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FAREY SIMPLICES IN THE SPACE OF QUATERNIONS

ASMUS L. SCHMIDT

1. Introduction.

In 1932 Speiser [5] proved among other results the following concerning
the Diophantine approximation of quaternions (for the notation of this
introduction see § 2 below):

TrHEOREM. For any irrational quaternion & the inequality

I§ —pg <
@*N(Q)

has infinitely many solutions pq=1, where p, q, ¢+ 0, are integral quaternions
(¢n the sense of Hurwitz).

However, it does not follow from Speiser’s paper whether the constant
()t in his theorem is best possible or may be replaced by larger con-
stants ¢. In fact, no upper bound for the set of admissible constants c
has been known so far, this lack of knowledge being due to the absence
of the commutative law of multiplication for quaternions, because in ana-
logous cases where real or complex numbers are to be approximated, it
is indeed very easy to obtain such upper bounds by a simple method of
Perron (cf. § 7 of [4]).

In a recent paper of mine [4] Farey triangles and Farey quadrangles in
the complex plane were introduced and applied to study the approxima-
tion spectra of complex numbers in the cases Q(im?), m=1, 2, 3 and 7.
Analogously we introduce in § 2 Farey simplices in the space of quater-
nions and develop their basic properties in §§ 3-5.

Subsequently, in §§ 6-8 we shall apply Farey simplices in an investi-
gation of the approximation spectrum of quaternions, i.e. the set of all
approximation constants C(£), where C(&) for any irrational quaternion &
o defined 8 6(g) = tim sup (1g] g — 1),
the lim sup being taken over all p,q € H, ¢+ 0, where H denotes the set of
integral quaternions (in the sense of Hurwitz).

It should be noted that since
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32 ASMUS L.SCHMIDT

{lal 1¢¢—»! | p,geH,q+0} = {lg| lg§—p| | p,g€H,q+0},

the approximation of & by quotients pg-! is equivalent to the approxi-
mation of £ by quotients g~1p. In fact, Speiser’s way of approximating
quaternions differs in this respect from ours, which for certain reasons is
preferable here.

Apart from an independent proof of Speiser’s theorem we find that the
only approximation constant C(£)<(2.51)t is CO(§)=(8)}. Further, the
set C-1((§)!) consists of two distinct equivalence classes of quaternions
represented by

P+ H1+50+ 31547 and  §+ H1—5Yi + H(1+5Y);.

Here ~& when
n = (E+p)(E+0)71,

« p
(y 6)
is a unimodular matrix (see § 2).
Also, the set C-%((§)!) has a simple characterization in terms of Farey
simplices.
For the convenience of the reader the sections of this paper are
enumerated parallel to the sections of [4]. However, except that we

make use of two of the lemmas from [4], this article may be read inde-
pendently.

where

2. Farey simplices. Unimodular homographic maps.
We consider the non-commutative field K of quaternions

K = {a;+ayt +azj+a,k | a,ay,a3,a,€ R},
where

R=jr=lt=—1, ij=—ji=k, jk=—kj=i, ki=—ik=j.

For a=a;+ayt+aj+ake K the conjugate, norm, absolute value and
trace of « are defined as usual by

Ri

= @, — Ayt —agj—a,k,
N(x) = xa = a2+ a2 +a2+a,2,

x| = (N()) = (@2 +a2+a2+a2)t,
S(x) = a+& = 2a,.

Representing «=a,+a,i+asj+a,k K as the point (a;,a,asa,) in
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Euclidean space R%, the absolute value |x—gf| thus coincides with the
Euclidean distance between the points corresponding to « and 8.

In the following we shall make use of a number of simple and well-
known computation rules for «,8,y € K and @ € R:

ax = aa, o« l=aN)L if «+0, & =«,
atp=ath of =pa,
N(@) = N(x), S@ = 8(«),
N(xpf) = N)N(PB), S(xtp) = 8S«)£8(p),
N(x+p) = N(x)+N(B)+8(«f),
Sex) = aS(x), S(xpf) = SPB«).

At one instance we shall need also the more complicated rule
(2.1) S(of)?+8(xi )P+ 8(xj ) + S(xkp)® = 4N(x)N(f) ,
which is equivalent to the identity

(@101 —agby—azbs—ayby)? 4+ (—a,by—ayb, +azb,—a,by)? +
+ (=163 —a3by—a3b; +a,40,) + (— a0y +ayby —asb,—ayb,)?
= (a2 +a,? + a2 +a,%) (b2 + b2 + b2+ b,7) .

A quaternion x=a, +a,%+asj+a,k is called rational if a,,a,,a,,a, € Q,
otherwise « is called irrational.

A quaternion « is called ¢ntegral (in the sense of Hurwitz) if « is ratio-
nal, N(«)e Z and S(«x)e Z. By this definition the set H of integers
equals

H = {hy+hoi+hgj+hyow | hyhg,hghy€Z},
where w=341+7+j+k).

According to Hurwitz [2] H is a Euclidean ring, i.e. given any «,8 € H,
p =0, there exist y,6 € H such that

(2.2) N(x—yB) < N(f) and N(x—B5) < N(B).

An integral quaternion « is called a wnit when N(x)=1. The 24 units
of H,
(2.3) 1, *i, £J, xk Hxliitjtk),

constitute a multiplicative group U.
We shall make extensive use of the ring of 2 x 2 matrices over K, and
we define in accordance with Study [6] for any such matrix

(2.4) Mm = (:‘ g)

Math. Scand. 24 — 3



34 ASMUS L. SCHMIDT

(2.5) D(IN) = N(x)N(8) + N(B)N(y) — S(x76p) -

The function D has the following properties (cf. Study [6]):
(2.6) D) 2 0 forall M,

(2.7) D) > 0 if and only if M has a reciprocal matrix ,
(2.8) DR, M,) = D(M,) D(M,) for all M,, M, ,

(29) AR CROr I AL
(2.10) D (;‘g ﬁZ) — N() N D (;‘ ’g)

Further, D is invariant under a left row operation (i.e. a left multiple of
one row is added to the other row) and under a right column operation.

A matrix I of the form (2.4) is called integral if «,p,y,6 € H. Obvi-
ously D(I) € Z if M is integral.

A matrix IR is called unimodular if MM is integral and D(M)=1. Ac-
cording to Mahler [3] the unimodular matrices form a multiplicative
group. It is worth noticing that the proof of this uses the Euclidean
property of H.

By (2.9) and (2.10) multiplication from the left (right) of the rows
(columns) of a unimodular matrix by units in H leaves it a unimodular
matrix. Also, by the computation rules listed above, reversal of rows
(columns) in a unimodular matrix leaves it a unimodular matrix.

In preparation for an application in § 3 we shall establish the following

LemMMA 1. py,q, € H can occur as a row (column) in a unimodular matriz
if and only if p, and g, have no common left (right) divisor not a unit.

Proor. The necessity of the conditions follows immediately from (2.9)
and (2.10).

In the proof of the sufficiency of the conditions we need by symmetry
only consider the case where p, and ¢, have no non-trivial common right
divisor. Further we may assume without restriction that N(p,) < N(q,).
The proof itself is now by induction on N(p,)+ N(g,).

If N(p,)+ N(g,)=1, then by our assumptions N(p,)=0 and N(g,)=1.

Hence
(o)
% 0
is a unimodular matrix.
If N(p,)+N(g,)>1, then by our assumptions N(p,)>0. Hence by
the Euclidean property (2.2) of H, there exists a y € H such that
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N(go—vPo) < N(py) £ N(qy) .

Now p, and g,—yp, have no non-trivial common right divisor by the
assumption of the lemma, and hence by the induction hypothesis there
is a unimodular matrix of the form

(qof(;po g) '
(zﬁ 6fyﬁ)

is a unimodular matrix by the invariance of D under a left row operation.
This proves lemma 1.

Consequently

Another preparation is the important formula
(2.11)  N(y) N(8) N(ay1=ps) = D (;’" ’g) for y,8%0..

In fact, by the calculation rules for quaternions,
N(y) N(0) N(xy™*—p67%) = N(ay~t—f£671) N(yd)
= N(xd—pd6-1yd)
= N(xd) + N(B5-1y6) — S(xd855-1p)
= N(x) N(9) + N(B) N(y) — S(«735) ,
which proves (2.11) in view of the definition (2.5).

Before introducing the fundamental notion of Farey simplex it will be
convenient to consider the related concept of Farey matrix.

DEerFINITION 1. 4 2 %X 5 matrix
(2.12) (291 P2 P3 Ps Ps)
91 92 93 94 95
1s called a Farey matriz (FM), if p,q;e H, 1 S1<35, and
(2.13) D(”’ 'p'")= 1, 1=<l<m<5.
ql Qm

By a remark above it follows that any permutation of the columns
and multiplication of each column from the right by a unit in H leaves
a Farey matrix a Farey matrix. This motivates the following

DEFINITION 2. Two Farey matrices are called associated if one is ob-
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tained from the other by a permutation of the columns together with a multi-
plication of each column from the right by o wnit in H.

In order to give a precise description of the Farey matrices existent
we shall make use of the group of unimodular linear maps

o ()=

of Hx H onto itself.
An immediate consequence of (2.8) is that a unimodular linear map of
H x H onto itself in a natural way maps a Farey matrix onto a Farey

madtrix.
Conversely, we have the following important result:

TaeorEM 1. Any Farey matriz is associated with a Farey matriz of the
Jorm

where M s a unimodular matrix.
Proor. Let the Farey matrix given have the form (2.12). Then

(Pl Pz)_l (1’1 P2 Ps Py Ps) — (1 0 7g 74 ”5)
91 92 91 92 93 94 95 01 03 04 05/°

where by definition 1, (2.5) and the invariance of the set of Farey ma-
trices under a unimodular linear map @ in particular

N(m) = N(g) =1, 3s1=5.
Hence for any unit ¢ € H the Farey matrix (2.12) is associated with
D173€ P203€ P3€ Ps0s 03¢ p5g5‘1038) _
Q1738 G2038 938 G404 '03€ 95057 03¢

(plrcaa p2938)<1 01 elme s‘ln's)
1738 ga036/\0 1 1 1 1 ’

(2.15) (

where
_ -1 1 | -1
n = mylmeo, 0y and A’ = my~lmgosto; .

Applying again definition 1, (2.5) and the invariance of the set of Farey
matrices under a unimodular linear map @, it follows by (2.15) that

N(@#n) = N#') =1, Sx) = S(#@') = SnaA") =1,

and hence 7z, n’ are units in H of the form
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(7, 7") = (0, fn) O (m,7") = (B 0tpm)s l+m, 15154, 1=sm=<4,
where
6=, o =w—-J—k o3=w—1t-k o5=w—1—7,
fr=0w—1—j—k Ppy=w—1, fy=o0-j, pf=w-k.
The sets
A = {og, 000,005, 4}, B = {$1.83,83. P4}

are conjugacy classes in the multiplicative group of units (2.3) in H.
Hence in case # € A, we can choose a unit ¢, such that

(2.16) g lneg, = o0 = 0.
Then
(2.17) e ln'e; =B, m=2,3o0r4.

Finally taking e=¢,w, & (1 —w) or ¢ according as m=2, 3 or 4, we ob-
tain by (2.16) and (2.17)

e lne = w, eln'e = w—k.
In case n € B, we get analogously a unit ¢ such that

elne = w—k, eln'e = w.
By (2.15) and definition 2 this proves theorem 1.

DErFiniTION 3. 4 Farey simplex ¥S(p1qy 1,027, - - P5957Y) tn the
space of quaternions s the convex hull of five points p;q;~t, ;+0, 121<5,
such that the corresponding matrixz (2.12) is a Farey matrix.

By the definitions 1, 2 and 3 a Farey simplex corresponds to a number
of classes of associated Farey matrices having no zero in the second row,
and conversely every class of associated Farey matrices having no zero
in the second row defines a Farey simplex.

The unimodular homographic map

(2.18) p: w = (xz+f)(yz+6)-1

corresponding to the unimodular linear map @ defined in (2.14) is a 1-1
map of the one point extension of the space of quaternions z onto the
one point extension of the space of quaternions w.

Also, since @(mwp~1)=pq~! when =,0,p,q € H are related by (2.14), ¢ is
a 1-1 map of the set of quotients zo~2, 7,0 € H, and =, ¢ without common
non-trivial right divisors (¢0-1, where ¢ is a unit in H, counted among
these quotients) onto itself.
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By (2.14), g=yn+dp, and hence

(2.19) lgl = Iyl lel lme*+y718l,  y,0%0.
Further by (2.18)

wy—o = (xz+p)(yz+06)"y — «
= (xz+B—ayt(yz+9))(yz+8)y
= (B—ay )(yz+0)1y,
and hence
lwy —o| = |By —ay=toy| [yz+6[".

However, since ¢ is unimodular,
NBy—ay-tdy) =1

by the proof of (2.11), and consequently

(2.20) lwy —«| = |yz+6|L.

By the papers of Fueter [1] and Speiser [5] the Jacobi determinant of
the unimodular homographic map ¢ defined in (2.18) equals N(yz+ )4,
and hence, since ¢ is conformal, we have for any fixed z € K, z+ —y~14,
and arbitrary =,p € H, 050, such that mp—14 —y-14,

[w—pg7 = |p(z)—@@e™t)|
= |z—m~| (N(ymo1+6)! + a(z—mo™Y))
= lo| |ze—=n| (N(yn+d0)~* + N(o)to(z—me™)),
where
(2.21) o(z—mp 1) >0 as mpl-=z.

Consequently, since yz+ dp=g¢,
(2.22) gl lwg—p| = lo| lze—=l| (L+N(q)N(e)~ o(z—me™)) -

By (2.19), (2.21), (2.22) and the definitions of equivalence and approxima-
tion constant in § 1, we deduce for any irrational quaternion & the validity
of

(2.23) C() = C(n), when &é~7p.

The properties of a unimodular homographic map developped above
together with the well-known property of being sphere-preserving (cf.
[1]) allows us to investigate Farey simplices by means of their inverse
images by suitably chosen unimodular homographic maps, e.g. obtained
in letting the corresponding Farey matrices be of the form indicated in
theorem 1. Further by the proof of theorem 1 any vertex of a given
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Farey simplex may have oo as its inverse image by such a unimodular
homographic map.

3. Fundamental properties of Farey simplices.

We shall begin this paragraph by collecting some important geometric
properties connected with the ring H of integral quaternions.

Let 2, denote the convex hull of the set U consisting of the 24 units
(2.3) in H. It is well known that &, is a regular polytope of Schlifli
symbol (3, 4, 3). Thus the boundary of &, consists of 24 vertices, 96
edges of unit length, 96 regular triangles and 24 regular octahedra.

Further let
(3.1) |l ={zeH| N(z)=0 (mod2)}.

Otherwise stated, | is the twosided ideal in H generated by 1+34. Then it
is also well known that the set of regular congruent polytopes of Schifli
symbol (3, 4, 3)

(3.2) {Po+z| zel}

constitutes a regular tessellation of the space of quaternions.

The importance of Farey simplices as a tool to treat the approxi-
mation problem of quaternions we are dealing with is obvious already
from the following

THEOREM 2. Let & be a quaternion satisfying the inequality

1
3.3 — i - —
(3.3) [E—poqo7t = 2*N(q0)’

where py,q, € H, ¢4+ 0, and p,,q, have no non-trivial common right divisor.
Then & belongs to a non-degenerate Farey simplex having pyq,™ as one
of its vertices.
The constant 2t in (3.3) 1s least possible.

In the proof of theorem 2 we shall need the following

LemmaA 2. Let I' be a sphere in the space of quaternions with radius 2%
and an arbitrary centre O.

Then O is an interior point of a polytope P with vertices z,,2,,. . ., %y,
where m depends on O, 8 <m < 48, such that P satisfies the following condi-
tions:

(i) z€H, 1zls=m,

(ii) all the n faces of P, 16 <n <192, are regular tetrahedra of edgelength 1,
(iii) all the n spheres through O and the vertices of a face of P lie in the
closed ball bounded by I
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Proor. If O € H, we may suppose without restriction that O=0. In
this case m=48, 2,,2,,...,2,, are the 24 units in H, and z,;,2,...,24
are the 24 elements in H symmetric with 0 with respect to the 24 faces of
P,. (Otherwise stated, 2,5,24,...,2,4 are the zeH which have
N(z)=2.) The faces of & are the n=192=24 x 8 regular tetrahedra of
edgelength 1 having one vertex z, 25=<1<48, and three vertices in U.
Hence the conditions (i) and (ii) are satisfied, but also (iii), since the 192
spheres in question are just the 24 spheres (each sphere occurring 8
times) having diameters 0z;,, 25 <7 <48, of length 2%,

In the general case O ¢ H, we may assume without restriction (other-
wise we make use of the tessellation (3.2)) that O € ;. Now the poly-
tope & defined above in the special case O =0 may be subdivided into 24
regular crosspolytopes of edgelength 1, each crosspolytope being a
double pyramid with a face of &, as a base. In the present case we
define & as the union of those of the 24 crosspolytopes for which O is
an interior point of the corresponding circumscribed spheres. Since
O ¢ H, this union is non-empty. By construction & satisfies the condi-
tions (i), (ii) and (iii) as well as the inequalities on m and n stated in the
theorem.

This proves lemma 2.

Proor oF THEOREM 2. The theorem states that the closed ball bounded
by the sphere C with centre at p,q,~ and radius (N(gy)2%)~! is covered
by the set of all non-degenerate Farey simplices having p,q,! as a vertex.
In fact, it will be shown that at most 192 such Farey simplices are suffi-
cient to cover the ball bounded by C.

Since p,,q, have no non-trivial common right divisor, there exists by
lemma 1 a unimodular homographic map of the form

@ w = (ppz+P)gz+@)1.

By (2.20)
3.4 w—pyege| = < [+q,7'Ql 2 2},
(3.4) [w—Pogo| N(go)2* o
and consequently
pHC) =T,

where I' is the sphere in z-space with radius 2 and centre at —gq,~1Q.
Also by (3.4) the interior of C corresponds by ¢~! to the exterior of I
Hence by lemma 2 with O= —g¢,~1¢ the closed ball in w-space bounded
by C is covered by the n, 16 <n <192, Farey simplices (and then also by
the non-degenerate Farey simplices among these)

FS (T’o 2075 9(21), 9(2,2), 9(2,3), tp(z,,;)), l=vZ2n,
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where
zvl7z72’zv3’zv4! 1 § v é n,

are the vertices of the n tetrahedral faces of the polytope & of lemma 2.
The constant 2t in (3.3) is best possible for £=1%(1+1) and (p,,q,) =
(0,1).
This proves theorem 2.

The following two lemmas are concerned with Farey simplices of
special type.

Lemma 3. No Farey simplex is regular.

Proor. In a regular simplex in Euclidean space R* the acute angle u
between two of its faces has cosu =}, and hence we may prove the lemma
by establishing that no angle between two faces of a Farey simplex can
possess this property.

Suppose on the contrary that a certain Farey simplex has two faces
with the above property. Then, since the two faces in question have
normals with all coordinates in Q, there are

a,b, € Z, 1514,
such that
(3.5) g.c.d.(a;,as,a5,a,) = g.c.d.(by,05,05,0,) = 1,

and
4 2 4 4
1 1

1

By (3.6) we may assume without restriction that
4
> a? =0 (mod4),
1

and since at least one ¢, is odd by (3.5),

a; = 1 (mod?2), 1514,
and hence

=M=

a? = 4 (mod8).

Consequently, by (3.5) and (3.6) analogous congruences hold with
replaced by b, 11 4.

However, this leads to a contradiction, since the left hand side of (3.6)
is then divisible by 64, while the right hand side of (3.6) is not divisible
by 32.

This proves lemma 3.
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The norm N of a Farey simplex FS(p;q;7L,02¢27%. . ., Ps¢57") is de-
fined as

5
(8.7) N = N(FS) = 3 N, where N, = N(q), 115,
1

From this definition N(FS)>5 for any Farey simplex FS. By lemma 3
there is no Farey simplex of norm 5. However, in the next lemma we
shall see that Farey simplices of norm 6 are particularly interesting.

LemMaA 4. The Farey simplices of norm 6 constitute a tessellation of
the space of quaternions.

Proor. In the first place we shall construct a tessellation of the space
of quaternions into Farey simplices of norm 6. In order to do this we
subdivide £ into 24 pyramids with apex 0 and the octahedral faces of
2, as bases, one of these bases having vertices

A, =1, 4, =14, B =w, By, =w—j—k,
C,=w-k C=w-j,

where A4, and 4, etc. are opposite vertices. The centre of this octahedron
is (1—12)-1. Each of these 24 pyramids is subdivisible into 8 Farey sim-
plices of norm 6, in particular the pyramid with the base indicated
above is subdivisible into the 8 Farey simplices of norm 6,

FS(0,4,,B,,C,,(1—i)) with [,=1or 2, 1=<vy<3.

Finally, the set of Farey simplices obtained by considering all translates
z €| of the 192=8 x 24 Farey simplices of norm 6 subdividing £ yields
a tessellation of the space of quaternions into Farey simplices of norm 6.

Secondly, we must show that each Farey simplex of norm 6 occurs in
the tessellation of the space of quaternions thus constructed. We note
first that the norms of the ‘“‘denominators” in a Farey simplex of norm 6
are 1, 1, 1, 1, 2. Hence if a Farey simplex of norm 6 has 0 as a vertex,
three of the other vertices are units in H spanning a regular triangle of
side 1, and the fifth vertex is then determined except for a symmetry
in the hyperplane through the first four vertices. However, since 2
has 96 regular triangles of side 1 on the boundary, there are at most
192 =2 x 96 Farey simplices of norm 6 having 0 as a vertex. Hence the
tessellation constructed above, which in fact contains exactly 192 Farey
simplices of norm 6 with 0 as a vertex, must contain all such Farey
simplices.

In an arbitrary Farey simplex of norm 6 four of the vertices are in H,
and span a regular tetrahedron of edge 1. Hence the four vertices in H
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are in different residue classes modulo I, and since H/I consists of exactly
4 elements (represented by 0,1,w,w — k), one of the vertices of the Farey
simplex considered is in I. Consequently an arbitrary Farey simplex of
norm 6 is the translate by a z € | of a Farey simplex of norm 6 with 0 as
a vertex. This, however, implies that the tessellation constructed above
contains all Farey simplices of norm 6.

This proves lemma 4.

By theorem 2 it is important to get a description of the set of non-
degenerate Farey simplices containing a fixed quaternion &. Incidentally
we know from lemma 4 that this set contains at least one Farey simplex
of norm 6, and so is non-empty. The central idea in our description is
that of subdivision of a given Farey simplex into a finite number of
Farey simplices. Here subdivision is to be taken in a combinatorial
sense rather than a geometric one. In fact, the subdivisions of a Farey
simplex we are going to consider give in general only a covering of the
given Farey simplex by the Farey simplices in the subdivisions.

THEOREM 3. Every Farey simplex FS with N(FS)> 6 is in two different
ways subdivisible into 31 Farey simplices. The vertices of each subdivision
all lie on one side of the circumscribed sphere (hyperplane) of FS, and the
vertices of the two subdivisions are inverse (symmetric) with respect to this
sphere (hyperplane).

Every Farey simplex FS with N(FS)=6 ¢s in one way subdivisible into
31 Farey simplices. The vertices of this subdivision all lie inside the cir-
cumscribed sphere of FS.

The graph of a subdivision of FS together with FS itself is isomorphic
to the graph of the boundary of the 5-dimensional crosspolytope.

ProoF. By theorem 1 we may suppose that the Farey simplex FS is of
the form FS(p,q,%,pady - - -, P55, where

(3.8) (pl P2 P3 Py Ps) _ (pl pz) (1 01w w—k).
’ 91 92 93 91 95 ¢ ¢/\01 11 1

Now we consider the following two 2 x 5 matrices

(3.9) <P1: Pzi Pai P4: PsZ)
9 9 935 94 95
_ (pl p2>( 1 1434 wo—j—k w—j)
T \g /\1-¢ 1 1 1 1
and
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Pt p* p* py* ps*)

3.10 (

( ) @F * * 9* ¢5*

(p1 p2>( 1 1455 o—t—k w——i) .
q; 92/\1—5 1 1 1 1

By the Farey matrix-preserving property of a unimodular linear map the
31+31 2x5 matrices obtained by replacing 1, 2, 3, 4 or all columns
in (3.8) by the corresponding columns in (3.9) or in (3.10) are all as well
Farey matrices. Further it is easily seen that any 2 x 5 matrix over H,
which is related to the Farey matrix (3.8) in this way, is obtained from
the Farey matrices (3.9) or (3.10) by multiplication of each column from
the right by a unit in H. Of course, we require in addition that such a
matrix should have all columns different from right multiples by units
in H of the corresponding columns in (3.8).

To indicate how this is seen, we write the first column in such a matrix
in the form

@) ()= (o))

and m,p € H are then subject to the requirement that

701w w-"k
el1l1 1

is a Farey matrix. However, by the additional requirement above this
shows that

(8.12) (3) = (alae) o (5) = (i)

¢ being a unit in H, and hence by (3.11) and (3.12)

(2) - () o (D)= (2d)-
q %'e q 0*e
Similarly, the other columns in such a 2 x5 matrix are right multiples

by a unit in H of the corresponding columns in (3.9) or (3.10). Finally
the result follows from the observation that

(pz' pm*>

ql’ Qm*

by (3.9) and (3.10) is not a unimodular matrix forI+m, 1<1<5,1<m =<5,
Now assume that none of the Farey matrices (3.9) and (3.10) have zeros

in the second row. Then, by the properties of the unimodular homo-
graphic map
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(3.13) P w= (p12+p)(¢12+¢) "

deduced in § 2, there are precisely two subdivions of FS of the kind
described in the formulation of theorem 3. The 31 Farey simplices in
each of the subdivisions are obtained by exchanging 1, 2, 3, 4 or all
vertices in F'S by the corresponding vertices in

(3.14) FS(p/'¢' 0 'L o05' a5 ™)
or in
(3.15) FS(p *q ¥ 1, p2*qo* 1, . . ops* 5™ 1) .

The statement in theorem 3 about the position of the vertices in the
two subdivisions of FS follows from the properties of the unimodular
homographic map ¢ together with the observation that the two point
sets

(1= L1+i00—j—-ko—7},  {(1-)L1+jj,0—i—keo—i}

lie on opposite sides of and are symmetric with respect to the hyperplane
through 0, 1, w, w —k.

It remains to be proved that one of the Farey matrices (3.9) or (3.10)
can have a zero in the second row only in case N(FS)=6. By a remark
at the end of § 2 we may suppose that ¢,"=0 or ¢;*=0. However, by
(2.19) this assumption is equivalent to

(3.16) —97'¢p = (1=19)7t or (1—j)~*.

Since ¢;,9, by lemma 1 have no non-trivial common left divisor, it
follows by (3.16) that N(g,)=1 and N(¢g,)=2. Using (2.19) again we see
that N(¢;)=N(q,)=N(¢5)=1, and hence N(FS)=6.

Conversely, for a Farey matrix FS with N(FS)=6 we may assume, by
the remark at the end of § 2, that N(¢;)=2, N(g;)=1 for 2<1<5, and
hence

(1 D2 P3 Py ps)
095 95 94 95

is a Farey matrix, and consequently ¢,"=0 or ¢,*=0. Hence for a Farey
matrix FS of norm 6 there is exactly one subdivision arising from (3.9) or
(3.10) according as —¢q,71qy=(1—4)"1 or (1—1)-1.

For a non-degenerate Farey simplex FS we shall call a subdivision
inner or outer according as the vertices in the subdivision are all inside
or outside the circumscribed sphere of FS. Obviously, with the notation
above (3.14) or (3.15) is the central Farey simplex in the inner sub-
division of FS according as —¢, 1¢, lies in the open halfspace bounded
by the hyperplane through 0, 1, w, w—k and containing (1—j)~! or
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(1—¢)~1, respectively. In particular we note that a Farey simplex FS
of norm 6 always has an inner subdivision (but no outer subdivision).
This completes the proof of theorem 3.

In the following it is convenient to let (3.14) and (3.15) always denote
the central Farey simplices in the inner and outer subdivisions of a non-
degenerate Farey simplex FS, respectively. This amounts to inter-
changing the primes and asterisks in (3.9) and (3.10) in case —g¢, ¢,
lies in the open halfspace bounded by the hyperplane through 0, 1, w,
w—k and containing (1—4)-1. With this convention it follows imme-
diately from (2.19) that

(3.17) N(qg)') > N(g*), 1515,

In the case of a degenerate Farey simplex FS we cannot distinguish
between inner and outer subdivision, and we note that in this case (again
by (2.19))

(3.18) Ng) = N(g*), 1=155.

The following lemma gives important supplementary information to

theorem 3:

LemMmA 5. Let £ € K belong to the non-degenerate Farey simplex FS.
Then there is a non-degenerate Farey simplex FS' among the Farey sim-
plices in the inner subdivision of FS, such that

£eFS and NFS) > NFS).

In case N(FS)> 6, there is a non-degenerate Farey simplex FS* among
the Farey simplices in the outer subdivision of FS, such that

EeFS* and NIS*) < N(ES).

Proor. Using the notation in the proof of theorem 3, we may suppose
by symmetry that —g,~'q, lies in the open halfspace bounded by the
hyperplane through 0, 1, w, w—k and containing (1—j5)-1.

The central Farey simplex FS(p,'q;" 1, p5'¢’ L. ...05¢5 ) in the

inner subdivision of FS is then given by (3.9), and hence, by (2.19) applied
to the unimodular homographic map ¢ defined in (3.13),

g2 = lgal 1—%] |(1=%)"1 + ¢, -
Hence N(q,")<N(q,) if and only if
N((1=-)T+q7"q) = %,

that is, —¢,~1¢, lies inside or on the boundary of the sphere with centre
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at (1—1¢)~! and passing through 0, 1, w, o —k and 1+14, ¢, 0 —j—k, 0 —j.
Equivalently the points p,'¢;/~1, 1 =1<5, all lie in the closed halfspace
bounded by the hyperplane through p,¢;!, 2=<1<5, and not containing
P1gh

Consequently, if N(¢,") < N(q;), none of the 16 Farey simplices in the
inner subdivision of FS, which have p,"q,"~! as a vertex, contain interior
points of F'S. By the remark at the end of § 2 the same result holds then
for any I, 1 1= 5, for which N(g,') £ N(g,), and hence FS is covered by
non-degenerate Farey simplices in the inner subdivision of FS with
norms strictly greater than N(FS).

This proves the first part of lemma 5.

Similarly the central Farey simplex FS{p,*q,*1, po* g *1,. . ., ps*gs*1)
in the outer subdivision of FS is given by (3.10), and

lg* = 1gal [L=g [(1=5)7" + 17" g -
Hence N(g,*)=N(q,) if and only if
N((1=j)1+q¢,) 2 %,

that is, —g¢;7'¢, lies outside or on the boundary of the sphere with
centre at (1 —7)~! and passing through 0, 1, w, w—k and 1+7,j, o —i —k,
o —j. Equivalently the points p;*¢;*-1, 1 <1< 5, all lie in the closed half-
space bounded by the hyperplane through p,q;"1, 2<1<5, and not con-
taining p; ¢,

Consequently, if N(q,*) = N(g,), none of the 16 Farey simplices in the
outer subdivision of FS, which have p,*¢,*-! as a vertex, contain inte-
rior points of FS. By the remark at the end of § 2 the same result holds
then for any /, 1 <1< 5, for which N(g;*)= N(g;), and hence FS is covered
by non-degenerate Farey simplices in the outer subdivision of FS with
norms strictly less than N(FS).

This finishes the proof of lemma 5.

DerintTION 4. A chain of Farey simplices containing & € K is an tnfinite
sequence of non-degenerate Farey simplices

(3.19) FSO, FS®, ..., FS™,, ..
such that

(i) £ e FS®™ for all n20,
(ii) FS®+D is one of the Farey simplices in the inner subdivision of
FS®, 5n>0,
(iii) N(FS®) =6,
(iv) N(FS®+D)> N(FS™) for all n=0.
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THEOREM 4. For every & € K and any non-degenerate Farey simplex FS
containing & there exists a chain (3.19) of Farey simplices containing &
such that FS=FS®™ for some n=0.

For every chain (3.19) of Farey simplices containing & € K

(3.20) lim, ,, p@g™™" =&  151<5.

CoROLLARY 1. If there exists a chain of Farey simplices (3.19) con-
tatning &, and such that & is an interior point of FS™ for all n20, then
(3.19) s the only chain of Farey simplices containing &.

COROLLARY 2. If E=a,+ayi+asj+a.k, where 1, a,, a,, a; and a, are
linearly independent over Q, there is a unique chain of Farey simplices
containing &.

Proor. By lemma 3 the norm of a Farey simplex is at least 6, hence
the first (and difficult) part of theorem 4 follows by repeated application
of lemma 5. Itisimportant to notice that this result together with lemma
4 shows that every £ € K is contained in at least one chain of Farey sim-
plices.

By the definition of a Farey simplex FS and formula (2.11), the dia-
meter of FS satisfies the following inequality (we assume for simplicity
that N2 N,2N,2N,=2N;):

diam (FS) = [p,qs71—p5¢57Y
S P17 —Pata7H + P10 = D595 7
(N Nyt + (N Nj)E
2N,
2(3N(FS))-+.

A A

From this inequality and condition (iv) of definition 4

lim diam (FS™) = 0,

n—-00

and consequently (3.20) follows from condition (i) of definition 4.

To prove corollary 1 suppose there were a chain FS™, >0, of Farey
simplices containing & and an ny,= 0 such that

F’%(”) = FSm), 0=n<ng,
but _

FS(no) + FS(no)_
Then

E e F’Tsl(no) n FS®o s
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and hence & were a boundary point of FS™ by lemma 4 in case n,=0,
and by theorem 3 together with the conditions (i) and (ii) of definition 4
for n=n,—1 in case n,>0. This contradiction proves corollary 1.

As to corollary 2, we know already by a remark above that, & is con-
tained in at least one chain of Farey simplices. However, by assumption
£ does not lie on the boundary of any non-degenerate Farey simplex,
thus the uniqueness follows in fact from corollary 1.

4. Linear norm relations.

In this section we shall continue the investigation of the subdivi-
sions of a Farey simplex described in the preceding section. The
linear norm relations connected with these subdivisions will be deduced
by means of the following

LeEMMA 6. Let
@(7!1, 91) = (pbql): 1 élé n,

where @ is a unimodular linear map.
Suppose the following linear relations hold:

n n n
ZblN(nl) = zblN(Ql) = Zblnlél = O, b,ER, 1§l§n.
=1 =1 I=1

Then the corresponding linear relations

n n n
12 bN(p) = 12] b N(q,) =l21bmz§z =0
=1 = =

are also valid.
Proor. See the proof of lemma 2 in [4].

For any Farey simplex at least one of the corresponding Farey matrices
has the form announced in theorem 1. Hence the points p;q,~! in the
subdivisions of a Farey simplex have the form

(o) = Plmy0)

where @ is a unimodular linear map, and the (7,0;) involved are listed
in table 1 below, the indices being in agreement with the notation used
in § 3.

Alternatively, the primes and asterisks in table 1 should be inter-
changed.

Math. Scand. 24 — 4
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l m e N(m) Ng) M0

1 1 0 1 0 0

2 0 1 0 1 0

3 1 1 1 1 1

4 ) 1 1 1 [}

5 o—k 1 1 1 w—k
1’ 1 1—4 1 2 1+
2’ 1+14 1 2 1 1472
3 ) 1 1 1 )

4 w—-j—k 1 1 1 w—j—k
5 w—j 1 1 1 w—j
1* 1 1—3 1 2 1+j
2% 1+j 1 2 1 1+j
3* j 1 1 1 j

4* w—1—k 1 1 1 w—t—Fk
5% w—1 1 1 1 w—1

Table 1.

From table 1 or the alternative one the following linear norm relations
connected with the subdivisions of a Farey simplex are deduced by means
of lemma 6:

(4.1) N' +N* =3N,
(4.2) N,+N, = N,+N, = ... = N;+N;,
(4.3) N,4+N*=N,+N,*= ... = N;+N;*.

In these norm relations

5
N = >N, where N,;=N(g), 115,
=1
and N{, N*, N', N* are similarly defined.

Of course, by lemma 6 all the norm relations above are valid with
N,;=N(p,) as well.

It should be noticed that the number of independent norm relations
listed above equals the number of points involved minus six (15—6=9),
which is the maximal number of linearly independent relations obtain-
able by means of lemma 6, since R x R x K is a 6-dimensional vector space
over R.

Now, given a Farey simplex, only five independent norms are known,
and hence there is one norm relation missing in order that the N; in the
subdivisions should be determined. It follows from the definition of a
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Farey simplex that once all the N, in the subdivisions are known, the
points p;¢;~! themselves are determined geometrically.

5. A non-linear norm relation.

It was pointed out in the preceding paragraph that, given a Farey
simplex, the inner and outer subdivisions are not completely determined
by the linear norm relations found in that paragraph, but that there is
one norm relation missing. It was also motivated that this norm rela-
tion must be non-linear.

Now we shall deduce such a norm relation, namely

(6.1) N' = §N + 3(N2—4N@)t |

where N and N’ as usual are the norms of the given Farey simplex and
the central Farey simplex in its inner subdivision, respectively, while

5
(5.2) N® = S N2.
=1

By theorem 1 at least one of the Farey matrices corresponding to the
Farey simplex given has the form

(5.3) (m P2 P3 P4 p5> _ (m pz)(l 01w w—k) .
9 92 93 94 95 q; ¢./\0 111 1

Further by the proof of theorem 3 (cf. table 1 in § 4) the inner and outer
central Farey simplices in the subdivisions of the given Farey simplex
are represented by the Farey matrices

(5‘4) (pl' pg' pg’ P4' P5') _ <p1 p2)< 1 1-]—1: i w_.j__k w__j)

@' 92 95 94 95 ¢ ¢/\1-5 1 1 1 1
and
(5.5) (pl* P* Ps* Po* Ps*) _ (Pl 102)( 1 1+jj w—t—k w—i)
P PR P P P 4, 92/\1—3 1 1 1 1

or alternatively the same formulae with primes and asterisks inter-
changed. From (5.3) we get using (5.2) and the simple calculation rules
for quaternions listed in § 2

N = 4(N+N,) + S(q:(24+7+5)g5)
and
N® = 4(N2+ N2 + 6N Ny + 2(N,+Np) S(q3(2+0+5)72) +

+8%q,7,) + S%q0q,) + Sz(?l(w_k)gz) s
whence
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N2—4N® = 8N, N,+5%(q:(24 0 +5)q) — 4 8491 G2) —
=8 qu (148 +j +k)qs) — S¥(qy(1+i+j —k)F,)
8NNy +8%g,(i—5)ga) —
—2(8%(q15) + S%(9112) + 8%91G) + SHq: ko))
and hence by (2.1)

(5.6) N2—4N® = Sz(%(": —J)s) -

Similarly, we get from (5.4) and (5.5)
N’ = 6(N1+No)+8(q1(3+41—))7,) ,
N* = 6(N;+Np)+8(9:(3—1+45)7,) ,

or alternatively the same formulae with primes and asterisks inter-
changed. Hence in either case we get

(6.7) (N'—N*)? = 25 8¥qy(1 ) qs) -

Since, by (3.17) and (3.18), N'= N*, a combination of (5.6) and (5.7)
yields N'—N* = 5(N2—4N®)t

Finally, this formula together with (4.1) proves (5.1).

6. Approximation lemmas.

In this section we shall deduce a number of important approxima-
tion lemmas of a purely geometric nature, however formulated by means
of quaternions. The degree of approximation of a quotient pg! of
quaternions to a quaternion &= pg¢-! will in these lemmas be measured
by means of the real number ¢ defined as follows

(6.1) c = (lgl l§g—p)*.
We shall begin with two preparatory lemmas of independent interest.
Lemwma 7. Let p’, p”, ¢', ¢'' be quaternions, q’, ¢’ +0, such that
42 = |p'q1-p g P N(G) N@') > 0.

Further let & be any quaternion different from p’q’'~* and p'' ¢''-1. The real
numbers ¢’ and ¢'’ are given by (6.1), and the angle u, 0 Su <, is the angle

p'q L€ pq" 7t Also let f=max(lq"|/l¢’l,|¢’/lq"])-
Suppose f=fo= 1, u=uy= 4w, then

max(¢’,¢”) 2 (fo?+1/fo?—2 cosug)t/4,

where the equality sign occurs if and only if simultaneously

f=fe w=uy, |&—p1é¢"—p"] =1¢"l¢],



FAREY SIMPLICES IN THE SPACE OF QUATERNIONS 53

wn which case
¢ =c" = (fo*+1[f*—2 cosugl/4 .

Proor. See the proof of lemma 3 in [4].

LeMMa 8. Let n+ 1 unit vectors @y, 1 SI<n+1, n=2, inttiating from o
be situated in Buclidean space R™ such that the convex hull of the points a,
1=slsn+1, contains 0. The angle wu; ,,, 0 < , <7, ts the angle between
a and a,,.

Then for any 8, 0 <6< (n®—n)7L, either

(i) min cosw ,, < —(1/n +9d),
1=l<m=n+1
or
(ii) cosuy ,, = —(1/n + 6y )
with
(n—1)(n+1)? é
O = — 11 = 1.
hm = 2n (1= (me—mapye’ = =T

Proor. Suppose that we are not in case (i), i.e.
(6.2) O m =0, 1sl<m=n+1.

If 6, ,,20 for 1=l<m=n+1, there is nothing to prove. Consequently,
in addition to (6.2) we may suppose without restriction that

(6.3) 8,2<0,

and by symmetry it suffices to prove the inequality in (ii) for (I,m)=
(1,2). By the assumptions of the lemma, o is representable (possibly in
several ways) in the form

n+l
0o = z (Xlal 5
=1
where
n+l
(6.4) Zo(,= 1 and o 20, 1251€n+1.
=1
Now
ntl ntl
= ( > 0‘1“1) ' ( > 0‘1“1)
=1 =1
n+l
= z 0(12+ z 2 Cosul’m“l“m
=1 1<l<m=n+1
ntl
=20 — 3  21/n+6 )00,
l=1 1=sl<m=n+1
n+l

Z“z —(1/11,) 2 0‘12+‘xm2)+(1/n) E (‘xl’_“ z 2alm0‘l )

1l<m=n+1 1sl<m=n+1l 1§l<m§n+1
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whence

(6.5) An) 3 (q—ap)?= > 28 n0q0,

1sl<m=n+l 1=l<m=ntl

By (6.2), (6.3), (6.4) and (6.5)
(In) 3 (q—op)? S D 20xu,

1sl<m=sEntl 1=l<m=n+1
m=*2
n+l 2 n+l
— 2
= 6{(12 oc,) —lz og? ~ 2cx1zx2}
—1 =1

n+1

= 6{1— oy + 00g)? sz,} < 6(1—1/n),

and hence
> (m—o,)? S (n—1)0,
1<l<m=ntl
whence
n+l
S (q—oan)? £ m—1)8, 1=I<n+1.
il

Consequently, by Cauchy—Schwarz’ inequality

n41

(n+1)x sz 2 3 = £ (m—1)0)knt,
mel
and hence by (6.4)
(6.6) log— (m+1)71 £ ((m2—n)d)t(n+1)"t, 1=ZISn+1.
Finally, by (6.5) and an estimation above
20100005 2 — D 20 py 2 —(1—1/n)d
lglfnn:kgzrwl

and hence by (6.6) and the assumptions on 8
(n—1)(m+1)? é
B 2n (1— ((m2—n)o)t)2’

61, 2

v

This proves lemma 8.

The following two approximation lemmas are now obtained by com-
bining lemma 7 and lemma 8.

LEMMA 9. Let py,Ds;- - -,P5,91:92, - - - 95 be quaternions, q,,qs,...,9;+0,
such that

w = Dl =Pntn 2 N@)N(g,) =1, 18l<ms5.
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Further let & be any quaternion different from pyg;=1, 1<1<5, and lying in
the closed simplex S (possibly degenerate) with vertices p;q,7Y, Pags~t,. . .,
Ps95s~1. Then

max(cy,Cq,- - -,C5) = (5)}

with strict inequality unless S is a regular 4-stmplex, and & is its centre,
in which case c;=co=...=c;=(5)*.

Proor. Let v ,,, 0=y ,, <7, be the angle ¢, 1ép,,q, 7, 1SI<m 5.
If coswy ,, < —1 for some pair (I,m), 1=l<m=5, then max(c,c,)> (§)}
by lemma 7 with 4=1,

f = max{|q|/|gnl: 1gal/lal} 2 fo =1,
Uy > Uy = Arccos(—1).

If cosu;,, =2 —% for 1<l<m<5, then cosy ,,=—1% for 1SI<m=5 by
lemma 8 with n=4, §=0, and hence if for some pair (I,m), 1=l<m =5,

f = max{|gl/Ignl; 1) lal} > 1,

then max(c,c,)> )} by lemma 7 with A=1, f>fi=1, w ,=u,=
Arccos(— %).

In the remaining case |g;|=]¢s|=...=]qs|, that is, S is a regular 4-
simplex by the assumptions of the lemma, and cosu; ,,= —} for 1sl<
m <5, that is, £ is the centre of S. Evidently ¢;=c,=...=c;=(¢)} in

this particular case.

Lemma 10. Let py,Ds;- - > D5:91:92: - - - 5 be quaternions, ¢,9s,. . .,95+0,
such that

A} = DB =P8 N(@) N(gy) =1, 1=l<ms5,
and
N(gy) £ N(gy) = ... £ N(g;) .

Further let & be any quaternion different from pyq=t, 1 15, and lying in
the closed simplex (possibly degenerate) with vertices p,qy,~t,Peqs™%. . -,

P55
Suppose that for some d, 0=d<%,

(6.7) max (¢;,Cy,- . .,C5) < (§+26)},
then
(6.8) N(gs)/N(g1) = 1 + 3{h + (R®+4R)H},
where
h =26 B
=2 8(1— (125)})2}'
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Proor. Let u; ,,, 0=y, =7, be the angle p,q;71,£,p,,9,,7, 1Sl<m<5.
If for some pair (I,m), 1 £l<m <5, cosuy ,, < —(}+9), then max(c;,c,,) >
¢+ 20)* by lemma 7 with 4=1,

f = ma’x{lql!/Ile’Ile/IQIl} 2 fo =1,
Uy, > Uy = Arccos(—(}+9)).

Consequently the assumption (6.7) of the lemma implies that cos u; ,, =

—(3+6) for 1 =l<m =<5. Hence (with the notation of lemma 8 and the
present lemma) it follows from lemma 8 with n=4 and (I,m)=(1,5) that

(6.9) b5 0—1h.

Finally, by (6.7), (6.9) and lemma 7 with 4=1,
I =1r =1el/lal,

u = uy 5 = Uy = Arccos(—(}—3h+9)),

we obtain
N(g5)/N(q;) + N(q1)[N(gs) + 2(3—3h+0) < § + 26,

whence (6.8) by an easy calculation.
This proves lemma 10.

7. Evaluation of approximation constants.

We begin this paragraph by the observation that Speiser’s theorem is
an immediate consequence of previous lemmas and theorems.

In fact, by lemma 4 and theorem 4 every irrational quaternion & is
contained in a chain (3.19) of Farey simplices. Further by lemma 3
none of the FS®, 5 = 0, in the chain are regular, and hence by lemma 9,
which is applicable to a Farey simplex by formula (2.11),

(7.1) max ¢™ > (§)}, nz0,
1si<5

where

(7.2) ™ = (lg™| |Eq™ —p™|)*

in agreement with (6.1).

Now Speiser’s theorem follows from (7.1) together with (3.20), since £
is an irrational quaternion.

Of course, by Speiser’s theorem the approximation constant of any
irrational quaternion ¢ satisfies the inequality

(7.3) O z §F.
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The following important theorem gives a formula for the approxima-
tion constant C(£) of an irrational quaternion & in terms of the Farey
simplices containing &:

TaEOREM 5. For any irrational quaternion & the approximation constant

C(§) = lim sup(lg| |€g—p])7?,

where the lim sup s taken over all p,q € H, ¢+ 0, such that pq—! is a vertex
of a non-degenerate Farey stmplex containing &.

CoroLLARY. If £ € K is contained in a chain (3.19) of Farey simplices
such that & is an interior point of FS™ for all n= 0, then £ s an irrational
quaternion, and
(7.4) C(§) = lim supc™ ,

where ¢™ s given by (7.2), and the lim sup s taken over all n=0 and all I,
1=15.

Proor. The theorem follows immediately from theorem 2 and (7.3),
since 2% < (§)3.

To prove the corollary we notice first that by (7.1), (3.20) and the
assumption on &, the inequality

lE—pgt < (EN(g)?

has infinitely many solutions p,qeH, ¢+0, p,¢ without non-trivial
common right divisors, and consequently & is an irrational quaternion.

Finally, the formula (7.4) is in fact identical with the general formula
for C(&) in theorem 5 by the first part of theorem 4 and corollary 1 of
that theorem.

In the following let the irrational quaternion & be contained in a chain
of Farey simplices

FS® = FS(p0q™, ..., 50g™), 720,

By theorem 1 we may suppose, that the corresponding sequence ™ of
Farey matrices is of the form

(7.5)

) g M) 1 () g @) g (W) 101 w w—k
m — (P17 P2 Ps” Pa Ps ) _ gqpm ) >0
8 (ql(") 7™ g™ g™ g™ o111 1) "=V

where ™ is the unimodular matrix

_ ™ ™
(7.6) Mm = <q1(”) 7,™) nz0.
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Further by theorem 1 and theorem 3 we may assume, that the transition
from ™ to F"+D is expressed in

101 wow-Fk

(n+1) — (n) (n)
(7.7) % sm@(onl )

), nz0,
where the transition matrix @™, n >0, is one of 62=2 x 31 unimodular
matrices obtainable from table 1 of § 4 or the alternative table. Now by
(7.5) and (7.7)

ME+D = WO S, >0,
and hence
(7.8) MeAD = POSOSD ... €™, n20.

We consider in particular the important special case, where the sequence
©©,@M,. .. of transition matrices is periodic with period 4. Then by (7.8)
for some 7,z 0

(7.9) Mrots) = M, 20,
where
(7.10) S = G Gmnetd  Groti-D

For the unimodular matrices " and & we shall use the notation

7.11 Mo — (‘xo ﬁo) and G = (0‘ 13)
( ) Yo % y 0
By (3.20), (7.6), (7.9), (7.10) and (7.11)
« B\ _( mo, N7, S
(7.12) ('}’ 6) = ((1-’;—6,’)0'” (1+6’”)T’,)’ "’:-.0 3
where
(7.13) lim, 96, =1lim, 4 =0,
and
(7.14) & = (xgn+Bo)(yon+3de) .
From (7.12) we get for »=0
( n0v+1 77";'7+1 ) — ((0‘77'*'13(1‘*'6"))‘7, (0"7’*‘13(1‘*'5,"))17,)
(1+6:+1)av+1 (1+6v+1)rv+1 (7774'6(1‘*'5»,))“” (7’7+6(1+3y”))"v ’

and hence by (7.13)
(7.15) n = (an+pB)yn+0)7*,

so that % is one of the roots of the quadratic equation

(7.16) zyz+20—az—f=0.
Of course, by (7.14),
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(7.17) §~n,
and consequently, by (2.23)
(7.18) C(&) = C) .

ExampPLE 1. As a particularly interesting example of a chain (3.19) of
Farey simplices containing an irrational quaternion & we consider the
case, where

—1 —1 —1 —1
FS (pl(ﬂ+1)q1(n+l) e :Ps(n+1)Q5(n+l) ) = FS (pl’(n)ql’(n) ees ,%'(”)qs'(") )

for all n=n,, that is, FS®+D is the central Farey simplex in the inner
subdivision of FS®™ for all n>n,. (That such a chain exists is proved
later.)

By a simple calculation based on table 1 and following the proof of
theorem 1, it is seen that one of the corresponding sequences of Farey ma-
trices is of the form (7.5), where ™ is given by (7.8) and

@ — w—1 i—j)____ , (n)z(w—l—'i i—j >= *
(7.19) & (_i+jw~j & o & it wotj)=©"

n=mn, . However, since
G'Cec*=6c*g" = €,

€ being the unity matrix, it follows from (7.19) and condition (iv) of
definition 4 that the sequence &©,&W,... is periodic with period I,
hence A=1 and ©=&’ or ©=&* in (7.9).

In both cases & is equivalent to one of the roots of the quadratic equa-
tion
(7.20) 2(—i+j)z+2(w—j) — (w—0)z2— (t—5) = 0

by (7.11), (7.16), (7.17) and (7.19). An easy calculation shows that the
equation (7.20) has precisely two roots

m o= 3+ H1+540 +1(1-5);j

and

Ny = $+31-54 +}(1+5%)],
and hence
(7.21) E~m or £~y

Because of the importance of this result we should like to derive it
in a more direct manner based on the relations

(7.22) ©2=G+E and G* = —G*+E,
which follow from (7.19). In fact, by (7.22)
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€" =f,& +f,,€,

(7.23) @*v — (_1)’_1‘f;’@*+(—'1),fv—l@’

=0,

where the sequence {f,}, »> 0, is the Fibonacci sequence defined by

(7'24) fo = O: f] = 1: f;, z,ﬁ,_1+,ﬁ,~2; 7";2 .

Hence, according as @™ =&’ or @™ = &* for nzn,,

n = lim, ., (f(w—1i)+fa)(f(—i+))?

= lim, , 3(1 + (1 +f,a/f,)e = (f,=u[f,)d) = m
or

n = lm,_ o (= 1rtf,(@—1—48) + (= 1r f,_)((— 1yp-'f,(—i+j))2
= lim, , , 3(1 — (f,—a/f,)i + (A +F,-i/f)F) = s

by (7.12), (7.19), (7.23) and the well-known relation

1imv—>oofv—1 fv = %(5i~1)

for the Fibonacci sequence (7.24).

Of course, by (7.17) this proves once more (7.21) .
Jn order to calculate C(n,) we consider the sequence of Farey simplices
FSWFS,®,. .., where the corresponding sequence of Farey matrices is

- MO XA O 101 ~k
) —— Py Po s — n @ o
(7.25) & (971(") qz(n)'“ih(n)) © (0 111 1 )

From (7.19) and (7.23)

mo__ fn(w_'i)'*'fn—l fn(?"—])
020 &= (M e )

and hence by (7.25) and (7.26)

(7.27) — 007G = (1= 3G ) (faaffn), 2.

Since f,_4/f,20 for n21 by (7.24), the j-coordinate of — g, g™
exceeds its ¢-coordinate, and hence by a result in § 3, FS®™, n21, is a
non-degenerate Farey simplex having FS®+D ag central Farey simplex
in its inner subdivision.

Further, we consider the sequence of unimodular homographic maps

(7.28) W w = (P2 +p")G, W2 +7,™), nzl.

By (7.25) and (7.28)
gm = g px1,
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and hence, since 7, and 7, are fixed points under ¢ by the definition of
these points,

(7.29) FW(ny) = m, and  FM(n,) = 7y, nzl.

Now let L be the line perpendicular to the regular tetrahedron spanned
by 0, 1, o, w—k and passing through its centre. Then L contains #,,
7, and all the points — ;™ "¢,™, n>=1. Further the sphere through
0,1, w, w—k and %, is cut by L (apart from #,) in the point

(1= + -5 - 1) .

By these geometric properties of the line L together with (7.25), (7.27),
(7.28) and (7.29),

(7.30) 7, € intFS®, nz=2,
since

fn-—l/fn g fz/fa = '% > %5*“%’ n§2,

by well-known inequalities for the Fibonacci sequence (7.24). Also, by
the same argument _
n ¢ FSO,
since
folfy =0 < §5*— %,

and consequently the sequence FS®™, n>1, is not a chain of Farey
simplices containing 7, .
However, it is evident that the sequence of Farey simplices

(7.31)  FS(1+i,i0—j—k,w—j, (0+1—i)(—i+j)-l), FS®, FSO,

actually is a chain of Farey simplices containing #,. Also by (7.30) 7,
is clearly an interior point in each Farey simplex in (7.31). Hence by
corollary 1 of theorem 4, (7.31) is the only chain of Farey simplices con-
taining #, .

A straightforward calculation using (7.24), (7.25) and (7.26) and the
well-known relation

lim,,_, o, {|3(6*=1)f, — foalfu} = 57

shows that

(7.32) lim,_,, (I1g™] I g™ =™ = @), 115,
and

(7.33)  lim,_,, cos&™, = —%, l&m, 1515, 1sm<5,

where &, is the angle ™ g™, 9,,9,¢,™ . Further, it follows im-

mediately from the linear norm relations (4.2) that
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(7.34) m, , , N(q,™)/N(g™) =1, 12155, 1sm=<5.

Finally, since 7, and the chain (7.31) of Farey simplices satisfy the condi-
tions in the corollary of theorem 5,

(7.35) Clny) = @)}
by (7.4) and (7.32).

Analogously, 7, is an interior point in each Farey simplex in the
chain
(7.36) R R
FS(1+j,j,0w—t—k,w—i,(0+1—j—k)i—j)1), FS®, FS®,

where the Farey matrix %‘"’ corresponding to FS™, n =2, is

sy (D1 P ... P 101 w w—Fk
(7.37) W= (ql(n) 3,™ . _35(1»)) = e (0 111 1 )

The point #, and the chain (7.36) of Farey simplices satisfy the conditions
in the corollary of theorem 5, and hence by (7.4) and the analogue of

(7.32)

(7.38) Cny) = .

Combining (7.21), (7.35) and (7.38) we obtain the important result
(7.39) O = ().

Finally, we shall prove that the two quaternions 7, and %, despite
their analogous approximation properties are non-equivalent. Indeed,
assume on the contrary that v is a unimodular homographic map such
that p(n,)=7,. Then it follows by the conformal property of y and the
Farey matrix-preserving property of the corresponding unimodular linear
map ¥ together with (7.33) and (7.34) that the vertices of FS™ for suf-
ficiently large n are mapped by y onto the vertices of a non-degenerate
Farey simplex of norm greater than 6, and having 7, =v(z,) as an interior
point. However, every non-degenerate Farey simplex containing 7, is
in the unique chain (7.36) of Farey simplices containing #, by theorem 4.
Hence for suitable integers n,r,n 22, r 2 2, the unimodular homographic
map

p = ¢(r)w¢(n)

permutes the five points (c0,0,1,0,0 —k), and ¢(n,) =9, by (7.25), (7.31),
(7.86), (7.37), (7.28), (7.29) and the relation &' &*=E

Hence, in order to prove the non-equivalence of 5, and 7, it suffices
to establish the non-existence of a unimodular homographic map ¢ with
such properties.
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It is easily seen that, among the unimodular homographic maps per-
muting the five points (o0, 0, 1, w, w — k),

@ w=wzo+l, @t w= (w—k)z(w—Fk)+1,
Pa: w = (—2+1)7!
are the only ones that give rise to the permutations given by the cycles

(0lw), (0lw—Fk), (01co),

respectively. Since these three cycles generate the alternating group
of the five symbols (o, 0, 1, w, w —k), the multiplicative group of uni-
modular homographic maps inducing an even permutation of (oo, 0, 1,
w, w—k) is isomorphic to A;. Hence, since

o(m) =n, and  @n,) =71, 1513,

there is no unimodular homographic map ¢ inducing an even permuta-
tion of (o0, 0, 1, w, w—k) and satisfying @(n,) =7,.

Finally, we claim that there is no unimodular homographic map ¢
inducing an odd permutation of (c, 0, 1, w, w—%). From the results
above it is enough to prove the non-existence of a unimodular homo-
graphic map ¢ with

(7.40) p(o) = 00, @(0) =0, ¢l)=1 ¢ =ow-r,
plo—k) = w.

By the three first conditions of (7.40) and the definition of a unimodular
homographic map,
@: w=¢lzg,

where ¢ is a unit in H. But then the last two conditions of (7.40) cannot
be complied with since w and w —k are in different conjugacy classes in
the group of units in H (cf. § 2).

This finishes the proof of the non-equivalence of #; and #,.

8. The approximation spectrum of quaternions.

We are now prepared to prove the properties of the approximation
spectrum of quaternions already announced in the introduction using
the theory of Farey simplices developped.

THEOREM 6. Let & be an irrational quaternion with the approximation
constant
C(§) < (2.51)F = 1.5842. .. .
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Then & has the approximation properties described in example 1 in § 7,
especially & is equivalent to one of the quaternions

341145684+ H(1=547 or §+31-5%)i+H1+5Y)5,
and
O) = B = 1.5812... .

Proor. Let FS(p,™Mq,®™7,. .. pmgm™) N®W<, . <N® 520, bea
chain of Farey simplices containing £. Since by assumption C(£)<
(2.51)3, there exists a positive integer n, such that

(8.1) N®IN,™ < 1.538, n=n,,

by the definition of C(¢) and lemma 10 with é=1/200.

For a Farey simplex FS(p,¢,7%,...,p5¢5™") with N;<...<N, and
N /N,<1.538, we have N,'>...2 N, by (4.2), and hence by (4.2) and
(5.1)

N,'|N; 2 NJINs = (N5 +Ng)/Ns — 1
= }(N'+N)/Ng — 1
= (N + (N2—4N®)})/(2N;) — 1

4+1.5382  \# 1.538
i (e AL ) o, 19y
(4+1.538)2 4+1.538

= 1.54...>1.538

v

for 1<1<5 and 1=<m=<5. From this result and (8.1)
(8.2) N,’®/NM™ > 1.538, 12125, 1=m=<5, n2n,.

Now recall that by definition 4 and theorem 3, the p,®+Dq,®+D™" are
a selection of the p™¢q®™ and the p,, Mg, ™™*. Then (8.2) and the fact
that (8.1) is valid for n+ 1 instead of » show that only one selection is
possible, i.e.

—1 1 —1 —1
FS(p 1(”+1)q 1(n+1) e ,p5‘"+1)q5("+1) ) = FS(pl'(n)ql'(n) yerosD 5'(n)q5'(n) )

for all n=n,.
This proves theorem 6.

Although the constant (2.51) in theorem 6 may be raised somewhat
by minor modifications of the proof of theorem 6, it is obvious that the
determination of the second minimum of the approximation spectrum
of quaternions is more involved. However, it is a reasonable conjecture
that the second minimum corresponds to one or several equivalence
classes of quaternions having periodic chains of Farey simplices.
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