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HYPERSPACES OF PROXIMITY SPACES

LOUIS J. NACHMAN

In [4] Hausdorff defines a metric for the collection of all closed bounded
subsets of a metric space. Various methods for defining topologies on
the power set of a given topological space can be found in [8]. More
recently several authors have been concerned with uniformities generated
on the power set of a given uniform space [3], [5], [11]. It is the purpose
of this paper to define and study two proximities on the power set of
a given proximity space. The second part of this paper is devoted to
this study. The first part, roughly sections 1-4, is a synopsis of material
needed for the discussion in the second part.

We assume that the reader is familiar with the definition and basic
properties of a proximity space (p-space) (X,d), its proximal neighbor-
hood relation €, its topology J(d), and proximally continuous functions
(see for example [10]). In particular we do not assume that a p-space
(X,0) must be separated.

1. Uniform spaces and proximity spaces.

If (X,%) is a uniform space, then it is possible to define a p-relation
6(%) on X as follows:

AS@)B iff U[AInB+0 forall Ue%.

For any p-space (X,8) we denote by n(d) the class of all uniformities
% on X for which §(%)=4.

For any p-space (X,d) we define F(8) to be U{% : % € n(5)}. The
following facts are almost obvious and their verification is left to the
reader.

TaEOREM 1. Suppose (X,0) and (Y,n) are p-spaces.

(1) If f: X - Y, then f is p-continuous iff V € F(n) implies
(fxf)[V]e &L9).

(2) If A,B< X, then A C B iff there is a U € S(8) such that U[A]< B.
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(3) If A< X and 6|4 is the subspace proximity, then
LB)n(AdxA) c F(8]4)
and they are gemerally not equal.

(4) If Oc<X, then O€J(9) iff for each x €O there is a U e F(8) such
that Ulz]<O.

If (X,0) is a p-space let #(6)=infn(d). It is well known that %(d)
is a totally bounded uniformity and that %(d) € n(9).

There is a categorical isomorphism ¢ from the category of p-spaces
and p-continuous functions to the category of totally bounded uniform
spaces and uniformly continuous functions. For any object (X,4),
o[(X,0)] is (X,%(9)). If

f: (X’(S) g (Yﬂ?)
is p-continuous, then
o(f): (X, %)) ~ (Y, %(n))

is uniformly continuous where ¢ (f)(z) =f(z).

2. The lattice of proximities.

Suppose X is a set. Let P(X) denote the class of all proximities for
the set X. A reflexive, antisymmetric, transitive ordering is defined
on P(X) which makes the functor ¢ mentioned above an order iso-
morphism. If §; and é, are in P(X) then

8, <0, iff A8,B implies A6,B .

It is a routine matter to prove the following theorem.

THEOREM 2. Suppose 6, and 8, are in P(X). Then the following are
equivalent :

(1) 8,58,

(2) Ad,B implies A6, B,

(3) A, B implies A3,B (5 denotes “not §),
(4) AC,Bimplies AC,B,
(5) () S U(by),
(6) F(3)S L (3

Condition (5) above and the fact that, if %; and %, are uniformities
for X such that %, <%,, then §(%,) < d(%,) establish the order isomor-
phism mentioned earlier.

If &# is a non-empty collection of p-relations on a set X, it is possible
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to characterize the supremum of % in terms of the elements of &#.
This characterization is used in the literature although not (to the
author’s knowledge) identified. If

A =U{4;: 15i<na}

we will call {4,} a finite cover from below of 4.

THEOREM 3. Suppose X is a set and {0,: «x € I} is a non-empty family
of proximities for X. Define 6* as follows: A 6* B iff for any {A4;} and {B;}
which are finite covers from below of A and B respectively there is an t*
and a j* such that A;.0,B;. for all x e I. Then 6* is a p-relation, 6* =24,
Jor all x eI, and 626, for all x € I implies 6 = 6*.

The proof of this result is left to the reader.
For any set X, the class P(X) has a largest element ¢,, and a smallest
element ¢,,:
AéyB iff AnB 0,
Aé,B iff A+0+B.

Thus (P(X), <) is a complete lattice.

3. Complete proximity spaces.

Suppose (X,d) is a p-space and §: D — X is a net. S will be called
proximally Cauchy (p-Cauchy) iff for every U e &(d) there is a d=
d(U)e D such that d,,dy=d implies (S(d,), S(dy))e U. A proximity
space is complete if every p-Cauchy net converges.

The literature on complete proximity spaces is substantial and we will
not restate all the known results here. Later we will use the fact that,
if (X,%) is a complete uniform space, then (X,8(%)) is a complete
proximity space. A corollary to the following lemma is useful in con-
structing counter-examples. If §: D — X is a net, we will denote a subnet
of 8 by Soj: E — X where it is understood that j: E — D has the subnet
property (see Kelley [6]).

Lemma 1. Suppose (X,8) 18 a p-space and S: D -~ X is a net, D a
linearly ordered set. Then S is p-Cauchy if

S[i1[E4]] 6 S[jaE1]
for every pair of subnets Soj;: B, > X, i=1,2.

Proor. Suppose 8 is not p-Cauchy. Then there is a U e &(9),
U symmetric, such that for any d € D there are indices d,(d)24d, i=1,2,
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such that (S(dl(d)), S(dz(d))) is not in U. Define a net 7: D - X x X
so that

T(d) = (8(d4(d)), S(do(a))) -
Let U* be a symmetric element of #(d) such that U*o U*o U*o U*c U.

By a result of Alfsen and Njastad [1], there is a subnet 7'0j: B - X x X
such that

(nl(T(j(el))),nz(T(j(ez)))) ¢ U* for any ee,cE
(7

; is the ¢th projection from X x X to X).
Let k;: E — D such that k,(e)=d,(j(e)), ©=1,2; then the k;’s have the
subnet property. Further
w0l o) = Sok,;
thus the
m;oTo0j: E—~X

are subnets of S. Since (nl(T(j(el))), nz(T(j(ez)))) € U* for no e, e, € B,
m [THLEN] & o[ T51ET]] -

Hence, S not p-Cauchy implies the existence of subnets whose ranges
are far as subsets of X.

We note in passing that the converse of lemma 1 is true for any
p-Cauchy net and that lemma 1 will not serve to characterize all p-Cauchy
nets.

CoRrOLLARY. Suppose S: D — X is a net, D a linearly ordered set. Sup-
pose (X,0) is a p-space and % € n(6). If S is Cauchy in (X, %), then S
s p-Cauchy.

Proor. If S is Cauchy in (X, %), then the ranges of any pair of subnets
of 8§ must be 6(%) near in X.

4. Hyperuniform spaces.
Let P(X)={4: A< X}for any set X. Suppose X isa set and Sc X x X.
We define

H(S) = {(4,B)e D(X)xD(X): AcS[B] and BcS[4]}.

If (X,%) is a uniform space and B is a base for %, {H(B): Be B} is a
base for a uniformity for P(X). Since all bases for % generate the same
uniformity on P(X), we denote this uniformity by H(#). The space
(P(X), H@)) is called the hyperuniform space for (X,%).
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If (X, %) is totally bounded, then (D(X), H(%)) is also totally bounded.
The interested reader is referred to [2] or [5] for further information on
hyperuniform spaces.

5. Hyperproximity spaces.

Suppose (X, ) is a proximity space. Because of the functor ¢ a natural
way to induce a proximity relation on P(X) is to choose the proximity
of the hyperuniformity H(%(6)). We will denote this hyperproximity
by H,(6) and call it the weak hyperproximity for (X,d8). The following
theorem summarizes some of the properties of H,(9).

THEOREM 4. Suppose (X,0) is a p-space.
(1) The map i: X — P(X) where i(x)={x} is a proximal isomorphism
into (P(X), H,(9)).
(2) Define a correspondence H,, on the category of p-spaces so that
H,[(X,0)]=(D(X), H,()) and so that if f: X -~ Y, then
H,(f): DX)~P(Y)
where H, (f)(A)=f[4] if A=X. Then H, is a covariant funcior.
(3) U(H,(0))=H(%()).

The proofs of these results are routine and are left to the reader.
In [2] Caulfield states the following result: If (X,%) is uniform and

g((x’y)) = {{x}’ {x>y}}’
then g is a uniform isomorphism from (X x X, # x %) into (D(‘D(X)),
H(H(#))).
Although the definition for H (d) is natural, it has certain deficiencies.
If (X,0) is a pseudometrizable p-space, then (P(X), H,(6)) need not be

pseudometrizable. We show this using the lemma of Caulfield men-
tioned above. Suppose the conjecture

“(X,6) pseudometrizable implies (P(X), H,(d)) pseudometrizable”

is correct. Then it will also be true that (X,d) pseudometrizable implies
(D(‘D(X)), Hw(Hw(é))) is pseudometrizable. Since %(H,(6))=H(%(9)),

H(H(%(9))) = U(H,(H,(0))) -

Using Caulfield’s lemma, we conclude that, if (X x X, #(8) x %(9)) is
uniformly isomorphic to a subspace of (D(‘D(X)), H(H(”Z/(é)))), then
(XxX, 6(%(6)x02/(6))) is proximally isomorphic to a subspace of
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P(P(X)), H,(H,(5))). Suppose (X,6) is pseudometrizable. Then

D(D(X)), H,(H,(8))) and hence (X x X, §(%(6) x %(8))) will be pseudo-
metrizable. Since this is known to be false (see [7]) the original con-
jecture must be false.

In an attempt to remedy this defect we introduce the following defini-
tion. Suppose (X,d) is a p-space. Define

H(0) = sup{8(H(%)) : U € n(0)} .

(P(X), H(0)) will be called the sirong hyperproximity space for (X,9).

It is not difficult to show that results similar to (1) and (2) of theorem 4
hold for H (9).

A reasonable conjecture at this point might be that F(H(d))=
H(&(8)) where H(%(d)) is the collection of all subsets 2 of P(X) x P(X)
such that H({U)c 2 for some U € &(d). The author doubts that this
is true although we do have

Lemma 2. The inclusion H(SF(0)) s F(H (J)) holds.

Proor. Let U e &(5). Then there is a % € x(5) such that U e %.
Thus H(U)e H(#%). Since 6(H(%)) < H (9),

H(U)v U(H0)) € =n(H9))
(see [10]) and hence

H(U) € H@)v U(H|0)) € S(H,0)).

Generally the two hyperproximities H (J) and H, () will not be equal.
The following theorem gives the relationship between the two proximities.
A p-space (X,0) is completely bounded ([9]) iff U e & (6) implies the
existence of an 4 £ X, A finite, such that U[4]=X.

TureoreM 5. For any p-space (X,0), H,(0) < H08). Further, Hy(6)=
H,(0) iff (X,8) is completely bounded.

Proor. It is obvious that H,(0) < H (). That equality holds if (X,d)
is completely bounded is also obvious if we remark that (X,d) is com-
pletely bounded iff %(8) = %(9).

If (X,d) is not completely bounded, then there is a U* € &(8) such
that U*[4]=X for no finite A< X. Let

F ={4: AcX, A is finite} .
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It follows directly from lemma 2 and (2) of theorem 1 that H(U*)[.#]
is an H (6) proximal neighborhood of #.

We now claim that H(U*)[#] is not an H,(6) proximal neighborhood
of &, showing that H,(6) +HJ). Suppose H(U*)[F] is an H,(9)
proximal neighborhood of #. Then there is a U e %(8) such that
H(U)[#] is contained in H(U*)[#]. Since %(d) is totally bounded
there is an 4 € &% such that U[4]=X. Since AcU[X] and X< U[4],

X e HU)[F]
and hence
X e HU*[Z] .

But then there must be an A* € % such that X c U*[A*]. Since this
is not possible, H(U*)[#] is not an H,(d) proximal neighborhood of Z.

We close this section with the proof that (P(X), H,()) is pseudo-
metrizable when (X,d) is pseudometrizable. Abusing slightly the nota-
tion of Alfsen and Njastad [1] we will call a p-space (X,d) total iff F(d)
is a uniformity.

THEOREM 6. Suppose (X,0) is total. Then H(F(8)) is a uniformity and
O(H(FL(9)))=H ).

Proor. From &(6)en(d) it follows that H(6)=d(H(F(d))). Sup-
pose A4,BSP(X) and A6(H(F(9)))B. Let {4} and {B;} be finite
covers from below of 4 and B, respectively. Then Ai.é(H(,S”(d))) Bjs
for some ¢* and j*. It follows that

HU)[AuNBje + 0

for any U in any % in n(). Thus A;.6(H(%))B,s for all % € n(d) and
AH (J)B.

It is well known that, if (X,d) is pseudometrizable, (X,0) is total.
Further, if %, is the uniformity for the pseudometric, &#(8)=%,. Hence
H (6)=0(H(%,) in this case. Since H(%,;) has a countable base it is
pseudometrizable and hence so is H (). Thus we have proved:

CoROLLARY. Suppose (X,0) is pseudometrizable. Then (P(X), H (0))
18 pseudometrizable.

6. Properties of Hyperproximities.

In this section we indicate some of the properties of the two hyper-
proximities and point out some of the unanswered questions. We remark
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that if (X,6) is discrete, that is, d=4;,, then Ay € %(6) and hence
Ayx) € F(H (0)), making H (0) discrete.

TaEOREM 7. Suppose (X,d) s a p-space, A< X. Then

Proor. It is well known that

(P(A), H(#(5) n (4 x A))) = (DP(A), H(Z(®) n (D(4) x D(4))) .

Since these uniformities generate the proximities in question, the result
follows.

Unfortunately a similar property does not hold for H(d) as the next
example illustrates.

ExamprE 1. Let (N,d,,) be the natural numbers with the discrete
proximity: let (X,%) be the uniform completion of (N,%(d,,)); and let
0=0(%). For each ne N let A,={m: m=n}. Let

A={4,,: neN} and B={4,,,: neN}.
Since ANB=0 and HJ,,) is discrete, A4 is far from B in H (§|N)=
H (8;;). We will show that A4 is near B relative to H(d)|P(V). Since
(X,%) is compact, 7(d)={%}, snd %=%(5). Hence, given U € % there
is a finite proximal cover {D,}?_, of X such that U(D; x D;,)< U. Assume

the indexing on the D,’s is such that D,nXN is infinite for 1 <¢<j* and
finite for j*<¢=<n. Let

m* = max{neN: ne D, for some ¢, j¥*<i<n}+ 1.

We claim that
A,, € HU)BInA for n>m*.

We prove this by showing that
A, < Ul4,] for all mzm*.

Let ke A,,.. Then ke D,;, for some ¢* 1Zi*<j* Now 4,nD; +0,
for if not, then NnD,, would be contained in {n:1=n<m} and would
thus be finite which it is not. Thus there is a k* e 4,,nD;.. Then

(k*, k) € DypuxDyp =« U and ke Ulk*] ¢ U[4,,].

Now if n>m*, then 2n and 2n—1>m*. Thus, since 4,, ;, 4,, are
contained in 4,,., it follows that

(Aop, Agpq) € HU) and  4,, € HU)BINA.
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Since H(U)[B]n A +0 for all U e %, A is near B relative to H(J) and
hence relative to H(d)|D(NV).

The following lemma is related to the remarks made about H ()
immediately following the definition. If 4 is a family of subsets of
XxX and f: X — Y, then

(FxN)A] = {(fx)[4]: A eA}.

LemMA 3. For any p-space (X, 0),
F(H(0)[i[X]) = F(H(9) n ([X]xi[X]) = (Ex8)[L(9)].

Proor. That F(H(0)|i[X])=( x1)[F(9)] follows from the remarks
mentioned above. It is also obvious that

F(H(8)) n G[X]xi[X]) € L(HS)i[X]).
Let 2e L(H0)¢[X]) and let Q=(ix7)"[2]. Then by lemma 2,
H(Q) e S (H9)) and thus

HQ)u2 e P(HL)).
Since

(H@Q)u2)n ([ X]xi[X]) = 2
and is in #(H (0)) n (i[X] x i[X]), the lemma follows.

Various questions can be asked about the totality of one of H,(9),
H (6), or ¢ implying the totality of the others. Most of these questions
are unanswered but we do have the following partial results.

TrEOREM 8. If (D(X), Hy(0)) is total, then (X,0) is also total.

Proor. It is sufficient to show that #(d) is a filter. Let U, and
U,e #(0). Since H0) is total and H(F(9)) s F(HJ)), there is a
2 e P(H0)) such that

2 < HU,)nHU,) .

By lemma 3 there is a @ € &(8) such that
(tx0)[Q] € 2 n ([X]xi[X]).
It is easily shown that Q< U,nU,, and therefore #(d) is a uniformity.

If % is a uniformity for X with a linearly ordered base, and if X, X,
then % n (X,xX,) also has a linearly ordered base. Therefore the
theorem of [1] yields the following results.

Math. Scand. 23 — 14
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THEOREM 9. Suppose (X,9) is a p-space.
(1) If F(H,(0)) has a linearly ordered base, then (X,8) is total and F(0)
has a linearly ordered base.
(2) If &L(0) has a linearly ordered base, then (P(X), H (5)) is total and
F(H (9)) has a linearly ordered base.
(3) If L(H,(6)) has a linearly ordered base, then (D(X), H ((6)) is total and
F(H(0)) has a linearly ordered base.

In order to discuss completeness properties of H,(5) and H(5) we
briefly examine convergence of nets in hyperproximity spaces.

Lemma 4. Suppose (X,0) is a p-space, S: D — P(X) is a net, and A = X.
Then lim S =A relative to T (H (6)) iff S is eventually in H(U)[A] for all
U e &£(9).

Proor. The lemma follows from the observation that

T (Hy(9)) = sup {7 (J(H())) : U e n(0)}
= sup{J (H(¥)): U e n(d)}.

Lemma 5. Suppose (X,0) ts a p-space and S: D — D(X) is a net. Sup-
pose im S=A relative to H(6) (or H,(0)). Then limS=cd relative to
H (6) (or H,(0)) where c denotes the closure operator in 7 (d).

The proof of this result is routine and is left to the reader. The defini-
tion of limsup for a sequence of sets can be found in Whyburn’s work [12].
We use the concept here in the following form. If §: D — P(X) is a
net and (X, ") is a topological space, we define L(S) to be the set of
points x for which € O € J implies that for each d € D there is a
d* e D, d*zd, such that S(d*)n O +0.

LevMma 6. Suppose 8: D — P(X) and (X,0) is a p-space. If S converges
in T (H,(0)) or T(H9)), then S converges to L(S).

Proor. We give the proof for J(H (8)). Suppose S converges to 4.
If A=0, then S must be eventually & since H(U)[@]={0}. In this case
L(S)=0. If A &0, we will show that c4 = L(S) and hence, by lemma 5,
S converges to L(S).

Let zxecd and let U e #(6) be symmetric. We claim that, given
d € D there is a d*=d such that

8@*nUx] + 0.
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There is an e*e D, e*x=d, such that e=e* implies that ¢4 < U[S(e)]
by lemma 4. Hence

2z e U[S(e*)] or Ulz]lnS(e*) £0.

Thus z € L(S).

Suppose x € L(S) and U € &(6). Let U* be symmetric, U* € &£(3),
such that U*oU*c U. There is an e*e D such that S(d)c U*[4]
for all d Ze*. There is a d* =e* such that

S(d*) n U¥z] + 0.

Thus x € U*[S(d*)] which is contained in U*[U*[A]]< U[4]. Hence
zecd.

We note that Isbell has proved results similar to the above for hyper-
uniform spaces.

A p-space (X,0) will be called w-hypercomplete it (P(X), H,(5)) is
complete and s-hypercomplete if (P(X), H (0)) is complete. The following
relationship between the two types of hypercompleteness holds.

TaroreM 10. If (X,0) is w-hypercomplete, then it is s-hypercomplete.

Proor. Let 8: D — P(X) be p-Cauchy in H5). Then, since
H,(8) < H (),
F(Hy(9) = S(H(9))

and § is H,(0) p-Cauchy. Hence it converges to L(S) in J(H,(9)).
Let U e &(8). Since L(S)CU[L(S)], there is a V e %(6) such that
VIL(S)]c U[L(S)]. For V there is a d' € D such that d=d’ implies

S(d) = VIL(S)] g ULLS)] -

Let U* be symmetric such that U*e &(8) and U*oU*< U. Since
S is H6) p-Cauchy there is a d” €D such that d,, d,2d” implies
(8(d,), S(d,)) e HH(U*). Now suppose € L(S). Then there is a d=
d(U*)2d"" such that

U*[z]nSd) + 9.
Then z e U*[S(d)] which is contained in U*[U*[S(e)]] for all exd".
Thus L(S)< U[S(e)] for all exd”. Choosing d*=d' and d'’ we have
that for all d=d*,

(8(d), L(S)) e H(U) ,

completing the proof.
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That the two types of hypercompleteness are not equivalent will be
shown later. The fact that an s-hypercomplete space, and hence a
w-hypercomplete space, is complete will now be demonstrated.

TrEOREM 11. If (X,0) is s-hypercomplete, then it is complete.

Proor. Let §: D - X be p-Cauchy. ThenioS: D — P(X) is p-Cauchy
in (P(X), H(9)) and hence converges to some A< X. Since i(S(d)) 9
for any de D, A +0. 1t is easily shown that S converges to a for all
aed.

It is well known that the hyperuniform space of a complete pseudo-
metric space is complete (see [5]). From this, the fact that complete
uniform spaces yield complete proximity spaces, and theorem 6 we
deduce the following:

TaeorEM 12. If (X,d) is @ complete pseudometrizable p-space, then (X,0)
18 s-hypercomplete.

It is interesting to note that a similar theorem is not true for H,(J).
As a matter of fact a discrete p-space need not be w-hypercomplete as
is indicated by the following example.

ExampLE 2. Consider the space (N,d,,). We claim that (D(N), H,(,,))
is not p-complete. Let S: N — PD(N) be the sequence defined by

S(n) ={meN: mzn}.

If UeX0y), then there is a finite cover {D,}2, of N such that
U(D,;xD;)cU. Defining m* as in example 1 we can show that for
m, and my=m*,

(8(m,), S(my)) € H(U).

Thus 8 is Cauchy relative to H(%(6;;)). Then by the corollary to lemma 1,
S is p-Cauchy relative to H,(;,).

Now if 8 converges it must converge to L(S). But, since {x} is a neigh-
borhood of z for all z€ N, {x}nS(n;) must be non-empty for some
subsequence {n;} if z is to be in L(S). Since this is true for no z € N,
L(8S)=0. Since (S(n), @) € H(U) for no U € %(dy), S does not converge.

Since, by theorem 12, (N, d,,) is s-hypercomplete we have also shown
that s-hypercompleteness and w-hypercompleteness are not equivalent.

In light of Isbell’s work on uniform spaces some interesting questions
about hypercompleteness arise which are only partially answered here.
For example, it is not known if all complete p-spaces are s-hyper-
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complete. The relationship between paracompactness and s-hypercom-
pleteness is not completely known, although the following result is clear
in light of Isbell’s work and theorem 9.

THEOREM 13. Suppose (X,0) is such that F(8) has a linearly ordered
base. Then (X,08) s-hypercomplete implies T (0) is paracompact.

We close with the remark that for a compact p-space H (), and hence
H (6) by theorem 5, is compact. This follows from the fact that (X,d)
is compact iff (X, %(d)) is compact, which will imply that (‘j,)(X ), H (%(6)))
is compact.
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