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SUMS AND INTERSECTIONS OF LEBESGUE SPACES

TENG-SUN LIU and JU-KWEI WANG

To begin with, consider the following problem in the calculus of
variations:

Let «y,x,,...,4, be n numbers in the open interval (0,1). We want
to minimize the expression

) N=3 [ [ e dm] :

=1

where hq,h,,...,h, vary through all those non-negative functions in
L! (— o0, o) such that the sum

@) g =3 [hya))

i=1
remains fixed.

In this paper we shall prove, among other things, that this variational
problem has a solution, that is, the infimum of N is actually attained.
To fix our idea, we restrict ourselves to the case where n=2. The
discussions of the general case will be completely parallel.

We use [3] and [2] as our chief references in real analysis and harmonic
analysis respectively.

Let us change our notation to write «;=1/g, and [h;(x)]*¥=g,(x),
t=1,2. Then g, L%, and (2) becomes

(3) g =01+ 9.

It is quite clear that the infimum of g is not changed if we allow g; to
take complex values so long as we insert absolute value signs under the
signs of integration in (1):

(4) N = ”glllql + ”gzllq, .

This suggests that we introduce the sum of the Lebesgue spaces L%
and L%, that is, the set of all functions ¢ which are expressible in the
form (3). In fact we have
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THEOREM 1. Let 8=, ,, be the set of all complex-valued functions g
of the form (3) with g, € L%, where 1 <q;< o0, 1=1,2. Then S is a Banach

space if we supply it with the norm
(5) lgll = infN,

where N is defined by (4) and the infimum is taken over all decompositions
of g in the form (3).

Proor. There is no difficulty in verifying that 8 is a complex linear
space and that (5) defines a semi-norm on it. To prove that (5) indeed
gives a norm, assume that ||g||=0. Then there exist sequences g,;(n) in
L% and go(n) in L% such that

g = g1(n)+gy(n) ,
and

hm”gl(n)”ql = limllgg(?b)[|q2 =0.

As the last fact implies that both ¢,(n) and g,(n) converge to 0 in measure,
g=0 a.e. Hence (5) defines a norm.

It remains to be proved that S is complete under this norm. Thus
let g(n) € S be such that 35, |lg(n)|| < . Select g,(n) € L% and g,(n) € L%
such that g(n)=g,(n) +g.(n) and

(6) lg1(n)llg, + llga(m)llg, = llg(m)l| + 277

It follows from (6) that both 32, (lg;(n)ll,, and 332, [lga(n)ll,, converge.
Since L% and L% are complete, 332 ,g,(n) and X5 ,g,(n) exist in L%
and L% respectively. Denote their sums by g, and g, respectively,
and set =g, +¢,. Then

lg = Zner 9 = lg1— Zhey 2y, + 92— Zier Ga(m)lgy -
Hence 3% _,g(n)=g in 8. This completes the proof.

One consequence of this theorem is that the variational problem
posed at the outset would be solved if we can show that the norm (5)
of § is attained by a certain decomposition of g in the form (3) for
1<g;<o, t=1,2. This will be done in Corollary 1.

Next we like to identify the dual space of S. This will be done in
the case where neither ¢, nor ¢, is co. Let p, and p, be defined by

(7) —+—=1, i=1’2:

with the usual convention of arithmetic on the symbol co. Then for
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any bounded linear functional 7' on 8, the restrictions of T' to L% are
bounded linear functionals on L%, Hence there exist functions f; € L7
such that

Tg; = [ g fia) da

for all g, € L%. In particular, if g € LnL%, we have

7y = [ g i@ dx = [ g) fo@) da.

Since L#nL% includes the characteristic functions of all sets with
finite measure, this implies that f,=f, a.e. Call their common value f.
Then fe D where

D =D

P1, D2

= LPhrn P2,

If g=g,+¢, is a decomposition of ¢ in the form (3), then

Tg = [ g f(@)dz + [ galo) f@) da,

that is,
(8) Tg = f 9(@) f (@) de

Conversely, it is quite evident that, for any f e D, (8) defines a bounded
linear functional on 8.

Next we would like to calculate ||7|| where 7' is defined by (8). Decom-
pose ¢ according to (3) as g=g,;+¢g,. Then

1Tgl = [91lly 1f lpy + [192llgg 1flpy = N max([[fllpy, [1f1lp,) -

Hence
[Tgl = lgll max ([|fllpys 11f1lng) «

Hence ||T||<Max(||fll,,, Ifll,,)- We shall prove that equality actually
holds here. This is trivially true if f=0 a.e. Otherwise assume without
loss of generality that [f|[,,=I|fll,,- Let a number & in (0, [fll,,) be
given. Then there exists a function g € L% <8, not a.e. 0, such that

Z |lgllg, (1f1lp, =€) -

[ 9@ f(@) da
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Since g=g+0 is a decomposition of g of the type (3), it follows from
(8) and (5) that

170 gl 2 1Tgl 2 (1fllp,—e)Mlglly, = (Ifllp,—#)llgll -
Hence

171 2 Ifllp, — & = max(llflip, Ifllp,) —

Since ¢ is arbitrary, it follows that

171 = max (£l [1fllp,) -

Thus we have proved the following two theorems:

THEOREM 2. Let p, and p, be two numbers in (1,00] and let D=D,, , =

LPnLP2, Then D is a Banach space if we supply it with the norm
Il = Max ([ fllpy> fllpg) »  FED.

TaEOREM 3. If q; and g, are numbers in [1,00), then the conjugate space
of 8=8,,q, 18 tsometrically isomorphic to D=D, . , where p;, and g;
are related by (7) and the operation of fe D on ge S is given by (8).

Actually, Theorem 2 remains valid even if we allow p; and p, to vary
in [1,00]. The proof of this fact is similar to (and simpler than) that of
Theorem 1, and, accordingly, will be omitted.

Our next task is to find the conjugate space of D when p; and p,
are in [1,00). This is given by

TaEOREM 4. If p, and p, are numbers in [1,00), then the conjugate space
of D=D, . 18 isometrically isomorphic to S=8, ., where p; and g,

are related by (7) and the operation of g€ S on fe D is given by

o]

(9) 7(f) = [ fla) g(a) do .

—00

Proovr. Clearly for every ge S, the functional 7' defined by (9) is
linear. Further, if g=g,+g,, g; € L%, is a decomposition of g in the
form (3), then

1Tf| = z) g,(x) d

+| [ 1@ a0 do

= (fllpy l194llgy + 1f 11y llgalley
= 1F11(lgallgy + llgellg,) -
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But this implies that 7" is bounded and ||7'|| < |lg]|.

Because D contains the characteristic functions of all sets with finite
measures, it follows from (9) that the correspondence g — T is one-to-one.
We have still to show that this correspondence is onto and that ||7'||=||g||.

To do so, consider the Banach space LP!@ LP? with the norm

I(frsfall = max (|lflly, » [1fallp,) -

Then D can be embedded in this space as its diagonal, that is, for f e D,
define ¢ (f)=(f.f). Then ¢ maps D isometrically into LP*@ LP2. Now
let 7' be a bounded linear functional on D. Then, by the Hahn-Banach
theorem, 7o @~1 has a norm preserving extension to LP!@LP2. As the
conjugate space of LP1PLP? is clearly L@ L% with the norm

1@w92)ll = llgallg, +l1g2lle,» 95 € L%, i=1,2,

there are functions g, € L% and g, € L? such that
T(f) = [ f@) @) dz + [ f(&) golw) do

Define g=¢,+g,. Then ge S and T'(f) is given by (9) for this g. As
the norm of 7' is the same as its extension, we have

(10) 171 = 1lg1llgy + 119llqy = llgll «

But we proved before that ||| <|lg]. Hence we get |T'||=|lg|l, and the
theorem is proved.

It follows from (10) that
(11) lgll = 11T = llgallg, + llgallg, -

Hence,
CoROLLARY 1. For each g € S, there exist functions g, € L% and g, € L%
such that g=g,+ g, and that
lgll = lgallg, + llgallg, -
This Corollary implies that the variational problem stated at the

beginning of this paper always has a solution, as we have mentioned
before.

CorOLLARY 2. If p, and p, are in (1,00), then D=D, . s reflexive.
If ¢, and q, are in (1,00), then S=8y ., is reflexive.
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Although Theorem 3 does not cover the case where D=D, , with p
in (1,00], it is still true that D is a conjugate space in this case. More
precisely, we have

THEOREM 5. Let q be a number tn [1,00) and let C, denote the set of all
continuous functions on the real line which vanish at infinity. Denote by
2=2, the set of all functions on the real line which can be written as

(12) g =91+9s,

where g, € Cy and g, = L% For g€ X, define

lgll = inf(sup|g,| + llgall,) »

where the infimum is taken over all decompositions of g in the form (12).
Then X becomes a Banmach space with respect to this morm. Further, the
conjugate space of X is isometrically isomorphic to D =D, , with

11
=1,
p g

the operation of fe D on g e X being given by (8).

Proor. That X is a Banach space is proved by the same argument,
mutatis mutandis, as that for Theorem 1. That the conjugate space of X
is isometrically isomorphic to D is proved by the same argument, like-
wise mutatis mutandis, as that for Theorem 3. The only non-trivial
modification made here occurs when we want to show that every bounded
linear functional 7" on X is given by (8) for some function fe D. This
is done in the following manner: Since C, <2, the restriction of 7' on C,
defines a bounded linear functional on C;. Hence there is a complex
bounded Radon measure » on (— oo,00) such that

Ty = f g(@) dv(z), geC,.
Similarly, since Le<ZX, there is a function fe L?P such that
Ty = [ g@)f@)dz, gels.

In particular, if ¢ is a continuous function with compact support, then
both formulas are valid, and
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[ @ ae) = [ g f@ o

This implies that » is absolutely continuous and
dv(x) = f(x) dz .

Therefore, fe L. Hence fe D. Now if g is an arbitrary function in X,
let g=g,+¢, be a decomposition of ¢ in the form of (12). Then

Ty = Tgy + Tgs = | gu@) dv(a) + [ gafo) f(o) de

J—g g —z2

9(x) f(x) dx

which is (8). This proves the theorem.

There are a few nooks and corners which should be cleared up before
we go on. First, if 1<q¢;<¢q,<g3=< 00, then any function g, € L% can
be represented as g,+g¢g; with g, € L% and g; € L. In fact, one way
to define ¢, and g, is

go(x)  if |ga(2)] > 1,
gi(x) = 02 it | gZ(x)] <1 95 = ga—91 -

Hence if we define S =L% 4+ L% 4 L% with the norm

lgll = inf (llgylly, + llg2llo, + 195llgs) »

where the infimum is taken over all decompositions g=g;+¢g,+9;,
g; € L%, then §=8, ., as sets, and a simple application of the open
mapping theorem implies that this norm of g in S is equivalent to its
normin S, .. A similar reasoning applies to the space D = LP*nLP2n L7
Further, this generalizes to any number of indices p; and g;. The varia-
tional problem for (1) when n>2 is solved, however, by the previous
technique which we used for n=2.

Secondly, the solution of our variational problem is in general not
unique. Thus, let g be the characteristic function of the unit interval
[0,1]. Then for any ¢ in (1,00), |lgll,=1. If g=g,+g, where g, € L%,
g, € L%, q,<q,, and both ¢, and g, are supported in [0,1], then

192llgy Z llgzllg, - Hence

“g1”q1+ ”92”q2 2 “91”q1 + “gZqu 2 ”g”ql =1.
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Hence
lgll = 1 = ligllg, + lI0llg, = 139llg, + 1391l -

Thus, both (g,,9,)=(g,0) and (g;,9,) = (39, 39) play the roles of solutions
of the variational problem.
Thirdly, for g € S we define

(13) llglll = inf max (llgy/lg, » 192llg,) »

where the infimum is taken over all decompositions g=g,+g¢, with
g;€ L% 1=1,2; and for fe D, we define

(14) A= 1fllpy + 111y -

Then (13) and (14) provide norms equivalent to the original norms
on § and D respectively. Further, Theorems 3 and 4 remain valid
with these norms. Other equivalent norms are aiso feasible, and to
each of these equivalent norms on § there corresponds a solvable varia-
tional problem.

Fourthly, the assumption that the underlying measure in our defini-
tions of § and D is the Lebesgue measure on (— oo, o) is made only for
the simplicity of exposition. In fact, we can use any measure space
(X,Z,u) in our definitions of S and D. Theorems 1 and 2 remain valid
in this general setting. Theorem 3 is true in general if neither ¢, nor ¢,
is 1, and is true even for these indices if u is o-finite. Similarly, Theorem 4
is true in general if neither p; nor p, is 1, and is true even for these
indices if pu is o-finite. Theorem 5 does not make sense unless there
is some sort of topology on X, and it becomes a valid theorem if X is
a locally compact space and u is a Radon measure on it.

From now on we shall consider a locally compact group G and its
left Haar measure p. In this case the set D=D,,, p>1, has some
additional structure:

LemmA. D=D, ,=LYG,u)nLP(G,u) is a dense left ideal in L, where
L'=LY(@G,u) is considered as a Banach algebra with convolution

frg(@ f @) gly2) du(y)
as multiplication.

Proor. D is a left ideal because L!-functions operate boundedly
linearly by convolutions from the left. D is dense in L' because it con-
tains all the continuous functions on G with compact supports.
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TarorEM 6. D with its own norm is a Banach algebra under convolution.
Further, D ts commutative if and only if G is abelian.

Proor. Since D is known to be a Banach space and an ideal in L1,
the first statement will follow if we show that ||fxg||<|/f]| llg]l for all
f-g9€D. Indeed,

If«gll = max([lf«glle; If+gll,) = IFl gl = 11 llgll -

Hence we have the first statement. The second statement follows from
a similar statement for L' and the density of D in L.

We are going to study the ideal theory in D=D, ,, where 1<p<oco.
For a closed right ideal 7, = L! define

(15) 0(I) =I,nD.
Then clearly 6(1,) is a closed right ideal in D.

TarOREM 7. By (15) isdefined a one—one mapping 6 from the set of all closed
right ideals in L onto the set of all closed right ideals in D=D, ,, 1 <p < oo,
Further, 6(1,) ts a two-sided ideal in D if and only if I, is a two-sided ideal
in L1,

Proor. It is known that there is a net u, of continuous functions
with compact supports such that

If=f*u,l,—~ 0 for each fe L, 1Sr<oo.

We shall prove our theorem by dint of this net.

First, let 6(I,)=1 and let J,; be the L!-closure of I. Clearly J,<I,.
On the other hand, if f e I,, then each f+u, € I;, since u, € L' and I,
is a right ideal in L. Also f*u, € D since u,€ D and D is a left ideal
in L. Thus fxu,el. As fxu,—f in L', we get feJ,. This proves
that I,=/J;. In particular, J is a one-one mapping.

Next let I be a closed right ideal in D and let I, be the L!-closure
of I. We want to show that I =4§(I;). For this, take f € §(1;). Then there
is a sequence f, € I such that f, — f in L'. Since convolution is contin-
uous,

Soxu, >fru, as n-—>oo

both in L' and in LP, hence in D. As [ is a right ideal and as u, € D,
faxu, € 1. Hence fxu, € I for each «, since I is closed. Finally fxu, - f
both in L! and in L?, hence in D. This yields that f € I. Hence I=4(1,).
This means that the mapping J is onto.
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It is quite clear that if I, is two-sided, then 8(I;) is also two-sided.
Conversely, if §(I;) is two-sided, then I,, being its L!-closure, is also

two-sided, by the density of D and the joint continuity of convolution
in L.

One consequence of Theorem 7 is that the maximal ideals of L' and
those of D correspond to each other. It says nothing, however, of the
correspondence between their regular maximal ideals. We prove now
that this holds for any abelian group G.

THEOREM 8. Suppose G is abelian ; then for each p in (1, <], the maximal
tdeal space of D=D, , s homeomorphic to the dual group el of G.

Proor. Let f be a non-zero element of D. Then for each integer
n>1 we have

211 = max (If =1« flly, 1f*~1*fllp) = I LI

Extracting nth roots on both sides and then letting n — o, we get

(16) e(f) = flh»

where o(f) denotes the spectral radius of f. Clearly (16) also holds for
f=0.

Now let F be a multiplicative linear functional on D. Then
|F () =o(f)=]f]l; for each fe D. Since D is dense in L1, F' has a unique
extension to a multiplicative linear functional on L. As the maximal
ideal space of L! can be identified to @, there exists an element & € @
such that

a7 F(f) = [@8) f(@) du@)

G

for each fe D. Conversely, if £ € @, the functional F on D defined by
(17) is multiplicative and linear. Also, different &’s determine different
F’s because D is dense in L.

Another consequence of the density of D in L! is that the Gelfand
topologies of @ as maximal ideal spaces of D and of L! coincide. Theorem
8 is therewith proved.

Combining Theorems 7 and 8, we see that if G is abelian and if
1<p<oo, then Wiener’s Tauberian theorem holds for D=D, ,. Also,
spectral synthesis fails for D, ,, where 1<p<oo, unless @ is discrete,
which is a trivial case because then D, , =L
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If G is compact, then D=L?. Hence Theorems 7 and 8 hold for the
LP algebras of compact groups.

Theorems 6, 7 and 8 are suggested by some similar results in a previous
paper [1].

AppED IN PrOOF. The editor brought to our attention the paper
The structure space of a left ideal, Math. Scand. 14 (1964), 90-92, by
G. K. Pedersen, where it is proved that if D is a left ideal in a ring L,
then to each maximal regular right ideal I in D there corresponds a
maximal regular right ideal J in L such that JnD=I. Furthermore
there is a homeomorphism between the right structure space of D and
the (open) set of right primitive ideals in L not containing D.

Now in our situation where L=L' is an involutive algebra and D
is a dense left ideal, this yields that the structure space of D is homeo-
morphic to the structure space of L, the latter being the kernels in L
of irreducible unitary representations of the group G. When @ is abelian,
this result combined with Theorem 8 gives that the Gelfand topology
coincides with the Jacobson (hull-kernel) topology on the maximal
ideal space of D.
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