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ON PARTIAL ORDERINGS OF NORMED SPACES

A.J. ELLIS

1. Introduction.

We discuss some ways in which an arbitrary normed space can be
partially ordered so that the norm, or at least the topology is deter-
mined by the ordering. The orderings which we discuss induce either
an order unit norm topology or a base norm topology or both. In this
connection we characterise vertices of unit balls of normed spaces,
and also show that the unique decomposition property for base normed
spaces does not imply the same property for the second dual space.
We study finally the determining factors for the space of normal linear
functionals on an order unit normed Banach dual space.

2. 0.U.B.-Spaces.

By a partially ordered mormed space we mean a real normed space
partially ordered by a proper cone containing non-zero elements. We
use the notation and terminology of [7].

We call a partially ordered normed space an O.U.B.-space if its ordering
induces both an order unit norm and a base norm, both of which are
equivalent to the original norm. Such spaces are very numerous.

In fact let X be any real normed space, let e € X with |le|| =1, and let
A be a real number with 1=1. Choose fe X* such that f(e)=||f||=1,
and define

K(fA) ={yeX: lyl=2f()}.

Then (cf. [1]) K(f,A) is a closed non-empty cone generated by the base
B(f,A)=K (f,A)nf-1(1), and if 1>1 then e is an interior point of K (f,1)
and is thus an order unit for the partial ordering of X induced by this
cone. In the case A>1 it is easily verified that the sets [—e,e] and
co(B(f,A)u— B(f,1)) are both bounded and have non-empty interiors;
hence for this ordering X is an O.U.B.-space.

We now list some facts concerning O.U.B.-spaces, most of which
are readily obtained from known results. We will assume that both
the dual space X* of X and the space B(X) of bounded linear operators
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in X have the natural partial orderings induced by the ordering of X.
An element = of a convex subset C of X is said to be strongly exposed
in C if there exists an fe X* such that f(z) <f(y) for all y+z in C and
such that whenever {z,} is a sequence in C' with f(z,) - f(x) then
[ln — (| = 0.

THEOREM 1. Let X be a partially ordered Banach space with closed
positive cone K. Then the following statements are equivalent:

(i) X is an O.U.B.-space;
(ii) K s normal, has non-empty interior and 0 is a strongly exposed
point of K ;
(ili) X* 48 an O.U.B.-space with a w*-locally compact positive cone;
(iv) B(X) i¢s an O.U.B.-space whose positive cone possesses a base which
18 closed in the strong operator topology.

Proor. The equivalence of statements (i), (iii) and (iv) follows readily
from [7], [8]. We prove the equivalence of (i) and (ii).

If statement (i) holds then certainly the first two conditions of (ii)
are satisfied. Moreover, if f is a strictly positive linear functional on X
then f defines a base norm ||- ||, in X equivalent to the original norm and
such that f(x)=|x|, for all x € K. Consequently 0 is a strongly exposed
point in K supported by f, and so statement (ii) holds.

Conversely suppose that statement (ii) holds. Then the first two
conditions immediately imply that X possesses an equivalent order
unit norm. Since 0 is a strongly exposed point of K let fe X* be the
corresponding functional. It is evident that f is strictly positive, and so
the set B=Knf-1(1) is a base for K.

Define x=inf{f(z):x € K, |lz|=1} and f=sup{f(z):x € K, [z|=1}.
If =0 then there exists a sequence {z,} in K, with |jz,||=1 for each =,
and such that f(z,) — 0, and this clearly contradicts the properties of f.
If xe B it now follows that f-!'<|||<«~l. The second of these in-
equalities shows that S=co(Bu—B) is bounded while the first in-
equality, together with the fact that the positive cone in an order unit
normed space is strictly generating, shows that S has non-empty interior.
Therefore X has an equivalent base norm, and so (i) holds.

The positive cone in C[0,1] is an example where 0 is an exposed
point but not a strongly exposed point.

It is not difficult to see that a lattice ordered O.U.B.-space must be
finite dimensional. In fact such a space would be an AL-space whose
positive cone has non-empty interior (cf. [4]). Conversely, it is well
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known that a finite dimensional vector lattice has the properties of an
0.U.B.-space.

3. Vertices.

Let X be a real Banach space with unit ball §, and let e be a boundary
point of S. We consider the possibility of defining a partial ordering
in X for which e is an order unit inducing a norm in X dominating,
or dominated by, the original norm. We define

K, = {y=ABe+x)e X : 120, a1},
K, = {y=AMe+x)eX: 420, |z||s1},
H = {feX*: |fl=f(e)}.

It is easy to verify that K, and H are always cones, while K, is a cone
if and only if e is an extreme point of §; the cone K, has been used by
several authors (e.g. Lindenstrauss [10]). Bohnenblust and Karlin [2]
defined e to be a wvertex of S if H forms a total subset of X*. We say
that e is a special vertex of S if H generates X*.

Lindenstrauss essentially proved (cf. [10, Theorem 4.7]) that X can
be partially ordered so that e is an order unit defining the norm in X
if and only if

S = (28S+e)n (28—e).

In fact if S satisfies this relation then the cone K, defines such an ordering.

THEOREM 2. (i) e is an order unit for the partial ordering of X induced
by K, and e defines an order unit norm equivalent to, and dominating,
the original norm in X. Moreover, for this ordering, X is an 0.U.B.-space.

(i) If e is a vertex of S then, for the partial ordering of X induced by K,,
e is an order unit defining a morm dominated by the original norm in X,
if e is a special vertex of S then the two norms are equivalent, and if H has
non-empty interior then X is an 0.U.B.-space.

Conversely if, for some partial ordering of X, e defines an order unit
norm dominated by the original norm then e is a vertex of S; if the two
norms are equivalent then e is a special vertex of S, and if X is an O.U.B.-
space then H has non-empty interior.

Proor. (i) Let X be partially ordered by K,. If 3ye S then we
have e+y=13(3¢e+3y) € K;, and hence Sc3[—e,e]. Suppose now that
—esy=<e. Then

y = BM—Ne+izry = (1-31)e—A,x,,
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with 4,,4,20 and |[jz,]|,|jz,]|< 1. If either A, <} or 4,<} it follows easily
that |y]|<1; hence we can suppose that 1,2% and A,=2% We now
have |y||<44,—1 and |ly|| < 44,—1, and hence |jy|| <2(1;+4,)—1. Since

(2-3(l+A)))e = My + Ay,
it follows that
[2=3(A+4A)| £ A41+4,,

and therefore 4, +1,=<1; this gives |jy||<1, and so we have shown that
[—e,e]lsS.

To prove that X is an O.U.B.-space it is sufficient, by Theorem 1,
to show that O is strongly exposed in K,. Choose fe X* such that
Ifll=f(e)=1, and suppose that {y,} is a sequence in K, such that
f(y,) > 0. Then y,=4,(3e+2x,), with 1,20, [lz,||<1, and so

Therefore 4, — 0 and, since ||y,| <44, , it follows that y, — 0.
(ii) If fe H and y=A(e+x) € K, then

f@) = A(If|+f(x) = 0.

Conversely if fe X* is positive on K, then f(e+2)=0 for all x€ S,
and it follows that fe H. Thus H is the dual cone of K,.

If e is a vertex of S then the subdual wedge K of H is a proper cone,
and K is the closure of K, (cf. [7]). If x € S then we have e+x € K, K,
and therefore e is an order unit for both cones K, and K. Since K is
closed it is an archimedean cone, and this implies that K, is almost
archimedean. It is not difficult to verify that the two order unit norms
which e defines in X relative to the cones K and K, are equal and are
dominated by the original norm.

Now suppose that e is a special vertex of S. Then the dual space
H—H of X for its order unit norm coincides with X*, and since the
two norms are comparable on X it follows from the closed graph theorem
that they are equivalent. Therefore X* has an equivalent base norm
for the partial ordering defined by H, and hence if H has non-empty
interior it follows from Theorem 1 that X is an O.U.B.-space with
positive cone K. It is now evident that X is an O.U.B.-space for the
positive cone K,.

Finally suppose that there exists a partial ordering of X for which
e is an order unit defining a norm ||-||, in X dominated by the original
norm. Then the ||-|,-dual space L of X forms a total subspace of X*.
Since a linear functional f is positive on X if and only if f(e)=]|f|,,
it is clear that H contains the dual cone in L and hence H is a total
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subset of X*. If the two norms are equivalent then L=X*, and so
H generates X*. If X is an O.U.B.-space then so is X*, and therefore
the interior of H is non-empty.

If X is any infinite-dimensional A M-space with order unit e, then
e is a special vertex of S while the interior of H is empty. We will show
below the notions of vertex and special vertex are generally distinct.

For an arbitrary real normed space X we write ¥=X x R, where
R denotes the real numbers, and we identify X with the subspace X x {0}
of Y. If Y is partially ordered by the cone

P={@heY: o<t}

then it is easy to see that (0,1) is an order unit for Y which defines the
norm ||(z,t)|l, =|x||+ |¢]. Moreover the set

B = {(z,1): || <1}
is a base for P which defines in Y the norm
(2, 8)lloe = max {[jx]l, [¢]} .

Since these norms coincide on X it follows that X can be embedded as
a normed subspace of co-dimension one of an O.U.B.-space with either
a base norm or an order unit norm.

For example let X be the space C[0,1] and let ||-|| be the supremum
norm and ||+||"" the L;-norm in X. These norms define two non-equivalent
order unit norms in Y and it follows easily from Theorem 2 that (0,1)
is a vertex but not a special vertex of the unit ball in Y for the first
order unit norm.

4. The unique decomposition property for base normed spaces.

A base normed space Y is said to have the unique decomposition property
if each element y has a unique positive decomposition of the form
Y=Y1— Yy, With

Iyl = Nyl + llyall -

It was proved in [9] that Y has the unique decomposition property
if and only if its base B has the property that whenever A20 and ye ¥
then the set Bn(y+ AB) is either empty, or a single point, or it contains
a set of the form y,+uB for some y, € ¥ and some u>0.

Now if Y is as in the previous section and is equipped with its base
norm ||+|l,, then the result just quoted easily shows that Y has the
unique decomposition property if and only if S has the intersection
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property in X. The following theorem is therefore a fairly direct con-
sequence.

THEOREM 3. Y has the unique decomposition property if and only if
X is a strictly convex normed space.

Since Day [3] has given an example of a strictly convex Banach
space whose dual space is not smooth, and hence whose second dual
space is not strictly convex, we obtain immediately the following result.

CoroLLARY. There exists a base normed Banach space which has the
unique decomposition property but whose second dual space does not.

5. Normal functionals.

Let X denote a base normed Banach space with closed positive cone
K and with dual space X* whose norm is defined by an order unit e.
We require the following known result.

Lemma. Each norm-bounded monotonic increasing net in X* converges
in the w*-topology to its least wpper bound.

Proor. Let {f,} be a net in X* satisfying the hypotheses. Then
this net is conditionally w*-compact. Moreover {f,} is a w*-Cauchy
net: in fact if x € K then the net {f,(x)} of real numbers is bounded
and monotonic increasing, and therefore converges to its supremum,
and since K generates X the result follows. Therefore {f,} converges
in the w*-topology to a limit f such that f(x)=sup,{f.(x)} for each
z € K. Since X* has the dual ordering it follows that f is the least upper
bound of {f,}. (This proof is based on [11, p. 1.8].)

A positive linear functional » on X* is said to be normal if

sup, {n(f.)} = 7 (sup, {f,})

whenever {f,} is a norm bounded monotonic increasing net in X*.
A linear functional » on X* is normal if n=n,—n,, where », and #,
are both positive and normal. Since every positive linear functional
on X* is continuous, the normal functionals form a linear subspace
of X** which, by the above lemma, contains the canonical embedding
of X.

The determining factors for the normal functionals on X* are, of
course, the norm, the order unit and the ordering. Since any two order
units which define norms in X* relative to the same ordering necessarily
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define the same topology, the normal functionals are in a sense determined
by the ordering alone. On the other hand since the order unit and norm
together determine the ordering of X*, they together determine the
normal functionals. We give below a class of spaces X* in which the
normal functionals are determined by the norm alone, and we also give
a class of spaces for which this is not the case.

Let S be a compact hausdorff space and C(S) the Banach space of
all real-valued continuous functions on § with the supremum norm.
Dixmier [5] proved that C(S) is a Banach dual space if and only if §
is hyperstonean, and that in this case the (unique) subdual space consists
of the normal functionals on C(S) relative to the natural ordering. We
require these facts for the following theorem.

THEOREM 4. Let S be a hyperstonean space and N the subdual Banach
space of C(8S).

(1) If P is a cone in C(S) with respect to which the norm in C(S) is an
order unit norm, then the space of normal functionals on C(S) relative to
P coincides with N.

(il) The space Y =C(S)x R can be ordered in two ways such that the
norm ||(.,.)|; in Y is an order unit norm, but such that the space of normal
SJunctionals relative to the first ordering is N x R while relative to the second
ordering every continuous linear functional is normal.

Proor. (i) Let e denote the order unit such that the order interval
relative to P[—e,e] is precisely the unit ball U of C(S). Then e is an
extreme point of U, and this clearly implies that |¢|=1. Therefore if

S, ={seS: es)=1} and S, = {seS: e(s)=-1},

then S=8,US, and §,, S, are compact and disjoint. Since U +e=[0, 2¢]
it follows that fe C(S) belongs to P if and only if f(s)=20 for all s€ §,
and f(s)<0 for all sed,.

By the lemma every functional in N is normal relative to P, and
so to prove (i) it will be sufficient to show that each ¢ which is normal
and positive relative to P belongs to N. Define measures ¢, and ¢,
on S by the relations

dp, = pdp and  dg, = y,dy,

where y;, y, are the characteristic functions of §,, S, respectively.
Then we have ¢p=¢, +¢, and it is clear that ¢, and —¢, are positive
measures on S.

Let {f,} be a norm bounded net in C(S) monotonically increasing in
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the natural ordering. For each « define g,=fy, and h,=f,y,. Then
evidently {g,—%,} is norm bounded and monotonic increasing relative
to P, and its supremum is sup, {g,} —sup,{k,}. Since ¢ is positive and
normal relative to P we have

(1) @ (sup,{g.} —sup,{k,}) = sup,{p(g.—%,)}
= 8sup, {(Pl (fa)} + sup, { — Qg (fa)} .

However, because ¢, and ¢, are positive relative to P, we also have

@, (sup, {f,}) = sup,{p,(f,)}
and

( - ‘Pz) (Supa {fa}) 2 Supa {( - ‘Pz) (fa)} H

and these inequalities must in fact be equalities since (1) holds. There-
fore ¢, and —¢, € N, and this gives p e N.

(ii) We note first that Y is the Banach dual space of N x R endowed
with the norm ||(.,.)|l,. Let e; be the extreme point (1,0) of the unit
ball V of Y, and let P; be the cone in Y defined by

P, = {Me;+y): A20,ye V}.
If
(fit) e 2V —e)) n(2V +ey),

then |f+1]|+|¢|<2 and hence ||f||+[t|<1. Therefore
2V —-e)n(2V+e) =V,

and so it follows from the remarks preceding Theorem 2 that the norm
in Y is an order unit norm relative to the order unit e, and the ordering
defined by P;.

Since all elements of the form (f,0) with f> 0 belong to P,, any posi-
tive linear functional in ¥ must have the form (g¢,s) where ¢ is positive
in C(S)*. Now if {f,} is a norm bounded monotonic increasing net in
C(S) then {(f,,0)} is a similar net in ¥ and therefore, if (¢,s) is a posi-
tive normal functional on Y, we have

S\lpa {(P(fa)} = (‘P"S) (Supa {(frx’ 0)}) *

By the lemma {(f,,0)} is o(Y,N x R)-convergent to sup,{(f,,0)} and
also {f,} is o(C(S),N)-convergent to sup,{f,}. It is clear therefore that

Sup, {(fm 0)} = (sup, {fa}’ 0),
sup, {¢(f,)} = ¢ (sup,{f.}) -

and so we have
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Hence ¢ € N so that (p,s) e Nx R. Since all functionals in N x R are
normal on Y it follows that N x R is the space of normal functionals
on Y relative to P,.

Now let

Py ={(f)eY: |fist}.

Then, as we have noted above, relative to the ordering induced by P,
the space Y has its norm defined by the order unit e,=(0,1). If M
denotes the space of functionals on Y which are normal relative to P,,
then we show that M is an order ideal in Y* with respect to the dual
ordering.

If ne M and w € Y* with 0 < w <, then in order to prove that w e M
it will be sufficient to show that sup,{w(y,)} =0 whenever {y,} is a norm
bounded net in Y which, relative to P,, is monotonic increasing with
sup,{y,}=0. However in this situation we have y,<0 for each «, and
hence

7Y, S o(y,) 0.

Since sup, {n(y,)} =0 it follows that sup,{w(y,)}=0, and hence M is an
order ideal in Y*.

It is easily verified that the dual cone in Y* of P, is {(¢,s): ||g| < s},
and that the element (0,1) € M is an interior point of this cone. There-
fore M is an order ideal in Y* containing an order unit for Y*, and so
it follows that M = Y'*.
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