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A CLASS OF RINGS HAVING
ALL SINGULAR SIMPLE MODULES INJECTIVE

J. 8. ALIN and E.P. ARMENDARIZ

A ring R with unit will be called a T-ring if every nonzero R-module
has nonzero socle (all modules are unitary left B-modules). In this paper
we investigate 7-rings having the following property:

(*) Every singular simple module is injective.

This is of course equivalent to the condition that every simple module
is either projective or injective. Theorem 1.1 gives necessary and sufficient
conditions for a 7'-ring to have property (*) and from this we deduce
some properties of essential left ideals of B (Theorem 1.2). Applying these
results we show that a right perfect ring R has property (*) if and only if
R is hereditary and N2=0, where N is the radical of R, while a commuta-
tive T-ring has (*) if and only if it is regular. Moreover a 7'-ring with (¥)
is regular if and only if ¥ =0. In Section 2, we examine R, the ring of
n X n matrices over R, n = 1, and show that if R is a T-ring, then so is R,
while if R is a T-ring, then R satisfies (*) if and only if R, satisfies (*).

1. Singular simple injectives.
For an R-module M, let Z(M) denote the singular submodule of M.
Thus
Z(M) = {me M| (0:m) is essential in R},
where [7]
(0:m) = {weR| am=0}.

As is known, Z(xR) is an ideal of R containing no nonzero idempotent
elements. An R-module M is singular if Z(M)=M. For any R-module
M, rad (M) denotes the intersection of the maximal submodules of M and

N = rad(zR) = (Jacobson) radical of R .

For an R-module M, R-soc(M) denotes the R-socle of M, which is the
sum of the simple submodules of M.
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TaEOREM 1.1. For a T-ring R the following are equivalent:

a) Al singular simple B-modules are injective.
b) Z(zR)=0, and rad (R/I)=0 for any essential left ideal I of R.

Proor. Assume a). If ScZ(RR) is a simple R-module, then Z(8)= S8,
hence § is injective and thus a direct summand of R. Since Z(xR) has
no nonzero idempotents we conclude that S=0 and so Z(p,R)=0. If T
is an essential left ideal of R then R/I is a singular module and thus so
is every submodule of R/I. Hence every simple submodule of R/I is
injective, and so every simple submodule of R/I is excluded by some
maximal submodule of R/I. It follows that rad(R/I)=0.

Conversely, suppose b) holds and let S be a singular simple module.
In order to show that S is injective we must show that for every left
ideal I of R, every fe Homg([,S) extends to some g € Homg(R, S),
and for this we may assume I is essential. If K =Kerf, then K is an
essential left ideal of R, for suppose KnJ =0 for J 40 a left ideal of R.
Then

J =Jnl£0 and J'NnK=0.

Hence J'=f(J')< S is singular contrary to Z(pR)=0. Now f induces
f*¥: I/|K — 8 which is an isomorphism if f# 0, and so I/K # 0 is a simple
submodule of R/K. Since rad(R/K)=0 there is a maximal submodule
M|K with I/K ¢ M|K. Hence I[KnM|K =0 and so

R/K = I[K® M|K .
Let A:R — R/K be the natural map and p:R/K — I/K the projection
map. Then g:R — § given by g=f*ph is the desired map.
We use this result to obtain some properties of essential left ideals.

TrHEOREM 1.2. Let R be a T-ring having all singular simple R-modules
injective. For any essential left ideal I of R, I2=1 and I is an intersection
of mawximal left ideals. Moreover, N2=0.

Proor. If I is an essential left ideal of R by b) above, rad(R/I)=0.
If 4 and B are R-modules and f e Homg(A,B) is an epimorphism, then

f(radA4) < rad B .

Thus in our case N <l for every essential left ideal I of R. Since the
intersection of all essential left ideals of R is the socle of R, we have
Ng R-soc(R) and so N2=0. Note also that by b) every essential left
ideal is an intersection of maximal left ideals. Finally, suppose 121
for I an essential left ideal of R. Now Z(pR)=0 so the essential left
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ideals of R form an idempotent filter [6]. Thus I2 is essential and is an
intersection of maximal left ideals. If x € I, x ¢ 1%, there is a maximal
left ideal M 212 with x ¢ M. Hence R=Rx+ M, so l=rx+m implies
x=xrx+2xm e M, a contradiction. Thus I2=1.

Since right perfect rings are 7'-rings [2], we now have

THEOREM 1.3. For a right perfect ring R the following are equivalent:

(a) Al singular simple R-modules are injective.
(b) R is left-hereditary and N2=0.

Proor. Assume (a); then by Theorem 1.2, N2=0. We will show that
any singular module is injective. Let M be a singular module, I an essen-
tial left ideal of R and f € Homg (I, M). Then asin Theorem 1.1, K = Kerf
is essential and so N K. Now R/N is a completely reducible R-module
since R is right perfect, and so R/K ~(R/N)/(K|/N) is a completely re-
ducible R-module. Thus I/K is a direct summand of R/K and as in
Theorem 1.1, this yields an extension ¢ € Homp (R, M) of f. Thus M is
injective as claimed. Now for any R-module A4, if E(4) denotes the
minimal injective containing A, then £(4)/4 is singular and hence
injective. Thus l.gl.dim R <1 and so R is left-hereditary by [4].

Now suppose (b) holds. Since R is hereditary, as in [7], for any = € R,
the sequence

0—(0:z) >R~ Rx—0

splits and so Z(zR)=0. Since N2=0 and R/N is semisimple with d.c.c.,
we conclude that N csocle B. But any essential left ideal I of R contains
the socle of R and so NcI. It follows that R/I is a completely reducible
R-module for any essential left ideal I of R and so rad(R/I)=0. By
Theorem 1.1, all singular simple R-modules are injective.

An interesting consequence of the proof of Theorem 1.3 is the following

CoROLLARY 1.4, A semiprimary ring R with N2=0 is hereditary if
and only if Z(zR)=0.

We note that Theorem 1.3 has been obtained by A. Zaks [13] for semi-
primary rings, however the methods used are distinct from ours; the
methods used in our proofs of Theorems 1.1 and 1.3 are similar to those
in [5].

Looking next at commutative 7T'-rings we first have

PropositioN 1.5. For any commutative ring R, the following are equiv-
alent:
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a) R is regular.
b) I?=1I for each essential ideal I of R.
c) I2=1 for each ideal I of R.

Proor. The equivalence of a) and c) is well known and certainly a)
implies b). Thus we need only show that b) implies ¢). If I is a non-
essential ideal of R choose A maximal with respect to /nA4=0. Then
I+ A is an essential ideal of B and so

I+4 = ([I+A4)?2=1*+42.
Hence if x 1,
=Yy, + 2ab;,
where x;,y; €I and a,,b;€ A. Then
x—>x;y, € InA =0
and so x € I2. Thus I2=1.

THEOREM 1.6. If R is a commutative T-ring, all singular simple R-
modules are injective if and only if R is regular.

Proor. If R is regular then all simple R-modules are injective by a
theorem of Kaplansky (see [12]). On the other hand if R has all singular
simple modules injective then I2=1 for each essential ideal I of R by
Theorem 1.2, and so R is regular by the previous proposition.

Combining the previous theorem with Theorem 1.3 we have

CororLLARY 1.7. A commutative perfect ring R has all singular simple
R-modules injective if and only if R is a finite direct sum of fields.

We remark that, as a consequence of Theorem 1.3 not all T-rings
having all singular simples injective will be regular. Our next result
shows that this is the case if and only if N=0. We will make use of the
following facts concerning idempotent left ideals of a ring R. Suppose
I and J are left ideals of R with I<J. If I2=1, then I=JI. Thus if
I,...,I, are idempotent left ideals of R and J=1I,+...+1,, then
JI, =1, for k=1,...,n and so

JE=JL+...+JI, =J.
THEOREM 1.8. Let R be a T-ring having all singular simple R-modules

injective. Then R is regular if and only if N =0.

Proor. If R is regular, then certainly N=0. Thus assume N =0 and
let S = R-soc (R). If I is a left ideal of R contained in §, then I is a com-
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pletely reducible R-module since S is completely reducible, and so
I=3, Az, where each A4, is a simple R-module. Now N =0 hence
A= Reg, where e, is a nonzero idempotent for each f € B. Thus A?=4,
for each e B. If x €I, then

x e Agy+...+4,,
for some finite subset {f;,...,8,} of B and so
xe (dp+...+4,) < I2.

Thus every left ideal of R contained in 8 is idempotent. If I is a left
ideal of S, then I’ =1 + RI is a left ideal of R contained in S and, since S
is an ideal of R, I'=(I')2<c I, hence I is a left ideal of B. Hence S is a
ring coinciding with its S-socle and since N =0, the radical of the ring
S is zero. Thus 8 is a ring direct sum of its homogeneous components
{8y |6 € D}, where each §, is a two-sided ideal of S (and hence of R)
and each §; is a simple idempotent ring [8, p. 65]. For each § e D, S,
contains a simple R-module J 0. If 0K < J is a left ideal of S, then
S; K = K is a nonzero R-submodule of J and so K =J. Thus J is a simple
left ideal of S;. By [11, Theorem 7.13], a simple ring having nonzero
socle is a regular ring and so S being a ring direct sum of regular rings is
a regular ring. If V denotes the maximal regular ideal of R [3], then
S <V since S is a regular ideal of R. If V+ R, then since § is essential
in R, V is essential in R, hence the ring R/V has zero radical and nonzero
R|V-socle. It follows as above that the R/V-socle of R/V is a regular
ideal contrary to R/V having no nonzero regular ideals. Hence R=V
and so R is regular.

Note that we have shown the following

CorOLLARY 1.9. Let R be a T-ring having all singular simple R-modules
wnjective. If S=R-soc(gxR), then R|S is a regular ring. Hence R[I is a
regular ring for every essential ideal I of R.

2. Matrix rings.
For a ring R, define the left ideal 7%(R) of R for all ordinals « as fol-
lows:
1) T%(R)=0 and T (R)= R-socR.
2) If x=f+1 is not a limit ordinal define 7%R) by 7*R)/T%R)=
R-soc(R|TYR)).
3) If o is a limit ordinal, let 7%(R)=U,_,T?(R).

Note that 7*(R) is a two-sided ideal of R for each ordinal «.
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Proros1TION 2.1. The ring R is a T-ring if and only if T*(R)= R for some
ordinal o.

Proor. Clearly if R is a T'-ring the condition holds. Conversely, assume
that 7%(R)= R for the ordinal x. To show that R is a 7'-ring it suffices
to show that any non-zero cyclic B-module R/I has a simple submodule.
Let B be the least ordinal such that T#(R)&I. Then f=6+1 is not a
limit ordinal and 7°(R)< . Thus the map

THR)|T*(R) -~ R|I

is nonzero, and since T%(R)/T%(R) is a direct sum of simple R-modules,
R/I has a simple submodule. This completes the proof.

Note that in the previous proof if R/I is simple we get that R/I is
isomorphic to a submodule of 7%(R)/T% R) and hence

COROLLARY 2.2. If R is a T-ring, then any simple R-module is isomorphic
to a submodule of T*+Y(R)[/T*(R) for some ordinal o.

In what follows we use R,, to denote the ring of n x n matrices over the
ring R and if L is a left ideal of R, L, denotes the the left ideal of E,
consisting of all matrices with entries in L. In addition, e;; denotes the
matrix unit with a 1 in the ¢th row and jth column.

TuEOREM 2.3. a) If R is a T-ring, then R, is a T-ring.
b) If R is a T-ring, then R satisfies (*) if and only if R, satisfies (*).

Proor. We first make the following observations:

1) If N is an essential submodule of the R-module M and if N is
generated by simple modules, then N = R-soc(M).

2) Let I be a left ideal of R and K/I a submodule of R/I. Define

KTy = (g Ke, +1n> / I,.

Then, if K/I is a simple R-submodule of R/I, (K/I) is a simple R,,-sub-
module of R,[I,.

Now assume R is a 7'-ring and let L =T'(R). Since L is essential in R,
L, is essential in B, by Lemma 3.6 of [1]. If § is a minimal left ideal of R,
then S7 is a minimal left ideal of R, and clearly L, is generated by

{§7] j=1,...,n, S a minimal left ideal of R} .

By 1), L,=R,-soc(R,) and so TY(R,)=(TY(R)),.
Assume inductively that 7%(R,)=(T?(R)), for all ordinals f<«. If «
is a limit ordinal, then
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T%R,) = U T%(R,) = U (T(R)), = (TR)), -

B<ax B<a

If x=06+1 is not a limit ordinal, we let
I =TR), J =T*R),

and proceed as in the case « =1. The submodule J, /I, of R /I, is gener-
ated by the submodules (K/J) where K/I is simple in R/I and these
submodules are simple in R, /I, by 2). By a slight modification of Lemma
3.6 of [1], J, /I, is essential in R, /I, and so

Hence T%(R,)=(T*R)),, and the induction is complete.
Since R is a T-ring, 7*(R) = R for some ordinal « by Proposition 2.1.
But then
T*R,) = (T*(R)), = R,,

and so R, is a T-ring. This proves a).

If S is a simple submodule of a module M and if R-soc(M) is generated
by the simples S;, 6 € D, then Sa.8; for some § € D. Using this remark
and Corollary 2.2 we see that any simple R, -module is isomorphic to
(K/I) where I=T%R) for some ordinal « and K/I is simple in R/I.
Note that K/I is R-isomorphic to the R-module e,;(K/I)’ under the map

b+ — key+1,, .

Now using the fact that a ring satisfies (*) if and only if every simple
module is either injective or projective, we see by Corollary 2.3 of [10]
that R satisfies (*) if and only if R, satisfies (*). This proves b).
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