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WEIGHTED MEAN APPROXIMATION IN
CARATHEODORY REGIONS

LARS INGE HEDBERG

A region D in the complex plane is called Carathéodory if it is simply
connected, bounded, and if its boundary, D, coincides with the boundary
of the infinite component of the complement of the closure of D.

If D is a region and a(z) a continuous, positive function in D, we
denote by HP(a; D), 1<p<oco, the Banach space of all functions A(z)
which are analytic in D and satisfy

Al = [ bGP @) dd < oo,
D

where dA denotes plane Lebesgue measure.

The purpose of this note is to give conditions on the weight a for the
polynomials to be dense in H?(a; D), D Carathéodory. For a survey of
earlier results, see Mergeljan [3]. See also Hedberg [1] and H. S. Shapiro
[4], [6]. We give general, sufficient conditions both in the case when
a is the modulus of an analytic function (Theorems 2, 3, 4) and in the
general case (Theorem 5). Theorem 5 is a considerable sharpening of
Theorem 1 in [1].

In [1] we also gave a result on generators in the Banach algebra
11(0, 00). This result is improved in Corollary 2.

Acknowledgements. In a personal communication F.S. Lisin has
informed me that he has proved Theorem 5 by a method different
from the present one. I am grateful to him for communicating this
result to me. See [6].

I am indebted to K.-O. Widman for many stimulating discussions
on the topics treated here.

In what follows D is always a Carathéodory region. We denote by
Pr(a; D) the closure of the polynomials in H?(a; D). If f(z) is any
function which is defined in D, we extend its domain of definition to
the whole plane by defining f(2)=0, z ¢ D.

_—Received October 1, 1967.

Math, Scand. 23 — 8



114 LARS INGE HEDBERG

We shall start by proving the following general theorem, from which
our other results will be deduced.

THEOREM 1. Let a(z) > 0 be continuous and integrable in D. Then every
Junction b in HP(a; D), p> 1, which satisfies

r>0

(1) sup — | |k(z)|? d4, a(z+w)d4,, < o,
L herwas, [

lw|=r
belongs to PP(a; D), and every function h in HY(a; D), which satisfies

(1) Df Ih(2)] dA, [sup; [ a(z+w)dA.,,]<oo,

r>0 [wi<r
belongs to Pl(a; D).
The proof depends on the following well-known lemma of Mergeljan [3].
Lemma 1. Let §(z) denote the distance from z € D to dD. Then for every

z € D there is a polynomial Q, and there are absolute constants C; and C,
such that for all L € D

‘————Q;(&)l b3 IC
and

1Q0)] = Cofd(2)

We also need the following elementary lemma, which is proved by
an integration by parts.

Levma 2. If f= 0 18 a function such that for some C >0

r

ftf(t) dt < Cr2, 0<r=r,,
0

then
r
ff(t) dt < 20r, O0<rsr,,
0

and

I 4C
f—;—« =—, O<r=r.
/ r



WEIGHTED MEAN APPROXIMATION IN CARATHEODORY REGIONS 115

Proor or THEOREM 1. Suppose ke HP(a; D) satisfies (1) or (1').
We are required to prove that if g € L?(a; D), 1/p+1/p’=1, is such
that

[e@ @ at aa = o
D

for all polynomials ¢, then also

fh(z)g(—z)a(z) dd = 0.

Let D,={z€ D; q<68(z)<2q}, ¢>0, and put u(z)=g(z)a(z). It follows
from Holder’s inequality that u is integrable.
We proved in [1], p. 544, that it is sufficient to show that

Tim * h(z)olAszC)dAc —0.
B &7

q—>0 q

This was proved under the assumption that u is smooth, but there
is no difficulty in extending it to the general case when y is only inte-
grable.

Now assume that [pQudA=0 for all polynomials ¢. Then, for
ze D,, Lemma 1 gives

’fadA

[uo) (= -0 ad,| =
D

1m(@)l
[c—2p

liA

4C, ¢>
lt—=lz¢

" dd, + (1+Cy) !

It is therefore enough to show that

1
2) lim - [ k()] dA, f Iz +w)|dAw —0,
q—>0 q -Dq wi=q |
and
. lu(z+w)|
(3) lim ¢ [ |A(z)| d4, f o 1w =0
=0 p, lwizg

Suppose p>1. Choose ¢ > 0 arbitrarily, and then choose g,> 0 so that

19(2)|”" a(z) d4 < .

#2)=340
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Consider (2). By changing the order of integration and introducing
polar coordinates for w, we obtain by Lemma 2 for ¢<g,

et
[l

a4,
w | et da,
(z)<2q0

épfq e da, |

|wl=gq

IIA

1

qluﬂéq
1

< 2sup — fdAw f 1h(2) ulz+w)| dA, .

"
TS wisr s@S20

By the Holder inequality this is less than

1/p
2{sup% [ a4, | |h<z>|pa<z+w)dAz} :

"
L R O T

1 1/p
. [sup it dA f 19 (z+w)|?" a(z+w) dAzl

2 w
;
e 82)=2g0

l 1 J‘ J 1/p
< 21sup — | |h(z)|P dA, a(z+w) dAwI .
* D

rsg T |lw|<r
1 1/p’
. {sup — f d4,, f |9(2)?" a(z) dAz} < Cetiv’

¥
=T e #5340

where the last inequality follows from our assumptions. Since ¢ is
arbitrary, this proves (2).
If we consider (3) we similarly obtain for ¢ <gq,

q f k()] dA, f _Iﬁ(z+3wﬂ dd, < CeW¥,
D, gslw|=qo [l
and since
. (2 +w)|
lim ¢ f e dd, [ T dd, = 0,
=0 p, w20

and ¢ is arbitrary, this proves Theorem 1 for p> 1.
If p=1 Holder’s inequality is replaced by simpler estimates.
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CoROLLARY 1. Let a be as in Theorem 1. If, in addition, a € L3(D) for
some s, 1 <8< oo, then every hin H?(a; D)nLP¥(D), 1<p<oo, 1/s+1/s'=1,
belongs to P?(a; D).

Proor. The corollary is obvious if s=c0. Assume 1<s<oco, and let

1
a*(z) = sup — f a(z+w)dd,,, zeD.

r
r>0 |wjr

Then, by Hardy’s maximal theorem, a* € L3(D) if a € L3(D). Thus, by
Holder’s inequality, (1) or (1’) is satisfied by all k e L?$'(D).

ReMARK. Corollary 1 contains in particular the classical theorem of
Farrell and Markugevi¢ that P?(1; D)=H?(1; D). See [2, p. 112].
TaEOREM 2. Let x(2)+0 be analytic in D. Then
P?(||; D) = HP(|a|; D), 1=p<eo,
if for some 6 >0

(4) [ a1+ 1ap9) d4 < .
D

This theorem is a consequence of the following more general result.
THEOREM 3. Let x(z)+0 be analytic and integrable in D. Then
Pr(|a|; D) = H?(l«[; D), 1<p<eo,
if for some €¢>0
(5)
and

f a(z4+w)|d4,, < «,
wjsr

b J‘Ioc(fi)l"

PY|«|; D) = HY(|«|; D)
if for some >0

1 1
(5") deAz{sup = f 10‘(2+w)|dAw] < o0

r>0 |w| sr

Proor OF THEOREM 3. Since « has no zeros, we can define a regular
branch of a* for all . To prove the theorem it is enough to show that
a1 ¢ P?(|x|; D). (See [2, p. 132]). In fact, if x~/? € PP(|«[; D), then
so does Qa-1/» for every polynomial @, and the approximation of %
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in H?(|«|; D) by functions Qx-1/? is equivalent to the approximation
of ha'/? in H?(1; D) by polynomials.
We use an idea due to H. S. Shapiro [4, p. 327]. Suppose (5) or (5)
is satisfied for some ¢>0. Then, by Theorem 1, a~*? ¢ P?(|«|; D).
We shall show that if «-@-#/7 ¢ Pr(|«|; D) for some 4, 0<A<1, then
also a~@-41-9/p e Pp(|«|; D). It is clearly sufficient for this to show
that there are polynomials @ such that

floc‘(l‘m“»/p-Qd‘(l_l)/pip x| dA = fl“_k/p_le |x|* dA
D D

is arbitrarily small. But this follows from Theorem 1 applied to the
weight |x|, for by Hélder’s inequality

[aa, [ @i ixe+u)tda,
D lwi=r

a 1-2
< ‘fdAz f |(2)]-* |(z + w))| dAw} [fdAz j dAwl
D lwjsr D lwjsr
< Const. r22y2-21
by (5), and similarly for p=1.
It follows by induction that «—1-0-9"2 ¢ P?(|x|; D) for all positive

integers n.
But by Lebesgue’s theorem on dominated convergence

n—»oo

lim [ |u-t7 —a-0-0-M}p || dA = 0,
D

for the integrand tends to zero pointwise, and
|oo| A= |x| = [x|0-9" < 14 |«].
This proves the theorem.

REMARK. A similar argument shows that in H. S. Shapiro [4],
Theorem 1, his condition (2) is redundant.

Proor or THEOREM 2. Let

1
o*e) = sup — [ |az+w)| dd,,,

r>0 [wisr

and assume that (4) is satisfied for some > 0. Then (5) or (5') is satis-
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fied for £<6%/(1+9), by Hardy’s maximal theorem and Holder’s in-
equality.

If « is bounded we can also prove the following theorem, which
depends only on the Farrell-MarkuSevi¢ theorem. Since «(z)+0 we
can write «=e#, where § is an analytic function.

THEOREM 4. Let 8 be analytic in D, and assume |x(z)| = |e#®| <1 in D.
Then
Pr(la|; D) = HP(lo|; D), 1=p<oo,

if there are positive constants C; and Cy so that
(6) Imp(z)] < C,Ref(2)+C,, zeD.

Proor. It is clear from (6) that " e H?(|«|; D) for all positive in-
tegers n. We claim that also " e P?(|«x|; D). We show this first for
n=1.

The assumption implies that Ref>0 in D. Thus the function y=

(B—1)/(B+ 1) is bounded by 1 in D, and hence, by the Farrell-Markusevi¢
theorem, »* € P?(|«|; D) for all positive integers ». But

B = (L+p)f(1-p) = 1+2

and therefore it is enough to show that

Y,

HM8

»
lim,,_, ., f x| dA = 0.

D

m
p-1-227

This follows, however, from Lebesgue’s theorem on dominated con-
vergence, for

m
‘Zr’
1

which is a bounded function, by (6).
Now assume that " € P?(|x|; D) for some positive integer n. Then
also g+l e PP(|«|; D), for if @ is any polynomial,

[18v1-@prie (s a4 = [ 16— Qi 1B |l 44,
D D

D
ol < 2|al/|]1—y|P = [1+pi? exp(—Rep),

which can be made arbitrarily small, by the above argument applied to
the bounded weight |8|"? |«x|. It follows by induction that g™ € P?(|«|; D)
for all positive integers n, and hence also that the sum
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belongs to PP(|«|; D) for all N and ¢{. We claim that
limy,_,, f lat—Qul? |x| dA = 0 for 0<t<1/(C,+1)p.

Again, this follows from Lebesgue’s theorem, for limy_, . @uy(z)=x(z)~
pointwise, and by (6)

N tn
Qnl £ 3 - ((CL+1)Rep+Cy)
5 n!

fIA

eogt | zx|_(01+m < e05;/(01+1)p(1 + | cxl”l/p) .

Thus,
o HCHDP e Pr(|«|; D).

To complete the proof we now only have to repeat the induction in
Theorem 3 with ¢=1/(C;+1), applying the above argument to the
weight |«|*.

ExampLE. Let D be the unit disc and

Then the above theorem shows that P?(|x|; D)= HP(|x|; D) for 0<t<1.
On the other hand, Keldy8 has shown (see [2, p. 134]) that P2(|x|; D)+
H?(|«|; D) for t=1, and the proof extends to p=+ 2.

We shall now consider general weights. We denote by f a Riemann
mapping function which maps D onto the unit disc U, and we denote
by ¢ the inverse to f.

THEOREM 5. Let a(z) >0 be continuous in D. Then
Pr(a; D) = HP(a; D), 1=p<o,

if a € L3(D) for some s> 1, and if ao@ e LYU) is such that PP(aogp; U)=
HrP(aop; U).

Proor. The proof is similar to that of Theorem 3. Suppose a satis-
fies the above conditions. Since f is univalent, f'(2)+0, and we can
therefore define regular branches of (f’)* and (¢’)* for all 1.

It is enough to show that for every integer n=0 we have
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fr(f')¥? e Pr(a; D). (See [2, p.136]). Indeed, if % e H?(a; D), and Q
is a polynomial,

[1h—ansyep ada = [ ) =»-ee al2da
D D

= [10on) (@) - QP @og) da.,
U
which can be made arbitrarily small by the assumptions, since
[1em @y @op)dd = [pirada < .
U D

Then it is clearly also enough to prove that (1+f)(f')?® € P?(a; D),
n20. Wefix n and put (1 +f)*(f')¥?=g. Then g(z)+ 0, and ¢* is analytic
for all . We know that

f|g|1’dA - f 14w d4, < oo,
D U

s0, by Corollary 1, gi-Vse PP(a; D).

We claim that if g'-*e PP(a; D) for some A, 0<A<1, then also
g*~*¢e PP(a; D). Put é=2A(s—1)/s. Then, for every polynomial ¢ we
find

[lg-@gtpada = [1g-Qplgre-radd.
D D
Here ¢° € L?/%(D), so the assertion follows from Corollary 1, if we show

that the weight |g|P0-Pg e L1/0-9),
We obtain by Holder’s inequality

f [gPA-D g 10D g4 = f |g? a|@-D/0-0) qasa-» d 4
D b

(A-8)/(1-9)

(1-A/(1-8)
< |f lg? | dAI “.a”‘—‘” dA] ,
D D

which is finite, since A/(A—d0)=s. It follows by induction that
gi-V&" € Pp(a; D) for all positive integers n.
Now Lebesgue’s theorem on dominated convergence shows that

lim ey [ lg—g*47P adA = 0,
D
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for the integrand converges to 0 pointwise, and |g|P—?/s"< 1+ |g|P.
This proves the theorem.

In [1] we also studied the problem of finding generators of the Banach
algebra 11(0,c0), or, equivalently, the algebra 4 of all analytic functions,
g(w) =359, w", in the unit dise, such that ||g]|=35|g,| is finite. See [1]
for references. We can now improve the result given there.

COROLLARY 2. A function p(w)=3 @, w" is a generator for A if it is
untvalent in |w| <1, and if, for some >0,

%n(logn)1+e lpal2 < oo

The proof is the same as in [1].
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