varrho_j y_j, \quad \varrho_j \in \Delta_{n+1}, \text{ at least one } \varrho_j = 0.$$

We express w in the form (10) and obtain with a suitable $0 < \theta < 1$

$$y = (1 - \theta)w + \theta z = (1 - \theta) \sum_{j} \mu_{j} y_{j} + \theta \sum_{j} \varrho_{j} y_{j} ,$$

$$f(y) \leq (1 - \theta) f(w) + \theta f(z)$$

$$\leq (1 - \theta) \sum_{j} \mu_{i} f(y_{j}) + \theta \sum_{j} \varrho_{i} f(y_{j}) = \sum_{i} \lambda_{i} f(y_{j}) ,$$

because y and y_i determine the λ_i uniquely.

That f(x) need not be convex without (10) is clear: Let M consist of the nonnegative x^i -axes R_i , $i=1,\ldots,n$, and the ray $R: x^1=\ldots=x^n$, $x^i \le 0$. Put f(x)=0 on $\bigcup R_i$ and $f(x)=x^1$ on R.

The function f(x) is absolutely homogeneous of degree p > 0 if $0 \in M \neq \{0\}$, $\alpha M = M$ for $\alpha \neq 0$ and $f(\alpha x) = |\alpha|^p f(x)$ for all α . For p < 1 the function is not convex on any line through 0 unless it vanishes; therefore f(x) is not sublinear of order 2 unless $f(x) \equiv 0$.

The function f(x) is positive homogeneous of degree p > 0 if $0 \in M \neq \{0\}$, $\alpha M = M$ for $\alpha > 0$ and $f(\alpha x) = \alpha^p f(x)$ for $\alpha \ge 0$. For p < 1 the function is not sublinear of order 2 if it takes positive values and for p > 1 if it takes negative values. In most applications also $\alpha M = M$ for $\alpha < 0$, but not always f(x) = f(-x). If $\alpha M = M$ for $\alpha \ne 0$ then p < 1 and sublinearity imply $f(x) \equiv 0$.

The most important special case of Corollary 1 is

COROLLARY 2. f(x) is convex if it is sublinear of order n and absolutely homogeneous of degree $p \ge 1$ or is positive homogeneous of degree $p \ge 1$ and $\alpha M = M$ also for $\alpha < 0$.

Theorems 3, 4 imply

COROLLARY 3. f(x) is convex if it is sublinear of order n, positive homogeneous of degree p > 0 and M possesses a supporting hyperplane and contains an interior point of M^H .

f(x) is convex if it is sublinear of order n and positive homogeneous of degree p > 1 and M possesses no supporting plane.

f(x) is convex if sublinear of order n, positive homogeneous of degree 1 and linearly bounded below.

In the second part we have $f(x) \ge 0$ so that (13) holds. The third part contains Theorem (11) in [2, p. 7] where it is assumed that $M^H \setminus \{0\}$ (owing to a misprint [2] states M^H) is open. To prove it we observe that by hypothesis numbers u_1, \ldots, u_n, c exist such that

$$u \cdot x - c = \sum_{i} u_{i} x_{i} - c \leq f(x)$$
 on M .

Then $u \cdot x \leq f(x)$, because $u \cdot x_0 = f(x_0) - \delta$, $\delta > 0$, would imply

$$\alpha u \cdot x_0 - \alpha \delta \, = \, \alpha f(x_0) \, = f(\alpha x_0) \, \geqq \, u \cdot (\alpha x_0) - c \quad \text{ for all } \, \alpha > 0 \ .$$

Therefore, if $0 = \sum_{j} \mu_{j} y_{j}$,

$$0 = u \cdot \sum_{j} \mu_{j} y_{j} = \sum_{j} \mu_{j} (u \cdot y_{j}) \leq \sum_{j} \mu_{j} f(y_{j})$$

and (10) holds. If M possesses a supporting hyperplane we apply the second part of Theorem 4 and that f(x) is linearly bounded below.

6.

The order of sublinearity in the hypotheses of Theorems 1, 2 and Corollaries 1, 2, 3 cannot be lowered, although one might have expected the contrary in Corollaries 2, 3 because their proofs do not fully use the homogeneity of f(x). We show this with some simple examples.

Let M_0^n consist of the vertices x_1, \ldots, x_{n+1} and an interior point x of a nondegenerate simplex. Put $f(x_j) = 0$, f(x) = 1; then f(x) is sublinear of order n on M_0^n but not sublinear. For Theorem 2 take any (n-t)-flat F and a t-flat T' intersecting F in a point. In F take a set

$$M_0^{n-t} = \{y_1, \dots, y_{n-t}, y\}$$

and let M_t^n consist of the t-flats T_i, T parallel to T' through y_i, y . Put f(x) = 0 on $\bigcup T_i$ and f(x) = 1 on T. Then f(x) is sublinear of order n-t but not n-t+1.

Further examples are based on the following observation. Let f(y) be defined on a set M' in the hyperplane $x^n = 1$ in A^n and extend f(y) to the cone M consisting of the rays from 0 through points of M' by

$$f(\tau y) = \tau f(y)$$
 for $\tau \ge 0$, $y \in M'$.

For $0 = \sum_{j=1}^k \lambda_j x_j$, $\lambda \in \Delta_k^+$ and $x_j \in M$ we have $x_j = 0$. If $0 \neq x = \sum_{j=1}^k \lambda_j x_j$, $\lambda \in \Delta_k$, $x \in M$, $x_j \in M$ and $x = \tau y$, $x_j = \tau_j y_j$, $y \in M'$, $y_j \in M'$ then

$$y = \sum_{j=1}^{k} \tau^{-1} \lambda_{j} \tau_{j} y_{j}, \qquad \sum_{j=1}^{k} \tau^{-1} \lambda_{j} \tau_{j} = 1$$
,

because $y^n = y_j^n = 1$. From the definition of f(x)

$$f(x) \leq \sum_{j=1}^{k} \lambda_j f(x_j)$$

is equivalent resp. to

$$f(y) \geq \sum_{j=1}^k \tau^{-1} \lambda_j \tau_j f(y_j)$$
.

Thus, if f(x) is linear resp. sublinear of order k on M' then so is f(x) on M. We use this first to show that f(x) need not be convex in the first part of Theorem 4. Take M' as an (n-2)-dimensional ellipsoid and define f(x) on M' in any way such that $\inf f(y) = -\infty$. Then f(y) is sublinear on M', but not linearly bounded below. The same holds for f(x).

Next take as M' the set M_{t-1}^{n-1} , $t \ge 1$; then f(x) is sublinear of order n-t but not n-t+1. Thus we obtain an example for Corollary 1, and for t=1, since f(x) is positive homogeneous of degree 1, also for the last part of Corollary 3.

Let L_i be the x^i -axes and L the line $x^1 = \ldots = x^n$, n > 2. Put

$$M = L_1 \cup \ldots \cup L_n \cup L$$
,

f(x)=0 on $\bigcup L_i$, $f(x)=|x^1|^p$, $p\geq 1$, on L. Then f(x) is sublinear of order n-1 but not n. This takes care of Corollary 2 and the second part of Corollary 3. Let M^* be the subset of M in $\{x\,|\,x^i\geq 0\}$. Then the restriction of f(x) to M^* settles the first part of Corollary 3 with $p\geq 1$, and for 0< p<1 we take $f(x)=-(x^i)^p$ on $L_i\cap M^*$, f(x)=0 on $L\cap M^*$.

7.

The theory of functions which are convex on a nonconvex set was developed specifically for the case, where the space is the linear space V_r^n (also considered as affine space) of all r-vectors over A^n (considered as vector space) and M is the Grassmann cone G_r^n of all simple r-vectors R (compare [2]). The maximal dimension of a flat contained in G_r^n is

$$t_r^n = \max(r+1, n-r+1) ,$$

see [1, p. 300], and each point R of G_r^n lies on a t_r^n -flat through the origin. Since dim $V_r^n = \binom{n}{r}$ we deduce from Corollary 1:

COROLLARY 4. A function f(R) which is defined on G_r^n and sublinear of order $g_r^n = \binom{n}{r} - \max(r, n-r)$ is convex.

In the applications f(R) is positive (frequently absolutely) homogeneous of degree 1. According to a previous observation this alone would not lead us to expect that g_r^n can be replaced by a smaller number. However, there are infinitely many t_r^n -flats in G_r^n through each R and G_r^n has in other respects a very special structure. If we denote by o_r^n the smallest integer such that sublinearity of order o_r^n guarantees convexity for a function on G_r^n which is positive homogeneous of degree 1, then most likely $o_r^n < g_r^n$. Possibly o_r^n has a smaller order of magnitude than

 g_r^n , that is, $o_r^n/g_r^n \to 0$ when $n \to \infty$ and $\max(r, n-r)/n < \theta < 1$. For various questions in the theory of convex bodies it would be important to know the precise value of o_r^n .

In the simplest case n=4, r=2 it is known that $o_2^4 > 2$ (see [2, p. 21³]) and Corollary 4 gives $o_2^4 \le g_2^4 = 4$. It seems probable that $o_2^4 = 3$.

REFERENCES

- W. Burau, Mehrdimensionale projektive und höhere Geometrie (Math. Monographien 5),
 VEB Deutch Verlag d. Wissenschaften, Berlin, 1961.
- H. Busemann, G. Ewald and G. S. Shephard, Convex bodies and convexity on Grassmann cones, Parts I-IV, Math. Ann. 151 (1963), 1-41.

UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES, CALIF., U.S.A.