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ON THE STRUCTURE OF MAXIMALLY ALMOST
PERIODIC GROUPS

THEODORE W. WILCOX

Theorems 1 and 2 of section 2 indicate the importance of ‘“‘finitely
orbited representations of a normal subgroup” and the existence of
closed (open) subgroups of finite index in maximally almost periodic
(MAP) groups. In theorem 4 the ideas of theorems 1 and 2 are combined
to obtain a characterization of MAP semidirect products dependent only
on the representations of the factors. In section 3 some results con-
cerning the structure of MAP groups with normal Abelian subgroups
are presented. In particular, MAP groups with non-central normal
Abelian subgroups have ‘“many” subgroups of finite index. See theo-
rem 6. Theorems 1, 2, and 4 in this work were previously announced
in [14].

1. Definitions and other preliminaries.

Let G be a topological group which is Hausdorff but not necessarily
locally compact. A representation U of @ is a continuous homomorphism
of @ into the unitary group of some finite-dimensional Hilbert space H.
That is, the word “representation” is used to mean “finite-dimensional
continuous unitary representation”. The dual G of @ is the set of all
unitary equivalence classes of irreducible representations of G. The
group @ is said to be maximally almost periodic (MAP) if the representa-
tions of G separate points in G. The von Neumann kernel Gy of G is
the intersection of all kernels of representations of G. Clearly, Gy = {e}
if and only if @ is MAP. The definitions of the terms almost periodic
function and compact group X' associated with G and their relationship
with the representations of G are to be found in Dixmier [3, section 16,
PpP. 296-301]. Another approach to the introduction of the subject is
given in [1] and [8]. The following basic facts are immediate conse-
quences of the definition (see [4, lemma 1, p. 150]):

(1) if G is MAP, then every subgroup of G is MAP;
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(2) f N is a normal subgroup of G such that G/N is MAP, then
G,<=N; and

(3) G, equals the intersection of all normal subgroups N of G such
that Q/N is MAP.

We note that if G/N is MAP, then G/N is Hausdorff so that N must
be closed.

We now state one more very useful fact. Let G be a topological
group and let H be a closed subgroup of finite index in G. Then:

(i) every continuous almost periodic function f on H can be extended
to a continuous almost periodic function f~ on G by defining f~ to be
zero on each left coset other than H [11, lemma 4];

(ii) there is a closed normal subgroup N of G' which has finite index
in G and is contained in H (the group constructed in [6, 4.21 (d)] is
closed when H is);

(iii) if H (or N) is MAP, then G is MAP (see (2) above); and

(iv) let A€ H and let V be a representation of H such that V,+1I;
then the representation U, induced by V ([5, Theorem 16.7.1] or, for
more detail, [13, Theorem 1.5.4]) is a representation of ¢ which sepa-
rates h from the identity.

Although the class of MAP groups is quite restrictive, (for example,
the Freudenthal-Weil theorem which states that a locally compact
connected group is MAP if and only if it is the direct product of a vector
group (R") and a compact group, cf. Weil [12, pp. 127-129] or Dixmier
[3, Théoréme 16.4.6, p. 303]) it contains all compact groups, all locally
compact Abelian groups and all free groups. Furthermore, it follows
easily from (2) above that every direct product of MAP groups is again
MAP.

We now wish to make a few ‘“well-known’ remarks designed to aid
the reader in applying the theories of groups with operators and of
modules to representation theory.

Let U be a representation of a topological group G with representation
space Hy;. Then U defines a homomorphism of the group algebra A(G)
of G into the endomorphism group of Hy by

D ax; > E%Ux,. )
where Ja,z; is a finite formal sum of complex multiples of elements
of the multiplicative group @. Thus Hy is an A(G)-module.
Let U and V be irreducible representations of G' and assume that there
is a module isomorphism 7' mapping H; onto Hy,. Then there is a §> 0,
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such that 7 is an isometric isomorphism between the Hilbert spaces
Hy and Hj so that U is unitarily equivalent to V. We indicate the
proof. It is trivial that 7' is linear and by definition 7'U,=V,T for
each x in G. Taking adjoints we obtain T*V _ =U_T* so that U,=
TT*1U,T*T. By Schur’s lemma, there is a complex number «
such that T* T =al, but since T* T is positive-definite, @ must be greater
than zero. Let f=a"*.

Using this fact together with an easy argument and the Krull-Schmidt
theorem, the following statement can be justified: If U and V are
unitarily equivalent representations of @, say TU= V7T, then T is an
A(G)-module isomorphism of H, onto H, . Hence, if

U=U®2®..0U,™ and V=V0Q..Q@Vm,

where the UY and the V® are irreducible, then n=m and there is a
permutation 7 of {1,...,n} such that U® is unitarily equivalent to
V) for each j, j=1,...,n.

We conclude this section with a few more definitions designed to
facilitate the investigation of relationships between the representations
of a group and those of a normal subgroup. These relationships will
then lead us to facts about the structure of MAP groups. Let G be a
topological group and let o € @. Let 7' be any set of topological auto-
morphisms of G. For each t €T, we define t*¢ to be that element in
@ which, if U € o, has representative t*(U)=Uot-1. It is easy to see
that this concept is well-defined. The orbit of o by T is the set {t*¢ : teT}
written

O(0,T) = {t*o: teT}.
Furthermore, we say that ¢ is finitely orbited by T if O(c,T) is finite
and denote by F(G,T) the set of all elements of @ which are finitely
orbited by 7'. The set F(Q,T) is said to separate points in @ if, for every
z €@, x+e, there exists U eaeF(@,T) such that U_=+1.

We write C for the field of complex numbers and U(n) (and Z(n)
respectively) for the group of all unitary (and linear respectively)
operators on Cn.

2. Fundamentals and semidirect products.
The following result provides the basis for our investigations.

THEOREM 1. Let G be a normal subgroup of a topological group K.
Let T be the subgroup of the group of topological automorphisms of @
consisting of the restrictions to G of inner automorphisms of K. That is,
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T={t(x): x € K} where t(x)(g)=xgx1 for each geG. If Uecce R and
if y € G is such that U,+ I, then there exists an element of F(G,T) which
separates y from the identity. In particular, if K is MAP, then F(G,T)
separates points in Q.

Proor. Let V be the restriction of U to G. Then V is a representation
of @ such that V,+1. Thus there are irreducible representations V),
j=1,...,n, of G such that

V=7V0p...0 V™,

Furthermore, since V, =+ I, there exists j,, 1<j,<n, such that V 90 +1.
Let 7 be the equivalence class of V¥, The theorem will be proved
when we show that t eF(@,T). For x € K, we have

(1) Ha)* V = t@)* TOD ... @ Ha)* Vo .

To see this let H; be the representation space of V. If a € H; and if
z€ (@, then

(t(x)* V)z(a) = x—lzz(a) = Vgcj—)lzx(a) = (t(x)* V(j))z(a) .

It is trivial that
(2) Hx)*V = U,VU,,

so that t(x)*V is unitarily equivalent to V. Hence from section 1 we
conclude that #(z)* VU® is unitarily equivalent to one of the V),
j=1,...,n, which implies that V% ¢ v F(G,T).

Although, in the terminology of theorem 1, the condition that F@T)
separate points in @ is stronger than assuming that G is MAP, even
when the factor group K/G is assumed to be MAP, it is not sufficient
to imply that K is MAP. However, if @ is a semidirect factor of K,
these two conditions imply that K is MAP. These assertions will be
proved later in theorem 4 and example 1 of section 3. The following
theorem will be a useful tool in the sequel.

TaeoreEM 2. Let K, G, and T be as in theorem 1. Let aeF(@,T).
Then the mapping X which sends x onto the restriction of t(x)* to O(c,T')
18 a continuous homomorphism of K onto a finite group. The kernel of
2 contains G.

Proor. First, we prove that t(zy)* =t(x)*#(y)*. Let U be any repre-
sentation of G, let x,y € K and let z€ G. Then

(t(xy)* U)z = Uu—l(z—lzz)u = (t(y)* U)x-lza: = (t(x)*(t(y)* U))z )
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which is equivalent to our assertion. Using this, a trivial computation
shows that each {(z)* is a one to one mapping of @ into @, so that, as
a consequence, the restriction X (x) of ¢(x)* to O(¢,7") must be a permuta-
tion of O(c,T). Thus 2 is well-defined and is a homomorphism. Since
ker X has finite index in K, kerX is closed if and only if ker 2 is open.
Furthermore, any homomorphism with open kernel is continuous so
that it will suffice to prove that kerX'is closed. Let {x,: « € A} be a net
in ker2 which converges to some point x in K. Let U e€p e O(c,T).
To each z, there corresponds a unitary operator M, such that #(z,)* U =
M, UM, Thus {M,:x€ A} is a net in the (compact) unitary group
of dimension equal to the dimension of U. Consequently there are a
subnet {M,: pe B} of {M,: «€ A} and a unitary operator M such that
M, —~ M. Let {a;: fc B} be the corresponding subnet of {x,:xe A}.
Since x; -« and since U is continuous, for any z € G we have

(t(xﬁ)* U)z = Uxﬁ—lzxﬂ - Um—lzx = (t(x)* U)z *
On the other hand,
ta)*U = My UMz -~ M UM,
Thus #x)*U equals MUM-! and we have proved that
Z(@)e) = x)*(o) = o
for each g € O(0,7") so that x € ker2.

For the remainder of this section we will consider the case when
K is the semidirect product of groups ¢ and H. That is, K = GH where
@ is a normal subgroup of K, GnH = {e} and the topology of K is the
product topology G x H. As in theorem 1 above 7' is the group of restric-
tions to G of inner automorphisms of K. Below we will prove a series
of technical lemmas which will aid us in proving the following fact:
ifxeGandif Uepe F(Q,T), U, =+1, then there exists a representation
V of K such that V,+1. This is the major step required in the proof
of the fact that K=GH is MAP if and only if H is MAP and F(G,T)
separates points in G. It is unfortunate that we cannot actually con-
struct the representation V above, but attempts at the construction of
such a representation lead directly to consideration of ‘projective
representations’ (see Mackey [10]). It is not clear that a more aesthetically
pleasing proof can be obtained using such a construction.

Let U e o e @. Then t(xh)* U is unitarily equivalent to t(k)* U when-
ever x € G and h e H since

Hah)* U = U, Y(t(h)* U)U, .

Math. Scand. 23 — 15
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This means that for questions relating to the finiteness of orbits O(p,7")
we can restrict our attention to the automorphisms of G defined by
elements of H. Furthermore if Ueyp e F(@,T) and X is the mapping
of K into the group of permutations of O(p,7") defined in theorem 2,
then it follows from G'<kerX that kerZ is the semidirect product of
G and a subgroup, M, of H. Here M is the projection of kerZ2 into H
and M is a closed (open) subgroup of finite index in H. Having defined
this subgroup M, which depends on g € F(Q,T), for a fixed Ue o and
for each h € M <ker2 we define W, e ll(n) by the equation

HA-Y)*U = W,UW,t.

Also for any W e ll(n), we define (W) to be the operator on Z(n)
with the property: if 4 € Z(n), then J(W)(4)=WAW-L It is clear
that (W) is linear, that is, S (W) e £L(n%). We note that £(n) is a
Hilbert space with an inner product defined by

(1) (4,B) = ttB*4 for A,Be %),

where, as usual, B* is the adjoint of the operator B and tr is the trace
function on £ (n).

Lemma 1. Let notation be as in the preceding paragraph. The mapping
h— F(W,) is a well-defined continuous homomorphism of M into U{n?),
the unitary group in £ (n?).

Proor. First we prove that J(W,) e (n?) for each he M. By (1),
for each A € #(n), we have

(F(W)4), L£(W,)(A)) tr((W, AW, )*W, AW,

((

tr (W, A*W, -1 W, AW, 1)
(
(

I

i

I

tr(W,A* AW,
= tr(d*4) = {(4,A4).
Hence J(W,) € U(n?).
Next we show that & — #(W,) is a homomorphism. Let A,k € M and
let  be an arbitrary element of ¢, then (W, )(U,)=W,, U, W;i. But

WU Wik = ((((hk)2)*U), = (t(k-2)*t(h-1)*U),
(L~ 1)* W, UW, 1),
(WILUWIL )I.ack 1
W Ul.xl\ luh
= (Wh (k 1)*UW _l)x
= j(Wh)[j(Wk)Ux] .

ll

i
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By assumption U is an irreducible representation of G so that {U,: 2@}
spans Z(n). This is a special case of Burnside’s theorem; see Jacobson
[9, page 276]. We have just proved that (W, )(U,) =S (W,) (W, )(U,)
for each z € G so by linearity we have (W, )(4)=F(W,)FL(W,)(4) for
each 4 € #(n) and F(W,,)=F(W,)#(W,). This proves that & - £ (W,)
is a homomorphism of M into U(n2). The continuity of this homomor-
phism is proved as follows. Since multiplication is continuous and U
is a representation, the mapping of G x M into W(n) defined by

(x,h) —~ Uha:h—l = (t(hﬁl)*U)a:
is continuous. Let {k,:x € A} be a net in M which converges to the
identity e in M. Then, for each fixed x € G,

(W)U, = (th,)*U), - (He)*U), = U

x *

Applying Burnside’s theorem again, we obtain S (W, )(4) - A for each
A e Z(n). That is, (W, )1 where I is the identity operator on
Z(n?). Consequently the homomorphism A — #(W,) is continuous.

We now define A to be the closure in W(n2) of {A(W;): he M}. Since
A is the closure of a homomorphic image of M in a compact group,
A is a compact group.

LevmmaA 2. Every element of U is a “unitary conjugation operator’,
that is, if ¢ € U, then there exists W e W(n) such that ¢(B)=WBW-1=
F(W)(B) for each B e L (n).

Proor. If # € 9, then there exists a sequence of elements of the form
J(W,) converging to #. Now use the compactness of 1l(n) to define
W as the limit of a subsequence of the W,’s. An application of the
Burnside theorem yields the result.

From the above lemma it is clear that % is a subgroup of the group
of topological automorphisms of 1(n). Thus we can define a semidirect
product 1(n) ® A with multiplication

(Up, W)Uy, F(Wy)) = (Uy, L(W)(Uy), F(W,) 0 I(W,))
= (U, W, U,Wt, S(W, W) .
Levmma 3. Using the same notation as above, W(n) ® A is a topological

growp.

Proor. It suffices to show that the mapping of U(n)x A — U(n)
defined by (V, £(W)) - £(W)(V) is continuous. (See [7, p.42].) Let
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(V)2 and (F(W,,))5_; be sequences in 1l(n) and A respectively which
converge to V and #(W) respectively. Since 1l(n) is a topological group,
we have

limy ,, £(W, (V) = lim, W, VW, = WVW-1 = #(W)(V).

We are now ready to state and prove the theorem towards which we
have been aiming throughout this section.

THEOREM 3. Let K=GH be a semidirect product of a normal subgroup
G and a subgroup H. Let Ueyp e F(G,T) where T is as in theorem 1.
Let n be the dimension of U. Then there are

(i) an open subgroup GM of GH such that [GH: GM]< oo,

(ii) @ compact topological group U(n) ® A and

(iii) @ continuous homomorphism ¢ mapping GM into U(n)®A defined
by o(xh)=(U,, F(W,)) where x € G and he M.

Proor. Statements (i) and (ii) were proved above so we proceed to
statement (iii). The mapping ¢ is a homomorphism, since, if x,y € G
and h,k e M, by the definitions and lemma 1 we have

p(ahyk) = o((xhyh=1)(hk)) = (U Upyp-1r £ (W)
= (Ufth=1)*U),, S(W,)F(W}))
= (U (W )(U,), L(W) I (W)
= (Ug, S(W)U,, £(W,)) .

To prove that ¢ is continuous, it suffices to show that ¢ is continuous
at (e,e). Since ¢ is a mapping into a topological product, it suffices to
show that the composition of ¢ with each of the projection mappings is
continuous. That is, the mapping of GM into 1(n) defined by (z,k) - U,
should be continuous — which it is, since U is a continuous representa-
tion and the mapping of G ® M into A defined by (x,k) - F(W,)
should be continuous — which it is by lemma 1.

THEOREM 4. Let K=GH and T be as in theorem 3. Let H (respec-
tively K,) be the von Neumann kernel of H (respectively K). Let

S =N {kerU: UecoeF@GT)).

Then Ky=SH, is a semidirect product. In particular, K is MAP if and
only if H is MAP and the finitely orbited representations of G separate
points in G.

Proor. Assume zh & K, but x € ¢, h € H, then there exists a represen-
tation W of K such that W_,+1I. There are two cases. Case (1). If
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he H,, then h-1 € H,, and the restriction of W to H, must be trivial
so that
I+ Wyl=W,aW,,=W,.

From theorem 1 it follows that x ¢S so that zh & SH,. Case (2). If
h ¢ H,, then zh & SH,.

Now assume «h &€ SH,. There are again two cases. First, if h e H,,
then x ¢ S, so there exists U € e F(G,T) such that U,+I. We now
apply theorem 3 to this representation U. Since U(n) ® A is compact,
there is a representation of 1(n) ® A which separates (U,, £(W,))=
@(z,e) from the identity in W(n) ® A. The composition of ¢ with this
representation is a representation of G.M which separates x from the
identity in GM. As noted in section 1 this representation can be ex-
tended to a representation Y of K=GH. As in case (1) above Y,=1
so that 1+ Y _=1Y,,. That is, Y separates xh from the identity so that
xh ¢ K,. Finally, if & ¢ H,, then there exists a representation V of H
such that V,+I. The composition of the projection of K into H with
V is a representation of K which separates xk from the identity.

3. Groups with Abelian normal subgroups.

Since equivalent one-dimensional representations are equal, we identify
the dual @ of an Abelian group G with the character group X of G.
Thus we note that theorem 4 has an immediate analogue for Abelian
groups with “F(X,T)” replacing “P(GT). It @ is not locally compact,
we give X the discrete topology and otherwise X has the usual topology
which has all sets

P(F,e) = {ye X : |g(x)—1|<¢ forall z e F}

with F compact in G and ¢>0 as a basis at the identity character 1.
See Hewitt and Ross [6]. We note that when @ is abelian, theorem 4
is much easier to prove as a finitely orbited character can be extended
to the group GM of theorem 3 by making it constant on cosets M,
x € G, and then the representation induced from this extension has the
properties we need. We state an easy lemma whose verification is left
to the reader.

Lemma 4. Let G be an Abelian normal subgroup of a topological group K.
As in theorem 1, let T be the set {t(x): x € K} where t(x)g=wngx! for x € K
and ge Q. Let X be the character group of G. Then F(X,T) is a sub-
group of X.
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We note that when @ is locally compact, the second annihilator of a
subgroup of X is its closure. (See Bourbaki [2, corollaire 1, p. 125] or
Hewitt and Ross [6, 23.24 (a) and 24.10].) From this it is immediate
that a subgroup of X separates points in @ if and only if it is dense in X.
From these remarks it follows that we have the following corollary to
theorem 4.

THEOREM 5. Let K=GH be a semidirect produciof a locally compact
Abelian normal sub-group G and a subgroup H. Then the following state-
ments are equivalent :

(i) K=GH s MAP;

(i) F(X,T) separates points in G and H is MAP;

(iii) F(X,T) is dense in X and H is MAP.

The following result is useful when considering examples.

THEOREM 6. Let G be an Abelian normal subgroup of a topological group
K and let C be the centralizer of G in K. If K is MAP, then C contains the
intersection of closed (open) normal subgroups of finite index in K.

Proor. Let y ¢ C, then there is « € G such that ez=x"lyxy-1. Since
G is normal, z€ G. By theorem 1 there exists y € F(X,7') such that
2(z)+1. Now
L+ 2(2) = x(@ )x(yey™),
S0
2(@) *+ xlyry™) = ty=)* (1)(@) -

That is, y+¢y1)*(x). We now apply theorem 2. Thus y~*! ¢ ker2 and
hence y ¢ ker 2 where 2’ is the mapping which sends w € K to the restric-
tion of t*(w) to O(y,T"). Furthermore kerZX' is a closed normal subgroup
of K with finite index in K.

The following corollary is of particular interest when H is connected.

CoroLLARY 1. Let K =GH be a semidirect product of an Abelian normal
subgroup and a subgroup H. Assume that H contains no proper open sub-
groups of finite index. Then the set

A = {zeG: z=xhx~'h! for some x e G and he H}

1s contained in the von Neumann kernel K, of K. Moreover, if K is MAP,
then K 1is actually the direct product of G and H.

Proor. If ze 4, then z+e implies that % is not in the centralizer
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C of G in K where z=zhx-'h~'. Thus, as in the proof of theorem 6,
if there is a representation of K which separates z from the identity,
there is an open normal subgroup of K which does not contain k. The
projection of this subgroup into H is an open normal subgroup of H
with finite index in H which is a contradiction. Hence ze K,. If K
is MAP, then K= {e} so that 4={e} and the elements of H commute
with those of @. Thus K is a direct product.

The author wishes to express his thanks to Professor Lewis Robert-
son for bringing the following example to his attention.

ExampLE 1. In view of theorem 4 it is important to note that there
exist groups K with non-trivial normal Abelian subgroups G such that
G is MAP, the finitely orbited representations of G separate points in
G, but K is not MAP. Let K be the group of all matrices of the form

lac
01 b] where a,b, and ¢ are in R.
001

Let G be the set of all

10 ¢
01 0| where ceR.
001

Clearly @ is isomorphic to R and by direct computation one verifies that
(i) @ is the center of K and
(if) K/G=R2
However, K is not MAP, as the following remarks show. Let ©S(R?)
be the group of topological automorphisms of R%. We show that K is
a semidirect product of R?2 and R. Our notation is taken from Hewitt
and Ross [6, p. 6]. Define 8: R -~ &(R?) by B(a)(z,¥)=(2+ay,y). Now
let (c,b), (2,4) € R? and let a,z € R. Then, using the multiplication of
R2 ®;R, we have

((e,0), a)((z,y), ) = ((c,b) + B(a)(z,y), a+x)
= ((c+z+ay, b+y), a+x).

From this it is easy to verify that the mapping

|

S =~ Q
_ O

1
((c,b), a) —~ [0
0
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is a topological isomorphism of R? ®; R onto K. Since R is connected,
R? ®; R satisties the hypotheses of corollary 1. Hence, if R? @, R were
MAP, then R? ®; R would be a direct product, which is clearly not the
case. Thus R?@; R and K are not MAP.

The author thanks Professors Edwin Hewitt and Lewis Robertson
for all their assistance and encouragement.
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