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ON THE MOMENTS OF FUNCTIONS SATISFYING A
LIPSCHITZ CONDITION

JORGEN LOFSTROM

0. Introduction.

An infinite sequence u = (u;,)5° of complex numbers is called the moment
sequence of the integrable function f on 0<x <1, if

1

U = fx"f(:v) dx, k=0,1,....
0

If u=(u;)y is any given sequence, introduce the functional

(0.1) Dylit) = ()'ik(—l)v( s

=0

< r) r!

k) k) (r=k)

(r is a non-negative integer). It is well known that x is a moment se-
quence of a bounded function on 0 <z <1, if and only if

where 0<k=r

Sup,, i (r + 1)|4,, 1) < oo,

(see Widder [4, pp. 111-112] or Shohat-Tamarkin [3, pp. 99-101]).
Moreover

sup,, . (r + DI, ()] = IfI} 5

if 4 is the moment sequence of f and

”f“ = Sup0<x<1|f(x)l

The object of our paper is to generalize this result in the following
direction. If f is a bounded function on 0 <z <1, denote its modulus of
continuity by

o(t,f) = sup sup |f(z+h)—f(z)|
|h|st O<z<1
O<z+h<1
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Our aim is to characterize the moments of functions f satisfying a Lip-
schitz condition

otf) =0t ast— +0, 0<6Z1.

We can also treat moments of functions belonging to certain generalized
Lipschitz’ classes. In doing this we give an answer to a question raised
by Cotlar (personal communication), who also suggested that the tech-
nique of interpolation spaces might be useful in connection with moment
problems. (It might be possible that also other cases than the one con-
tained here can be treated with the aid of interpolation spaces).

In our proof we need an alternative definition of the Lipschitz spaces,
as interpolation spaces. This equivalent description is essentially due to
Lions [1], (see also Peetre [2]). For completeness we include a proof of
the equivalence between the two definitions. This proof as well as the
exact definition of the interpolation spaces in question, can be found
in section 1. Our main result (theorem 2.1) is stated and proved in sec-
tion 2. The method of the proof is quite elementary and the paper is
essentially self-contained.

1. Preliminaries on interpolation spaces.

We shall let € denote the space of all bounded, continuous functions
on 0 <z <1. It is a Banach space with norm

“f” = Sup0<x<1|f(x)| .

By &' we shall mean the space of all functions f such that the first
derivative f’ belongs to €. Then %" is a semi-normed space, with semi-
norm

Iflly = suPocser lf' ()] -
We shall also write

”fH* = infaeN”f—a'H ’

where N is the space of all constant functions.
On the space € +%* we consider the family of semi-norms

K(t.f) = infz, (ISl + 2l fill)),  O<t<oo.
It is easy to see that

(L.1) IfI* = K@t.f),  tz1.
In fact, we have

fa@)-1@) = [fady. feer,
1
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and hence

IAI* = IfF=fBDI = W1 = 111l -
It follows that

LIFI = tlfoll + ™ = ol + Al 0<i<T,
A = ol + Al = foll + AL, t21,

if f=fo+f,. Thus

(1.2) min(1,7) If|* = K(.f) .

On the other hand we see, by taking fo=f—a, f; =a, that

K(th) = ”f'“a”7 aeN
and thus
K(t.f) = IfIr* .
Now (1.1) follows
We shall now consider the function norm @&, ,, 0<6<1,15¢< o,
defined on positive measurable function ¢(f), 0 << oo, by

Dy, () = (f (?)q %t-)uq, l1<g<oo,
0

P(t)
(bo,m(?’) = Sup0<l<oo?‘

By means of the function norm @, , we define the interpolation space
%% 4 of all functions f for which K(¢,f) is defined and the semi-norm

f g ¢0,q(K(t’f)) 4
is finite (see Peetre [2]). From (1.1) we deduce that

PRGN 1 e
o k) = ([(FG0) G e g m)  1sa<s,
0

K(t.f)
B K(t)) = max (suPocrcs =23 1)
In particular we see that ¥%?=N =the space of constant functions,
g<oo. It is clear that

Do, oo(K(t.f)) = IfII*,

80 that €%> is essentially identical with ¥. From the inequality (1.2)
we get that ¥1¢=N if 1 <g<oo. Consequently we shall only consider
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€2for 0<f<l,1=sg<ooor 0<O=1, g=o0o. For simplicity we consider
on €%¢ the equivalent semi-norms

1 g
K(t,f)\ dt
nfno,q=(f( t,,f)T) , 0<f<1, lsg<co,
0

Kt.f

SUPg<t<1 10 ) 0<0=1, g=oc.

11/ 1l6,0

I

It is quite obvious from these expressions, that
@1 g 9 <e
¢ > "7, ¢'<q.

We shall need an equivalent characterization of ¥%¢, in terms of the
modulus of continuity

o(t,f) = sup sup |[f(z+h)—f(z) .
k|t O<z<1
O<z+h<l

By means of the modulus of continuity we form the generalized Lip-
schitz’ space Lip(0,g9), 0<f<1, 1Sg<oco or 0<BH=1, ¢=o0, of all func-
tions f such that the semi-norm

1 1/q9
t, 2 dt
f_’(f(w—(toﬁ) —t-) , O0<fO<1l, 1=Z2g<oo,
0

w(t.f)
to

f%SUP0<t<1 5 0<0§1, qg=o00,

is finite. We shall prove

TrEOREM 1.1. (Essentially Lions-Peetre). For any fe€+%' and
0<t<1 we have
(1.3) 1K(t,f) = o(t.f) = 2K(.f) .
In particular €%7=Lip(0,q) with equivalent semi-norms.

For the conveniance of the reader we reproduce the proof, which is a
slight modification of the proof in Lions [1] and Peetre [2], valid for the
case of an unbounded interval.

Proor or THEOREM 1.1. The right hand inequality of (1.3) is quite
trivial for if f=f,+f,, fo €€, fy € €* we have
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w(t:f) é w(t,fo) + w(t’fl) ’

and since obviously

w(t:fo) = 2”f0“9 w(tufl) = t”flln = t”fl”l

we get

ot.f) = 2(foll+tllflly) -

Thus the right hand inequality follows.
To prove the left inequality we introduce the function

f(x), O<z<l,
* =

F@ =1 tese), 1<z<2.
Here f is a given function in €. We write

hits 2) = il—off*mh) h,

folt; 2) = f(x) = filt; ») ,

for 0<z<1, 0<é<1. Then fy+f,=f.
Obviously we have

L d
t;d—xfl(t;x)’ = |f¥x+t)—f(z)| = A(x,t), O<z<l.

But if 2+t < 1 it is clear that A(x,t) S w(t,f). If x+¢>1 we have A(z,t)=
If(2—x—t)—f(x)| and since in this case |(2—x—t) —x| <t we have again
A, t) S w(t,f). Thus

tHfall = w(t,f) .
On the other hand
t

Jolts @) = ¢ [ (F@)—f*a+ 1) dh,

0

so that in the same way as above

t

15l < ¢ [ w3 )b s wie.).

0

Since it is obvious that f, € € and f, € €' we have proved

K@.f) < Ifoll + tifill £ 20(.f) ,

and our proof is complete.
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2. Moments of functions in Lip(0,q).

Suppose u= (1)’ is the moment sequence of the bounded function
f(x), 0<x<1. Then we introduce the functional 1, ,(u) by means of
formula (0.1), i.e.

st = (1) 3 0 (5 s = () [ 2012 4700
0

j=0 J
for 0<k<r». Then
(2'1) Supr,k(r+ 1) Mr,k(;u)l = Sup0<ac<1 If(x)l >

as was mentioned in the introduction.
Let us now define a new sequence p'=(u;")y by

o =0, w' = —ku,,, k=12,....

Then we introduce the ,,modulus of continuity’

k
Qtu) = sup | > A.4(u')|, O<t<l.
o0<j<k<r | imjtl
k—j<tr

Our object is to prove

THEOREM 2.1. For any f€ € and 0<t <1 we have the inequalities

(2.2) Q(t,pu) = K©&S),
and
(2.3) w(t,f) = Qt,u) .

For the proof we need

LemMmA 2.1. For 0<i<r we have

k
(2.4) 2 nilt) = 1(Apeyatt) = Apoa,5(1)) -

t=j+1

If u is the moment sequence of a function f in €* we have
1
(2.5) A i(u') = (:) ft‘(l —yr=ifi(t)dt, O<i<r.
b

Proor or LEMMA 2.1. By the definition of 1, ,(u') we have



ON THE MOMENTS OF FUNCTIONS SATISFYING A LIPSCHITZ CONDITION 183

@6 = -(}) g< 17 (") G+ D
) E (7 e
=0 ()3 1 (5 e
Thus

A = =7 (377) Sy ("77) maat

=0

w3 1),_5(_1)1 ("7777) e

? 1=0

= —1Ag,i1(0) + 725 () .

Now we get (2.4) by summation.
To prove (2.5) we note that (2.6) gives

1
htit) = =(7) Oj (i3 (1 — )= = (r— i)t (1 — )5 f () do

= —(:)j (d%xi(l—x)'—i) J(x) dx .

Integrating by parts we get (2.5), since f is bounded, and f” is continuous
on 0<x<1.

Proor oF THEOREM 2.1. We begin by proving (2.2). Let f=fy+f;,
fo €€, f, € €* be any decomposition of f. Let u, and u, be the correspond-
ing moment sequences, i.e.

1 1
Mor = J.xkfo(x) d:l', My = kafl(x) d.’l: .
0 0

Then p=p,+u, is the moment sequence of f. Since u’'=py, +pu," and
since the functional u — 4, ;(¢) is linear we have

k
. z ;‘r,i(/‘ll)

t=j+1

k
. Z }“r,i(.uol) +

=j+1

b

k
> }‘r,i(/‘,). =

t=j+1

and consequently
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(2.7) Q(t, ) = (o) + 2L 11y) -

Now formula (2.4) shows that

k
2 Anilie') = 7 (Ao, iltte) = 2y 5(1t0)) -
t=j+1
From (2.1) we get however that r|4,_; /(o) < |/foll, and thus
k

Z Ay, i(1o')

i=j+1

= 2[lfoll -

It follows that

(2.8) Q(t,uo) = 2{foll -
From (2.5) we get
1

hidir) = () [r0-0-igr0 @ o<ier,

0

and thus, again by (2.1),

("+1)[7m/‘1 s A= Ifill, O<i<r.
Consequently
k
Z Ar,i(:ul § E— ”fl”l < tifill s
t=j+1

if k—j<tr. Thus

(2.9) Q(t,py) < | filly -
Combining (2.8) and (2.9) with (2.7) we get Q(¢, 1) < 2(|foll +¢l|folly), which
gives (2.2).

Next we prove (2.3). We shall prove that if x and y are rational num-
bers, 0 <x<y <1, then

(2.10) |f(x)—f(y) = lim

r=28q—>00
Jlr=x, kir=y

k
> Ailp’) } . T =g, Y =Dpafq .

i=j+1

Having done this we can easily conclude the proof of (2.3). In fact, we
note that since f € ¥ we have

w(t,f) = sup |f(x)-f(y),
O<y—x<t
O<z<y<l

where x and y are rational numbers; x=p,/q,y=p,/q. From (2.10) we
then get
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k
w(t,f) £ sup  lim 2 i)
O<y—x<t r=8g—>00 |i=j+1
j/r=a:,klr=y
k
<im s |5 0)
8—>00 0<j<k<r=sq!i=j+1
O<k—j<tr
k
s sup | > )“r,i(/u’)‘ = Qt,p) .
O<j<k<r!i=j+1
k—j<tr

It remains to prove (2.10). By formula (2.4) we see that it is enough
to show that

(2.11) oy () > fx), x=kfr, r—>oo.
However
1
1, aali) = [ o))y,
0
where
r—1
= o (] — qp)r1-2)-1
(2, Y) r( r >y (1 —g)ra-n-1,

Since «,(x,y)=0 and
1
f‘xr(x’y) dy =1,
0

we have only to prove

(2.12) lim f a @y dy =0, 8>0.
|e—y| 26

To prove (2.12) we use Stirlings formula which gives

014 (z) < r(’”r—ml) < 04, (),

where

rt
A, (x) = (1 _gyaai’

The constant C is positive and independent of x and r.
Let us first consider the integral
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2(1-9) 2(1-9)
[ sy s ca@ [ y=a-yreotay.
0

0

Substituting y=a(1 —u) the integral on the right hand side becomes

1
C’Ar(x)xrzﬂf (1 — )™ (1 — & — 2u)r@-0-1 dy

[
1

x r(l-x)-1
Cr*x*(l—x)*f(l-——u)"”(l-kl—— u) du

]

—x
b
1 x r(1-x)
p C"r*f(l~u)”°(1+—— u) du .
J |
Since
@
rxlog(l—u) + r(1 —x) log (1 + i—_u)
-z
< re(—uw—3u?) + r(1—x) (l—t u) = —reiu?,
-z
we finally get the estimate
#(1-8) 1
f ar—y)dy C'r*fe—i'm" du .
0 8

It is clear that the right hand side tends to zero as » — oo, for any 6 > 0.
In the same way we get

1 1
1—2 re
f ay(x,y) dy < Ortat(l—a) f 14— u) (1—w)ra-2) dy
(149 x8)(1—2) x
1
< C'r? e—1ru1-2) gy
26/ (1~)

Since the right hand side tends to zero as r -~ o we conclude
o (x,y)dy >0 as r—>oo.
ly—lzas
Our theorem is proved.

Combining theorem 2.1 with theorem 1.1 we get
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CoROLLARY 2.1, For any fe € and 0<t <1 we have
(2.13) K (t,f) = Q(tn) = K(ES),
(2.14) o(t.f) £ Q(t.p) S 20(f) .

In particular 1o 18 the moment sequence of a function f e Lip(0,q) if and
only if

1
Q(t, u)\2dt
(2.15) f(—(—taﬁ—)) ?<oo, 1£g<o,
0
2(t,
(2.16) (0”) 0, (=oc0.
o<i<1
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