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ON THE RADICAL THEORY OF
A DISTRIBUTIVELY GENERATED NEAR-RING

J.F.T. HARTNEY

Introduction.

The following concepts have been defined in connection with the
radical of a distributively generated (d.g.) near-ring R satisfying the
descending chain condition (d.c.c.) for left R-modules [7], [8]:

(i) The radical J itself, which contains all nilpotent left R-modules
and for which the factor d.g. near-ring R/J is semi-simple.

(i) The quasi-radical ¢, which is a nilpotent left ideal containing
all the nilpotent left ideals of R.

(iii) The ideal-radical P, which is a nilpotent (two sided) ideal containing
all the nilpotent ideals of R.

We have the inclusions J2Q2P. If J=¢, then all three are equal
and this occurs, in particular, when R is a ring.

In [8] R. R. Laxton gave an example of a finite d.g. near-ring with
identity in which all three are distinct. There remains the possibility,
discussed in [8], that @ be equal to P without at the same time being
the radical J. We will give an example of a finite d.g. near-ring in
which this occurs. Such a near-ring R has non-zero nilpotent left
R-modules but no non-zero nilpotent left ideals. This shows that the
radical need not be the least two-sided ideal containing all the nilpotent
left ideals of R.

These examples lead us to introduce a further ideal S of R such that
the factor near-ring R[S has no non-zero nilpotent left ideals (though
it will, in general, contain non-zero nilpotent left (B/S)-modules). The
near-rings R for which the ideal S=(0) are of special interest since they
have, after the semi-simple ones, the simplest structure. We will discuss
the structure of these near-rings in a later paper.
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Throughout the paper we will assume that the near-ring R has a
multiplicative identity.

1. s-primitivity.

Let R be a (right) d.g. near-ring (cf. [7]). We refer the reader to [7]
for the concepts (R, U)-group (where U is some distributive semi-group
generating R), R-group, faithful E-group, cyclic R-group and R-subgroup
of an R-group.

A minimal R-group is a non-zero R-group which contains no proper,
non-zero R-subgroups. An ¢rreducible R-group is a non-zero R-group
which contains no proper, non-zero normal R-subgroups (see [8]). Of
special interest are the cyclic irreducible R-groups. Clearly a minimal
R-group is also cyelic irreducible.

A primitive (primitively prime) d.g. near-ring R is a d.g. near-ring
which has a faithful representation on a minimal (respectively, cyclic
irreducible) R-group (cf. [8]).

The concepts of R-homomorphisms, near-ring homomorphisms, left
(right) R-modules and left (right, two sided) ideals of a d.g. near-ring
R are given in [3], [4].

An ideal 4 of a d.g. near-ring R is called primitive (primitively prime)
if the factor near-ring R/A4 is primitive (respectively, primitively prime).

An ideal C of R is called prime if whenever A, B are ideals of R and
ABgc O, then either 4 or B is contained in C. A d.g. near-ring is called
prime if its zero ideal is prime. In the class of d.g. near-rings R which
satisfy the d.c.c. for left R-modules, primitive is equivalent to simple
and primitively prime is equivalent to prime [7], [8].

The radical J (ideal-radical P) of R is defined to be the intersection
of all primitive (resp., primitively prime) ideals of R. The quasi-radical
@ is defined to be the intersection of all the maximal left ideals of R.

DeriniTION 1. A cyclic irreducible R-group 2 is called s-irreducible
if every non-zero cyclic R-subgroup of 2 is a direct sum of cyclic ir-
reducible R-subgroups. A d.g. near-ring R will be called s-primitive
if it has a faithful representation on an s-irreducible R-group and an
ideal 4 of R will be called s-primitive if the factor near-ring R/A is
s-primitive.

Clearly a minimal R-group is s-irreducible and so a primitive near-ring
(ideal) is s-primitive and an s-primitive near-ring (resp., ideal) is prime.

In order to prove theorem 1 we shall need the following lemma

(cf. [8]):
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LemMA. Let R be a d.g. near-ring satisfying the d.c.c. for left R-modules.
If A is an intersection of maximal left ideals, then the R-group

k
R+—A = 2@1,,‘

i=1
where each 1; is a cyclic irreducible R-group.

We point out that if 4 is an (two sided) ideal and e=e;+¢e,+ . .. + ¢
where e; is an R[4 generator of [, for t=1,. ..,k and e the multiplicative
identity of R/A, then e;e;=0 if ij and e2=e; (see [5]).

TBEOREM 1. Let R be a d.g. near-ring satisfying the d.c.c. for left R-
modules. A prime ideal C of R is s-primitive if, and only if, it is an inter-
section of maximal left ideals.

Proor. Let C' be a prime ideal which is an intersection of maximal
left ideals; without loss of generality we may assume C'=(0). Then
by the above lemma we have

1) R=1,0L®...0

where each left ideal I; is a cyclic irreducible R-group with generator e;.
Since R is prime and satisfies the d.c.c. it is primitively prime [8] and
so there is a faithful, cyclic irreducible E-group 2. For any w e 2 we
have

(2) Ro = Lo+Lhot+...+lo.

Since each I; is normal in R+, each I;w is normal in Rw. The mappings
z—>xw of B onto Rw is an R-homomorphism and induces a map of
[; into [;w. As each I, is irreducible we have [;~[;w in which case [;w
is cyclic irreducible, or [;w=0. In either case, we have either
Lo Ylo o LonYlLo=0.
J¥i e

Hence, if w+0 it follows that Rw is a direct sum by dropping (if neces-
sary) some of the [;w in (2). Therefore Rw is a direct sum of cyclic
irreducible R-groups for every w € £2, w+0. Hence, L is s-irreducible.

Now assume that C is s-primitive. Again we may take C to be the
zero ideal. Let Q be a faithful s-irreducible R-group. If w is a non-zero
element of 2, then Rw is a direct sum of cyclic, irreducible R-groups
and we may write

3) Rw = R, ® Rw,® ... 3D Ro,

for some w; € 2, where each Rw, is cyclic irreducible. We will prove
that the left ideal
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l(w) = {x € R such that zw=0}

is equal to an intersection of maximal left ideals of B. Since w is an
arbitrary non-zero element of 2 and R acts faithfully on 2 this will
prove that the zero ideal is an intersection of maximal left ideals and
the proof will be complete.

From (3) we may write w=e;w;+ ... t+e,0, for some ¢; € R. Con-
sequently,

Ro = {y(e;w;+ ... +e,w,) for all y e R}
= {ye,o;+ ... +ye,w, forall ye R}.

(The left distributive law is valid in this case since the sum (3) is
direct (cf. [2], [5]).) But

Re;w; € Rw; and so Rew, = Rw; for i=1,...,r.

Hence,
.Rw == Reiwi‘l‘ v +R6r(1)r,
and if
0 =20 =ze,0.+ ... +xe,0,
we have xe,w;=0 for all =1,...,7. Thus

”
) = [ i)
i=1
where each [(e;w;) is a maximal left ideal of R since e;w, is an R-generator
of the irreducible E-group Rw;.

TaEoREM 2. Let R be a d.g. near-ring satisfying the d.c.c. for left
R-modules. If the quasi-radical @ of R is the zero ideal, then every ideal
of R is an intersection of s-primitive ideals.

Proor. Since @, the intersection of all maximal left ideals of R, is
the zero ideal we have

R+ =Il®12® ...(—BI,.,

by the lemma. We can write e=e;+e,+ ... +e, where e; €1, Re,=;
for i=1,...,r, and e is the multiplicative identity of E. The e; are such
that e;e;=0 if ¢4j and e2=e¢;, by the remark following the lemma.
Let 4 be any ideal of B. For any ac 4, a=x,e,+ ... +2,.¢e, and so
xe;=x.e;2=ae; € A because 4 is a right ideal. Consequently,

A=06LnA)DLnA)D...d(,n4).

Since the I; are irreducible, [;n4 = (0) or [;n4 =I; and so, reindexing if
necessary, we may write
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A=L0LO...0

for some d, 0<d=<n. Thus

R=1,,®..0L04

and so
(4) RA=10,®...01
where the [;’ are cyclic irreducible R-groups. It is easily shown that

r
A = n (0:[1:')
t=d+1
where each (0:1;) is prime [8]. For any prime ideal B of B we have a
decomposition as in (4) above and consequently it is s-primitive. This
proves the theorem.

2. The s-radical.

DEerNiTION 2. The s-radical S of a d.g. near-ring R is the intersection
of all the s-primitive ideals of R.

It is clear that we have the inclusions J 282Q =2 P. Using theorem 2
we obtain

THEOREM 3. The left ideal Q is an ideal if, and only if, S=@Q=P.

The s-radical of a d.g. near-ring R is precisely the intersection of
those ideals A of R such that the factor near-ring R/4 has no non-zero
nilpotent left ideals. Again this is a ready consequence of theorem 2.

We point out that if the s-radical of a d.g. near-ring R, which satisfies
the d.c.c. for left R-modules, is the zero ideal, then the left ideal struc-
ture of R is

R=1,®..0L0L,.®...0I,

where each left ideal I; is an s-irreducible R-group. Furthermore, if
l;,...,1, are all the minimal left R-modules among these left ideals, then

J=Ir+1®-..@In.

3. Some examples.

We shall give an example of a finite d.g. near-ring with identity
which is s-primitive but not simple ; this will then show that there exist
finite d.g. near-rings R with J+8=@=P and thereby answers in the
affirmative the question posed in [8].
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Consider the alternating group A4 on the six symbols {1,2,3,4,5,6}
and the alternating group 4; on the symbols {1,2,3,4,5} which we
regard as a subgroup of Ag. Let U be the semi-group of all inner auto-
morphisms of the symmetric group §g which induce automorphisms
on A;. Thus U consists of the maps

b,: a>x+ta—x for ael;

where  is any sum of cycles of S involving only the symbols {1,2,3,4,5}.
(We are using the additive notation for Sg.) Let B be the d.g. near-ring
generated by U (cf. [3]). Then clearly A4, is a minimal R-group. It is
easily shown that 4, is the only proper, non-zero R-subgroup of A,
and 4, is a cyclic irreducible R-group (by construction it is faithful).
Hence, 4, is an s-irreducible R-group which is not minimal.

In [8] a large class of finite d.g. near-rings was constructed in which
J+@Q2P and it was shown that among them were near-rings with
J+@+P. We mention that in this class there are also near-rings with
J=8+@Q+P. (For example with the notation of [8], section 4, take
2=A, and use the fact that every proper subgroup of A4; is soluble.)

4. Concluding remarks.

The theory of s-primitivity can readily be extended to general (not
necessarily distributively generated) near-rings. This was done in [5].
In this wider class of near-rings it is a relatively easy matter to con-
struct s-primitive near-rings which are not simple.

It is an open question whether or not the s-radical S is the least ideal
containing the quasi-radical @ of a d.g. near-ring.
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