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CONGRUENCE PROPERTIES
AND DENSITY PROBLEMS FOR THE FOURIER
COEFFICIENTS OF MODULAR FORMS

T. HJELLE and T. KLOVE

1. Introduction.

Let .
z = e Imr>0,

o) = TI (1—27),

n=1
gopk(n) an = g(a)k,

where k is an integer. Then p_;(n)=p(n) is the number of unrestricted
partitions of n. Further, let ¢(n) be the Fourier coefficient of Klein’s
modular invariant j(z) given by

% 3
jr) = xlp(x)~* (1 +240 Y aa(n)wn> ,
n=1
where 03(n) = 34,d®. Atkin and O’Brien [2] have proposed the question:

(A) Given a,m, is p(n)=a (modm) soluble for
values of n with positive density ?

They also note that the best hope of establishing (A) is that one may
exhibit explicit congruences of the form

p(bn+c) = a (modm) .

The same questions, of course, arise for ¢(n), and indeed for the Fourier
coefficients of other modular forms and functions.

In this paper we make some contribution to the solution of these prob-
lems for p,(n) with k>0, p(n) and ¢(n), when a=0.

2. The theorems.
Dedekind’s modular form #(t) is given by
7](1) —_ eni‘r/12 (P(w) .
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Now, put

n(r)k = % T, (n) et 29minznz
ne=k/(k, 24)
where k is an integer, and (a,b) is the greatest common divisor of the
integers a,b. The 7' (n)’s have the following congruence property:

THEOREM 1. Let k be a positive integer, and let Q be a square-free number.
Then, to each prime p such that ptQ, p*=1 (mod24/(k,24)), there exists
an even integer M such that

Ti(p™-1n) = Ty(n/p) (modQ)
for all n and all m 2 0.

The 7',(n)’s are closely connected to the p,(n)’s, viz.

Ti(n) = pi(((k,24)n—k)/24) ,

1
() pu(m) = Ty((24m + )/ (k, 24))

(see lemma 4 of Klgve [3]). As an immediate consequence of Theorem 1
we therefore have

CoROLLARY 1.
Pi(P™M1n + k(pmM—1)[24) = 0 (mod Q)
for all n prime to p and all m=1.
Now, if f(n) is any arithmetical function with integral values, put
d(fim) = liminf 21 Y 1.

T—>00 nsx
f(n)=0 (mod m)

Then corollary 1 implies

COROLLARY 2.
d(p;1@Q) > 0

for all k21 and all square-free Q.
For T'_,(n) we use the special notation
T_,(n) = P(n).

We shall prove the following congruence property of P(n) (for the defini-
tion of the class of p-regular primes, see section 4):

THEOREM 2. Let Q be a product of different p-regular primes. Then to
each prime p such that ptQ, p =5, there exists an even integer L such that
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P(pmL-1Qn) = P(@n/p) (modQ)

for all n and all m = 0.

By (1), P(n) is connected to p(n) through

P(n) = p((n+1)/24), p(m) = P(24m—1).

Thus Theorem 2 implies

CorOLLARY 1. If 24S=1 (mod@), 0<S<Q, then

p(p"E 1 (@n+pS) — (pmL—1)/24) = 0 (mod Q)

for all n prime to p and all m=1.

This, in turn, gives

CorOLLARY 2. If Q is a product of different p-regular primes, then

(2) d(p|@Q) > 0.

In particular the primes
5,7,11, 13,17, 19, 29, 31, 37, 41, 43, 53, 59

are p-regular. Now the well known Ramanujan congruences for p(n)
(mod 5-7-11) imply (2) for @ =5-7-11. Further, the results of Atkin and
O’Brien [2] imply (2) for @ =13, and the results announced in Atkin [1]
imply (2) for @=17-19-23-29-31 (note that Atkin [1] has a result for
the modulus 23, which we cannot get by our methods). However, the
result for @=37-41:43-53-59 seems to be new.

Similarly, we shall prove the following congruence property for c(n)
(for the definition of the class of c-regular primes, see section 4):

THEOREM 3. Let Q be a product of different c-regular primes. Then, to
each prime p such that pt Q, there exists an integer N such that

c(p™V-1Qn) = c(@n/p) (modQ)

for all n and all m = 0.
An immediate consequence of Theorem 3 is

COROLLARY 1.
c(p™¥-1Qn) = 0 (mod Q)

for all n prime to p and all m=1.

Therefore we have
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CoROLLARY 2. If @ s a product of different c-regular primes, then
(3) d(c|®) > 0.
In particular the primes
2,3,5,7,11, 13, 17, 19, 23, 29, 31

are c-regular. Now the results of Lehmer [6] imply (3) for @ =2-3-5,
and the results of Lehner [7] imply (3) for @ =7-11. Further, the results
of Newman [8] imply (3) for @ =13, and lately Kolberg has proved a
result which implies (3) for @=17-19-23. However, the result for
@ =29-31 seems to be new.

3. Proof of Theorem 1.

Let k be an even positive integer. Then, if p is a prime such that
p?=1 (mod24/(k,24)), there exist integers 4, such that (4,,4,,...,4,,,)
=1, where a=[(k—1)/24], and

a+l
ElAa T (p>*n) + p*-2=T'(n]p*) +
20—1

+ 3 phs-sk-2a(_ 1)@-D,

8=1

(4)
(8] = ol T

= 4,T)(n)

(Theorem 6 of Klgve [3]). Here

1 if x is an integer
o) = 0 otherwise,

and [x] is the largest integer in x. A quite similar result exists, when k
is an odd positive integer (Theorem 7 of Klgve [3]).

Let now k be a positive integer and q a given prime. Then there exists
an integer b= b(p) such that 4,0 (modgq), while 4_=0 (modgq) for « > b.
Solving (4) (or the similar equation, if & is odd), we get

T (p?n) = a;(n)T(Pp®2n)+ ... +ag®) T (p~%n) (modgq),
where in particular a,(n)= —p®*-2*. Replacing n by np*-1 we obtain
T (p®1n) = a, T\ (p*3n)+ ... +ayTi(p~tn) (modg),

where now all «;=a,;(np?-1) are independent of n. This shows that for
all n the function f(r) =T, (p?~1n) is a solution of the linear recurrence
relation
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f(r) = a f(r—1)+ ... +ayf(r—2b) (modq) for r=2b.

Using now a well known result on linear recurrence, we conclude that if
p#q (so that (ay,q)=1) there exists an even integer x4 (independent of n)
such that

(5) Ty(pm-'n) = Ti(n/p) (modgq)

for all n and all m = 0.

Let now ¢,,¢,,. . .,q, be different primes, @ =¢,9,...¢, and p a prime
such that pt @, p*=1 (mod 24/(k,24)). To each g, we associate an even
integer u; given by (5). Then, with M ={u,,u,,. . .,u,} (the least common
multiple of u;,us,. . .,u,), Theorem 1 follows.

4. Proofs of Theorems 2 and 3.
The following two lemmas are due to Kolberg (4], [5]:

LemMa 1. Let g be a prime =5, and put t=(¢—1)/(¢g—1,12),
v=[(g+ 11)/24]. Then there exist constants a,, not all=0 (modq), such
that

v

ayP(qn) = E Tosrt-2(qn) (modg),

where the sum 18 empty when v=0.
LeEMMA 2. Let q be a prime, and put t=(¢q—1)/(g—1,12), r=[g/12].
Then there exist constants «;, not all=0 (modgq), such that

xoc(qn) = Z oy T'o434(qn) (modgq),

where the sum is empty when r=0.

If the set of integers @, in lemma 1 can be chosen such that a,=0
(modgq), we define ¢ as p-regular. Obviously, if g is p-regular, we get a
congruence of the form

(6) P(gn) = Ebk aart-1(qn) (modgq) .

Similarly, if the set of integers «; in lemma 2 can be chosen such that
xo==0 (modg), we define ¢ as c-regular; and if ¢ is c-regular, we get a
congruence of the form

(7) c(gn) = Zlgk 2are(qn) (modg) .

Before completing the proofs of Theorems 2 and 3 we shall give several
instances of (6) and (7) (written out in the p,-notation). We have
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p(5n+4) = 0 (mod5),
p(In+5) =0 (mod7),
p(11n+6) = 0 (mod1l).

These are the cases of (6) with v=0 and are recognized as the well known
Ramanujan congruences. Further

P(13n 4+ 6) = 6pys(13n+5) (mod13),
p(1Tn+5) = pes(1Tn+1) (mod17),
p(19n+4) = Py (192 +1) (mod19),
P(29n + 23) = TP1e,(29n + 16) (mod29) ,
p(31n+22) = 22p,,(31n+17) (mod31).

These are the cases of (6) with v=1 and are given by Kolberg [4]. Further

P(BTn+17) = py(37n+14) + 19p,,5(37Tn +11)  (mod 37) ,
(410 +12) = 35pyge(41n+ 2) + 3pype(4ln—8) (mod4l),
p(43n+9) 23P167(43n + 2) + 5pgq5(43n — 5)  (mod 43) ,
P(53n +42) = 8pgy1(53n + 29) + 14p405(53n+16) (mod 53)
P(59n + 32) = 27Pgqes(59 + 3) + 58Dy30, (59 — 26)  (mod 59) .

i

These are the cases of (6) with »=2 and seem to be new.
Similarly, we have

¢(2n) = 0 (mod2),

¢(3n) = 0 (mod3),

c(5n) = 0 (mod5),

¢(7m) = 0 (mod7),

¢(1ln) = 0 (mod1l),

c(13n) = 8pyy(13n—1) (mod13),
c(17n) = Tpge(17n—4) (mod17),
c(19n) = 4p,(19n—3) (mod19),
€(23n) = 13Pyee(23n—11) (mod23),

¢(29n) = 4p1ga(297 — T) + 23p536(29n — 14)  (mod 29) ,
¢(31n) =  Prao(31m—5) +25p,0(31n — 10) (mod31) .

The above results for ¢=2 and 3 are implied by the congruence (n+1)
¢(n)=0 (mod 24) given by Lehmer [6]. The other cases of (7) with r=0
are implied by the congruences of Lehner [7], and the cases of (7) with
r=1 are given by Kolberg [5] (the congruence ¢(13n)= —7(n) (mod13)
of Newman [8], where 7(r) is Ramanujan’s function, implies the above
result for ¢=13, as noted by Kolberg [5]). The cases of (7) with r=2
seem to be new.
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The necessary computation for establishing (6) and (7) in the cases
with v=2 and r=2 was performed by the second author on the IBM
360/50 computer at the University of Bergen.

We now turn to the proof of Theorem 2. Let ¢=13 be a p-regular
prime, and let p be a prime ¢ such that p>=1 (mod24/(24kt — 1,24))
(k=1,...,v), thatis, p= 5. To each of the functions 7'y, ,,_,(n) (k=1,...,)
we associate an even integer u;, given by (5). Put A={u;, ue,....1,};
then we have

P(pmi-lgqn) = Z b1 T agzq-1(p™4 1 qn)

k=1

= kE_lkazm_l(qn/p) (modq) ,

that is,
(8) P(pm4-1gn) = P(qn[p) (modg) .

If g <11 is a p-regular prime, then P(gn)=0 (modgq), so that (8) is obvious
for any integral A.

Let now ¢,,9,...,9, be different p-regular primes, @=gq,9,...q,
and p a prime such that pt@, p=5. Put L={A4,,4,,....4,}, where A;
is an even integer associated to ¢; through (8), and Theorem 2 follows.

Starting from lemma 2, Theorem 3 is proved in a similar way.
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