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ON DECOMPOSITION THEOREMS OF MEYER

K. MURALI RAO

Introduction.

It is well known that a discrete parameter supermartingale is the
sum of a martingale and a decreasing process. Meyer [1, p. 104] gave
necessary and sufficient conditions under which a continuous parameter
supermartingale is the sum of a martingale and a ‘“natural decreasing
process”: a process with a very special, important property. This
concept of a natural process, however, is quite untractable without the
aid of a theory of stop rules which is in itself important and interesting.
Nowhere in Meyer’s proof there is any indication of a way from the
discrete case to the continuous case. We shall give a proof of Meyer’s
theorem which is both elementary and short. We shall show that
Meyer’s decomposition can be obtained by passage to the limit from the
discrete case. Our proof clarifies the relation between Doob decom-
position and Meyer’s decomposition. The natural process will appear
as the continuous analogue of the process occurring in the Doob de-
composition in the discrete case. It will be noticed that our proof that
the natural process corresponding to a regular potential is continuous,
is also simpler than that of Meyer.

The author is indebted to professor K. Itd for his interest and en-
couragement.

For definitions of terms used we refer to [1]. In the following 2
stands for a probability space. If X ,n 20, is a supermartingale relative
to an increasing sequence F, of o-fields, it is well known [1, p. 104]
that we can write, in exactly one way,

anMn_An’

where M, is a martingale relative to F,, 4,=0, 4,<4,,,, and 4,
is F,-measurable, for n=0. We call this the Doob-decomposition of
the supermartingale X,. If moreover X, is non-negative, then the
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expectation of 4, remains bounded by E(M,) and therefore 4, =lim4,,
(which exists without any restriction on X,) has a finite expectation.
Following Meyer we call a non-negative supermartingale X, for which
imF(X,)=0 a potential. Thus, if X, is a potential, M,=4,+ X, is
a uniformly integrable martingale since both 4, and X, are uniformly
integrable: A4, because 04,4 and E(4,)<oo, and X, because
X,20 and E(X,)— 0. The martingale convergence theorem implies
that M =lim M, , X =limX, both exist and M,=E(M_|F,). Since
X, is a potential, Fatou’s lemma implies that X _ =0 almost surely,
that is, that A =M a.s. Thus:

LemMA 1. A potenttal X, can be written tn the form

where A,=0, and A, 18 I ,-measurable.

It is immediately seen that
A, -4, =E8X,—X,11F,), n=20.
We also note that if 7" is a stopping time, then [1, p. 90]
Xp=EAL|Fp)—Ap as.

It is natural to ask if Lemma 1 extends to continuous parameter super-
martingales. Since the representation X,=M,6—4, is not unique
without the condition that 4, ,, be I, -measurable, one should also seek
a continuous analogue of this restriction. To this end let us reformulate
the condition that 4, ., be F,-measurable. Assuming that E(4_)< oo,
it is not difficult to show that 4, ,, is ¥, -measurable iff for all bounded
martingales Y, we have

B3P Y (Ay—Ag)) = B(Y o Ay) s

where Y _=limY,. In the continuous parameter case the left hand
side of the last equation should correspond to E([’ ¥ (s—)dA(s)).

In the sequal, F(f) denotes an increasing right continuous family of
o-fields. We assume that all processes considered are adapted to F(t)
[1, p. 65] and that, with probability one, they are right continuous and
have left limits at every time point. An increasing process A(¢) with
A(0)=0 and E(A())< oo, where A(co)=lim, ,  A(t), is called a natural
integrable increasing process if for every bounded positive martingale
Y(t) we have

E(f2 Y (s—)dA(s)) = B(A(c0) ¥(c0))
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where as usual Y(co)=lim, Y (f). As in the discrete case, a poten-
tial X(¢) is by definition a non-negative supermartingale for which
lim, , E(X(¢))=0. Now we can state Meyer’s theorem which answers
the above questions completely.

THEOREM (Meyer). A potential X(t) can be decomposed in the form
X(1) = E(A() | F(1) ~ A(t), 120,

where A(0)=0, and A(t) is increasing, iff the family {X(T)} of random
variables is umiformly integrable for all stopping times T.
In this case A(t) can be taken to be a natural integrable increasing process.
A decomposition with A(t) natural is unique.

Proor. For each natural integer n
X@E2-™), $=0,1,2,...,
is a discrete potential. We can therefore, by Lemma 1, write
X(#2-") = E(A(s0, n) | F(i2-")) — A(12-"), 20,
where A(i2-",n) is F((i—1)2-")-measurable, ¢ > 1. Here

A(oo,n) = lim,_, A(i2-",n) .

1—>00

Suppose we know that the sequence A(co,n) is uniformly integrable.
A necessary and sufficient condition for this will be given later. There
exists a function A(cc) such that A(co,n) tends weakly to A(eo) along
a subsequence, say U [1, p. 20]. Denote by M(t) a right continuous
modification of the martingale E(A(c)|F(t)) [1, p.95]. If r<s are
dyadic rationals then from a certain » on, 4(r,n) and A(s,n) make sense
and A(r,n)= A(s,n), that is,

E(A(co,n)| F(r)) — X(r) £ E(A(o0,n) | F(s)) — X(s) .
The operation of conditional expectation being continuous in the weak
topology as n tends to co along U, we get
M(r)— X(r) £ M(s)— X(s) a.s.

Put A@)=M(@#)—X(t). A(¢) is right continuous and almost surely in-
creasing on the dyadic rationals and hence everywhere. Since X(f) - 0

as t — oo,

lim, ,  A(t) = A().

We now show that the process A(t) is natural, that is, that for every
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bounded martingale Y(f) whose paths have almost sure left limits
we have

B([5 Y(s—)dA(s)) = E(A()Y(x)),

where Y (co) =lim,_, Y (¢). By Lebesgue’s bounded convergence theorem,
E([RY(s—)dA(s)) = lim,,_,o, 3 B(T(277)(4(G+1)2-") —A(@i2)).
i=0
Because Y (i2-") is F(i2-")-measurable, we have

i E ( Y(i2-")(A(G+1)2-7) —A(i2—")))

il

Mg I8

I
)

E (Y(i2—")E(A((i +1)2-7) — A(i2-") |F(i2—")))

7

I

B(Y(@2-"E(X@2") — X((i+1)2-") |F(z‘2—")))

1

E ( Y (i2-)(A((i+1)2-,n) —A(i2~n,n))) ,

I
i3

7

since X(t)+ A(t) is a martingale, and by the definition of {4(:2-",n)}.
Also

E(Y(@E2-"A(G+1)2-",n)) = B(Y((i+1)2-)A((G+1)2-",n)),

since A((¢+1)2-",n) is F(¢2-")-measurable. This means that for all =,

zo E ( Y(i2-m)(A(G+1)2-") —A(1;2~n))) = E(A(c0,n) Y(c0)).
One need only take limits along the sequence .

The above equation actually shows that A(cc,n) converges weakly
to A(cc) as m — co. In fact, if Y(co) is an F(co)-measurable random
variable, F(co) being the o-field generated by all F(¢), t=20, and Y(¢)
a right continuous-with-left-limits modification of the martingale
E(Y(c0)|F(t)), the left hand side of the last equation tends, as n — oo,
to E(fg Y(s—)dA(s)) which we know is equal to E(Y(c0)A(c0)). This
means that
E(Y(cc)A(co,m)) — E(Y(c0)A(c0)) as n— oo,

that is, that 4(co,n) - A(co) weakly. This in turn shows that two natural
processes defining the same potential must be identical almost surely.
Indeed let A(t), B(t) be natural and define X(¢). The process X(t) deter-
mines A(co,n) and we see from the above-said that A(oco,n) converges
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weakly. It can have but one weak limit. Therefore A(c)=B(x) a.s.
We also know that

X(t) = E(A(0) | F(t)) — A(f) = B(B(c0)| F(t)) — B() -
This completes the proof.

Following Meyer we say that a potential X(f) belongs to the class D
if {X(7')} is uniformly integrable for all stopping times 7', finite or not,
where we define X(7') =0 whenever 7' = .

Lemma 2. Let X(t) be a potential and let A(oco,n) be defined as before.
A mecessary and sufficient condition that {A(co,n)} be uniformly integrable
8 that X(t) belongs to D.

Proor. If the A(co,n) are uniformly integrable, we can write
X(t) = E(A(0) | F(t)) — A(t) = M(t) — A(t) (say)
where A(t) increases. Then
X(T) £ M(T) = B(A() | F(T))

[1, p.106], and it is easy to see from this that the family {X(7)} is
uniformly integrable.

Conversely, suppose that X(¢) belongs to D. For every 4> 0 and every
integer n, define (observe that inf@ = o)

T, ,=inf{i2-": A((¢+1)2-"n)> 1},

where, as before, A(22-",n) is the increasing process appearing in the
Doob decomposition of the discrete potential {X(12-",7n); ¢=0,1,2,...}.
It is clear that T, , is a stopping time since A(:2-",n) is F((i—1)2-7))-
measurable. Also A(co,n)>4 iff T, ;<oco. We have

X(Tn,l) = E(A(oo,’n) IF(Tn,}.)) - A(Tn,z”’b)
which implies

1) E(A(co,m) : A(co,n)>A)
= E(A(T, ,n): T,;3<) + E(X(T,;): T, 1<)
< AP(A(0,m)>2) + BE(X(T,,;) : Ty 1<00),

since A(T, ;,m)<A by the definition of 7', ;. This means that

E(A(co,n)—2: A(co,m)>21) £ E(X(T,,: T,M<oo)
or that
(2) 2AP(A(c0,n)>24) £ 2E(X(Tn,l) 1T, 1<)
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Replacing 2 by 24 in (1) we get

E(A(o0,m) : A(co,n)>21)
2AP(A(c0,n) > 22) + E(X(Ty 22) + T2 < )
ZE(X(Tn,l) : Tn,l< oo) + E(X(Tn,zl) : Tn,2).< oo)

IATIA

by (2). Finally,
AP(T, ;<) £ E(A(c0,n)) = E(X,)

since A(0)=0 so that the set (A(co,n)>A1) has small probability for
all large 2. The fact that {X(7')} is uniformly integrable for all stopping
times 7' implies that X(7") has small expectation over sets of small
probability, uniformly for all stopping times [1, p. 17], q.e.d.

2.

In this section we shall deduce some other results of Meyer. It is
clear from Section 1 that the concept of a natural process is relevant
already in the discrete case. As a further confirmation of this fact we
shall prove

TuEOREM 2.1. Let X (t) be a potential and let

X(t) = E(A(c0)| F(2)) — A(t) ,
with A(t) natural ; then

E(A(e0)?) = E([3(X(0)+X(¢—-))dA()) -

Proor. Suppose first that E(4(c)?) < oo and let M(t) denote the mar-
tingale E(A(c)|F(t)). We then have

B([3M(t)dA())
= lim,_, E (21 o M((G+ 1)) (A(( + 1)k-2) - A(ik- 1)))
= limy, , 3326 B(M((i+ DE)(A(6+ DY) - (k1))
= limy_, , 320 B(M(( +1)k-1)A((E+ 1)k) — M(5k) A (k1))
= lim,,_, , B(M(c0) A(w)) = E(A(c0)?)

since

B(M((+ 1)k)A (k) = E(M@Ek-1)A@Ek) .

We have therefore



72 K. MURALI RAO

E(f7(X t)+X(t—))dA(t))
= B([Q(M@)+M(-))dA@) — B(J5 (A@#)+A@-))dA®))
= 2E(A2(oo)) (Az(oo)) = E(A(oo)z)

because, A(t) being natural,

B[S M (t—)dA®) = B(M(c0) A()) = B(A()?) ,

and
B([S(A®M) +A(t—))dA(®))
= 1imk_,°°E( © o(A((6+ D)) + A k) (A6 + 1)k-1)~A(f£k—1)))

= limy, o, B(Z,(A((+ k)2 - A(ik1)?) = E(A(c)?)) .

Conversely suppose E(j(’;"(X(t)+X(t—-))dA(t)) <oo. From the above-
said it follows that we need only show E(A4(o)?) < cc. Retaining the nota-
tion of Section 1 it is obviously sufficient to show that E(A4(co,n)?)< oo
(taking weak limits does not increase norms). Now the fact that
E([§X(t—)dA()) < obvicusly implies that for all large n

E( o X(52-m)(A((+ 1)2—”)—A(9j2—"))) < o,
that is,
B(3; X@2-)(A4((i+1)2-"n) — A(i2-"n))) < oo

Thus it is sufficient to show the following: If X(n) is a discrete potential, if
X(n) = E(A()|F(n))—A(n)
is its Doob-decomposition (this means that 4(n+ 1) is F(n)-measurable),
and & Sneo E(X()(A(n+1) = Am)) < oo
then E(A(cc)?)<oo. Since E(X(n+1)|F(n)) <X (n), we have
3, B(X(n+1)(A(n+1)—A(n) £ 3, B(X(n)(A(n+1)—A(n))) .
For any integer N, let Ay(n)=min(N,A(n)) and write
Xp(n) = B(Ap(0)| F(n)) — Ay(n) .
Since 4 y(n) is a bounded ‘“‘natural” process, we have

BE(Ay()?) = Z,E((Xy(n+1)+ Xyn)(Ayn+1)— Ayn)))
< S E(X(n+1)+X(n) )(ANn+1 —Ay(n)))
< E’((X(n+l )+ X(n))(A(n+ A(n)))

We then need only let N — oco.
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Before proving another result of Meyer we need a definition.

DEerFINITION. Let 7' be a stopping time. We shall denote by F(T' —)
the o-field generated by F(0) and the class of all events of the form
En(T>¢) for all E € F(t) and for all £=0.

Lemma 2.1, The following statements hold:

1° F(T-)<F(T).

2° ST = F(S—)<F(T—). For any stopping times S,T and for any
set B € F(S), the event En(S<T) is in F(T-).

3° If 8, tncreases towards T, then F(T —) is the o-field generated by
U, F(S,—). Therefore, according to 1°, F(T —) is contasned in the
o-field generated by U, F(8S,).

Proor.

1° Easy.

2° Since ST we have (S>¢)=(S>t)n(T >t). If E e F(t), then also
E,=En(S>t)e F(t) and En(S>t)=E,n(T>t)e F(T'—) by definition.
For any E € F(S) we have

EnS<T)=UEnS<r)(r<T),

where the union is over all rationals. By the definition of F(S), each
of the events En(S<r) is in F(r) and therefore En(S<r)n(r<T) is in
F(T —) for each r.

3° Obviously (T>t)=U,, (8, >1).

LeMMA 2.2. If A(t) ¢s a natural increasing process then for every stopping
time T,A(T) is F(T —)-measurable.

Proor. Let us retain the notation of Section 1. It is immediately
verified that

E(A(co,m)| F(t)) = B(A(c0)— A((k+1)27") | F(t)) + A((k+1)27",n)
if k2 "<¢<(k+1)2-" Let T, denote the stopping time defined by
T,=(@+1)2" if 2T < (i+1)27".
Then the above relation can be generalised to
E(A(c0,n)| F(T)) = E(A(c0)—A(T,)| F(T)) + A(Ty,n).

Since A(o0,n) - A(cc) weakly so does E(A(co,n)|F(T)) tend weakly to
E(A()| F(T)). By the right continuity, E(A(T,)|F(T)) tends to A(T)



74 K. MURALI RAO

in L,. This means that 4(7T,,n) tends weakly to 4(7"). Using the fact
that A((¢+ 1)2-",n) is F(12-")-measurable it is easy to show that 4(7,,n)
is F(T')-measurable. The same then is true for the weak limit A(7).

Lemma 2.1 and Lemma 2.2 together imply

CoroLLARY 2.1 (Meyer). If A(t) is a natural process and S,, 1s a sequence
of stopping times increasing to the stopping time T, then A(T') is measurable
with respect to the o-field generated by U, F(S,,).

REMARK. For any two stopping times 7', S and any E € F(S) the event
En(S<T)isin F(T —). Therefore if P(S<T)=1 we have F(S)< F(T -).
Suppose a process A(t) is such that for every increasing sequence S,
of stopping times converging to 7', 4(T) is measurable with respect to
the o-field generated by U F(S,). Then for any accessible stopping time
[1, p. 130] A(T) is necessarily F(T —)-measurable. However, if T is
totally inaccessible [1, p.130] and if the process A(¢) is natural, then
P(A(T)=A(T-))=1 [1, p. 135] so that again A(T) is F(T —)-measur-
able. Thus Lemma 2.2 is also a consequence of Corollary 2.1. If P(¢)
is the Poisson process and 7' is the time of first jump, it is easily shown
that P(T') (which is 1 or 0) is F(T —)-measurable; it is known that 7
is totally inaccessible.

3. The case of regular potentials.

Let A(t) be any increasing process, natural or not. Define the sub-
martingales 4,(t) by

A,(t) = B(A((k+1)2-")| F(t)) it k2<t<(b+1)2-

It is clear that the A, () decrease and that P(A4,(t) - A(t))=1 for all ¢.
It is assumed, as usual, that A,(¢) are right continuous and have left
limits at all points. For every stopping time 7' we have

A,(T) = B(A(D,(T))| F(T))
where the function @,(¢) is defined by
D) = (k+1)2 if k2"=St<(k+1)2-

This is a consequence of the optional sampling theorem. For every ¢
let the stopping times 7', , be defined by

T,,=inf{t: —A@t)z¢€};
note that inf@ = co.
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Clearly T, ,<T,,, Put T,=1lim7T,,. We claim that

E(A(T,)-AT,,) 2 eP(T,<x) for all n.
This is an easy consequence of the following obvious relations:

E(A(®,(T,)-A(T,)) ~0 asn-—>oc,
A(D,(T,) z A(Dn(Ts,0)
E(A(@(T)|F(Ty,) 2 E(A(Pu(T,,)) | F(T,) = 4u(T4,) »
An(Tn,s) '"A(Tn,e) = if Tn,s< oo .
Now suppose in addition that A(t) is natural, E(A4(c0)?)< oo, and that
P(A(r)=A(r—))=1 for every dyadic rational ». Since A4,(f) is a mar-
tingale in the range (k2-", (k+1)2-"), the assumptions on A(¢) imply,
using the notation

A, = {t: k2 "<t <(k+1)2-7},

that
E([ 4 An(t)dA(D) = E(L. M) dA()
= B([ 4, Mi(t)dA(1))
= E(A (k+1)2 )(A((Ic+ 1)z—n)_A(k2—n)))
= B([ 4, Mt —)dA(2))
= B([ 4 Mt —)dA())

(L',,k (t—)dA(t)),

where M,(t) denotes the martingale E (A((Ic+ 1)2-")|F(t)). Summation
over k then yields

E(fQA,(t—)dA(t) = zkE(A((k+ 1)2-m)(A((k+1)27") — A(k2)) -
Thus we get
E(JQ(A®) - At—))dA(®)) = lim,_,  B([3(4.(t—)—A(t—))dA()) .
Also, putting =T, ,
B([7(An(t—)—A(t=))dA®)
= B([F (A=)~ At—))dA®) + B(Jiz,00(Anlt—) = A(t—))dA(®))
eB(A(Tn,.) + B(fir,00An(t—)dA())
< eB(A(T)) + B(A(c0)(A(c0) = A(T))),

IIA
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by the definition of 7'=T, , and because

E([,00An(t=)dA() S E([(7,00B(t—)dA())
= E(A(x0)(4(o0) - A(D))),
where B(t) is the martingale B(¢)=E(A(c0)|F(2)).

THEOREM 3.1. For any increasing process A(t)

EAT,)-AT,,) 2 eP(T,<x) foralln.

If further A(t) is a natural increasing process such that E(A(c0)?)< oo,
P(A(r)=A(r—))=1 for every dyadic rational and P(T,< c0)=0 for every
e, then A(t) ts a continuous process.

Proor. Only the last statement needs proof. Indeed we have for

every ¢
B(f3(A(t) - At—))dA() < eB(A()).

The left hand side is therefore zero and this means that A(¢) is almost
surely continuous.

DerFiniTION. Let X(¢f) be an arbitrary potential. We shall say that
X(t) is regular if for every sequence 7', of stopping times increasing
to T' we have

From Theorem T 20, p. 102 of [1], we immediately deduce that a regular
potential automatically satisfies the hypotheses of Meyer’s theorem,
and hence every regular potential has a Doob decomposition. Meyer
proves that the natural process occurring in the Doob decomposition
of a regular potential is continuous. His proof makes use of the fact
that a natural process is the weak limit of continuous processes.

TareoreM 3.2. Let X (i) be a regular potential. Then the corresponding
natural process is continuous.

Proor. We shall prove this assuming that X(¢) is bounded. The
general case then follows as in [1, p. 127]. Write

X(t) = E(A(0) | F(1) — A®) .
By Theorem 2.1,
E(A(c0)?) < o0.

The regularity of X(f) implies that E(X(¢)) is continuous in #, that is,
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that E(A(t)) is continuous in ¢ Thus P(A(r)=A4(r—))=1 for every
dyadic rational . Retaining the notation used in Theorem 3.1 we have
E(X(T,))=lim E(X(T, ,)), and hence E(A(T,)—A(T,,,)) - 0. This means
that P(T,<>)=0 for every ¢. An appeal to Theorem 3.1 completes
the proof.

Theorem 3.1 can be reformulated in terms of potentials. Let X(t)
be a potential and let A(¢) denote the corresponding natural increasing
process. Let the potentials X, () be defined as

X, (¢) = E(X(D,0¢)|F(®)),

where the functions @, (¢) have the same meaning as before. It is clear
that X, (¢) increases and

P(limX,(¢)=X(¢) =1 for all ¢.

We can indeed show that X, (7') — X(7T') a.s. for every stopping time 7'.
For every ¢>0 and every integer n, define the stopping times S, , as
follows (observe that inf@=0):

S, =inf(t: X(t)—X,(¢)

n,e

v

e,

We then have

THEOREM 3.3. Assume that X(t) is a potential bounded by a constant c.
Then

B([&(X(t—)—X(1)dA()) < eB(A(S,,,)) + cB(A(c0) — A(S,,,,))

for all n. Therefore, if P(S, ,t)=1 for all >0, and P(A(r)=A(r—))=1
for all dyadic rationals, then the natural process A(t) is continuous.

The proof is almost identical with that of Theorem 3.1. Note that
the left hand side of the last inequality is equal to

B(f3(At) =~ A(t—))dA®)) .

REMARKS. Suppose A(?) is a natural process. Returning to the notation
of Section 1 we can very easily show that

E((A(c0) = A(o0,n))?) = S B(B(k,n)?),
where
B(k,n) = A((k+1)27) — A(k2") — E(A((k+ 1)2) — A(k2™) [ F(k277) -
Clearly
B(B(k,n)?) < E((A((k+1)2") - A(k2-7)?) .
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Also Zk(A((k+ 1)2"”)—A(I::2—"))2 tends to the sum of squares of the
jumps of A(¢). Therefore, if A(f) is continuous, A(cc,n) tends in L,
to A(oc). This suggests that A(co,n) tends in L; to A(cc) if and only
if A(t) is natural. We have not succeeded in deciding if this is so.
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