WEIGHTED MEAN APPROXIMATION IN CARATHÉODORY REGIONS

LARS INGE HEDBERG

A region D in the complex plane is called Carathéodory if it is simply connected, bounded, and if its boundary, ∂D , coincides with the boundary of the infinite component of the complement of the closure of D.

If D is a region and a(z) a continuous, positive function in D, we denote by $H^p(a; D)$, $1 \le p < \infty$, the Banach space of all functions h(z) which are analytic in D and satisfy

$$||h||_a^p = \int_D |h(z)|^p a(z) dA < \infty,$$

where dA denotes plane Lebesgue measure.

The purpose of this note is to give conditions on the weight a for the polynomials to be dense in $H^p(a; D)$, D Carathéodory. For a survey of earlier results, see Mergeljan [3]. See also Hedberg [1] and H. S. Shapiro [4], [5]. We give general, sufficient conditions both in the case when a is the modulus of an analytic function (Theorems 2, 3, 4) and in the general case (Theorem 5). Theorem 5 is a considerable sharpening of Theorem 1 in [1].

In [1] we also gave a result on generators in the Banach algebra $l^1(0, \infty)$. This result is improved in Corollary 2.

Acknowledgements. In a personal communication F. S. Lisin has informed me that he has proved Theorem 5 by a method different from the present one. I am grateful to him for communicating this result to me. See [6].

I am indebted to K.-O. Widman for many stimulating discussions on the topics treated here.

In what follows D is always a Carathéodory region. We denote by $P^p(a; D)$ the closure of the polynomials in $H^p(a; D)$. If f(z) is any function which is defined in D, we extend its domain of definition to the whole plane by defining f(z) = 0, $z \notin D$.

Received October 1, 1967.

We shall start by proving the following general theorem, from which our other results will be deduced.

THEOREM 1. Let a(z) > 0 be continuous and integrable in D. Then every function h in $H^p(a; D)$, p > 1, which satisfies

(1)
$$\sup_{r>0} \frac{1}{r^2} \int_{D} |h(z)|^p dA_z \int_{|w| \le r} a(z+w) dA_w < \infty ,$$

belongs to $P^p(a; D)$, and every function h in $H^1(a; D)$, which satisfies

$$(1') \qquad \int\limits_{D} |h(z)| \ dA_z \left\{ \sup_{r>0} \frac{1}{r^2} \int\limits_{|w| \le r} a(z+w) \ dA_w \right\} < \infty ,$$

belongs to $P^1(a; D)$.

The proof depends on the following well-known lemma of Mergeljan [3].

LEMMA 1. Let $\delta(z)$ denote the distance from $z \in D$ to ∂D . Then for every $z \in D$ there is a polynomial Q_z and there are absolute constants C_1 and C_2 such that for all $\zeta \in D$

$$\left|\frac{1}{\zeta - z} - Q_z(\zeta)\right| \leq \frac{C_1 \delta^2(z)}{|\zeta - z|^3}$$

and

$$|Q_z(\zeta)| \leq C_2/\delta(z)$$
.

We also need the following elementary lemma, which is proved by an integration by parts.

LEMMA 2. If $f \ge 0$ is a function such that for some C > 0

$$\int_{0}^{r} t f(t) dt \leq Cr^{2}, \quad 0 < r \leq r_{0},$$

then

$$\int_{0}^{r} f(t) dt \leq 2Cr, \quad 0 < r \leq r_{0},$$

and

$$\int\limits_{-t^2}^{r_0} \frac{f(t)}{t^2} \, dt \, \leqq \frac{4C}{r}, \quad 0 < r \leqq r_0 \; .$$

PROOF OF THEOREM 1. Suppose $h \in H^p(a; D)$ satisfies (1) or (1'). We are required to prove that if $g \in L^{p'}(a; D)$, 1/p + 1/p' = 1, is such that

$$\int\limits_{D} Q(z) \; \overline{g(z)} \; a(z) \; dA = 0$$

for all polynomials Q, then also

$$\int\limits_{D} h(z) \ \overline{g(z)} \ a(z) \ dA = 0 .$$

Let $D_q = \{z \in D : q \le \delta(z) \le 2q\}$, q > 0, and put $\mu(z) = \overline{g(z)}a(z)$. It follows from Hölder's inequality that μ is integrable.

We proved in [1], p. 544, that it is sufficient to show that

$$\lim_{q\to 0} \frac{1}{q} \int\limits_{D_q} h(z) \, dA_z \int\limits_{D} \frac{\mu(\zeta)}{\zeta - z} \, dA_\zeta = 0 \; . \label{eq:limit_def}$$

This was proved under the assumption that μ is smooth, but there is no difficulty in extending it to the general case when μ is only integrable.

Now assume that $\int_D Q \mu \, dA = 0$ for all polynomials Q. Then, for $z \in D_q$, Lemma 1 gives

$$\begin{split} \left| \int\limits_{D} \frac{\mu(\zeta)}{\zeta - z} dA \, \right| &= \left| \int\limits_{D} \mu(\zeta) \left(\frac{1}{\zeta - z} - Q_z(\zeta) \right) dA_{\zeta} \right| \leq \\ &\leq 4C_1 q^2 \int\limits_{|\xi - z| \geq q} \frac{|\mu(\zeta)|}{|\zeta - z|^3} dA_{\zeta} + (1 + C_2) \int\limits_{|\zeta - z| \leq q} \frac{|\mu(\zeta)|}{|\zeta - z|} dA_{\zeta} \,. \end{split}$$

It is therefore enough to show that

(2)
$$\lim_{q\to 0} \frac{1}{q} \int_{D_q} |h(z)| dA_z \int_{|w| \le q} \frac{|\mu(z+w)|}{|w|} dA_w = 0,$$

and

(3)
$$\lim_{q\to 0} q \int_{D_q} |h(z)| dA_z \int_{|w|\geq q} \frac{|\mu(z+w)|}{|w|^3} dA_w = 0.$$

Suppose p>1. Choose $\varepsilon>0$ arbitrarily, and then choose $q_0>0$ so that

$$\int\limits_{\delta(z)\leq 3q_0}|g(z)|^{p'}\,a(z)\;dA\;<\;\varepsilon\;.$$

Consider (2). By changing the order of integration and introducing polar coordinates for w, we obtain by Lemma 2 for $q < q_0$

$$\begin{split} \frac{1}{q} \int\limits_{D_q} |h(z)| \; dA_z & \int\limits_{|w| \leq q} \frac{|\mu(z+w)|}{|w|} dA_w \\ & \leq \frac{1}{q} \int\limits_{|w| \leq q} \frac{dA_w}{|w|} \int\limits_{\delta(z) \leq 2q_0} |h(z)\mu(z+w)| \; dA_z \\ & \leq 2 \sup\limits_{r \leq q} \frac{1}{r^2} \int\limits_{|w| \leq r} dA_w \int\limits_{\delta(z) \leq 2q_0} |h(z)\mu(z+w)| \; dA_z \; . \end{split}$$

By the Hölder inequality this is less than

$$\begin{split} 2 \left\{ \sup_{r \leq q} \frac{1}{r^2} \int_{|w| \leq r} dA_w \int_{\delta(z) \leq 2q_0} |h(z)|^p \ a(z+w) \ dA_z \right\}^{1/p} \cdot \\ \cdot \left\{ \sup_{r \leq q} \frac{1}{r^2} \int_{|w| \leq r} dA_w \int_{\delta(z) \leq 2q_0} |g(z+w)|^{p'} \ a(z+w) \ dA_z \right\}^{1/p'} \\ & \leq 2 \left\{ \sup_{r \leq q} \frac{1}{r^2} \int_{D} |h(z)|^p \ dA_z \int_{|w| \leq r} a(z+w) \ dA_w \right\}^{1/p} \cdot \\ \cdot \left\{ \sup_{r \leq q} \frac{1}{r^2} \int_{|w| \leq r} dA_w \int_{\delta(z) \leq 3q_0} |g(z)|^{p'} \ a(z) \ dA_z \right\}^{1/p'} \leq C \varepsilon^{1/p'} \ , \end{split}$$

where the last inequality follows from our assumptions. Since ε is arbitrary, this proves (2).

If we consider (3) we similarly obtain for $q < q_0$

$$q\int\limits_{D_{\mathbf{0}}}|h(z)|\;dA_z\int\limits_{q\leq |w|\leq q_0}\frac{|\mu(z+w)|}{|w|^3}\;dA_w\;\leqq\;C\varepsilon^{1/p'},$$

and since

$$\lim_{q \to 0} q \int_{D_q} |h(z)| \, dA_z \int_{|w| \ge q_0} \frac{|\mu(z+w)|}{|w|^3} \, dA_w = 0 ,$$

and ε is arbitrary, this proves Theorem 1 for p > 1.

If p=1 Hölder's inequality is replaced by simpler estimates.

COROLLARY 1. Let a be as in Theorem 1. If, in addition, $a \in L^s(D)$ for some $s, 1 < s \le \infty$, then every h in $H^p(a; D) \cap L^{ps'}(D)$, $1 \le p < \infty$, 1/s + 1/s' = 1, belongs to $P^p(a; D)$.

PROOF. The corollary is obvious if $s = \infty$. Assume $1 < s < \infty$, and let

$$a^*(z) = \sup_{r>0} \frac{1}{\pi r^2} \int_{|w| \le r} a(z+w) dA_w, \quad z \in D.$$

Then, by Hardy's maximal theorem, $a^* \in L^s(D)$ if $a \in L^s(D)$. Thus, by Hölder's inequality, (1) or (1') is satisfied by all $h \in L^{ps'}(D)$.

Remark. Corollary 1 contains in particular the classical theorem of Farrell and Markuševič that $P^p(1; D) = H^p(1; D)$. See [2, p. 112].

THEOREM 2. Let $\alpha(z) \neq 0$ be analytic in D. Then

$$P^{p}(|\alpha|; D) = H^{p}(|\alpha|; D), \quad 1 \leq p < \infty$$

if for some $\delta > 0$

(4)
$$\int\limits_{D} (|\alpha|^{-\delta} + |\alpha|^{1+\delta}) dA < \infty.$$

This theorem is a consequence of the following more general result.

Theorem 3. Let $\alpha(z) \neq 0$ be analytic and integrable in D. Then

$$P^p(|\alpha|\,;\,D)\,=\,H^p(|\alpha|\,;\,D),\quad 1< p<\infty\;,$$

if for some $\varepsilon > 0$

(5)
$$\sup_{r>0} \frac{1}{r^2} \int_{D} \frac{1}{|\alpha(z)|^s} dA_z \int_{|w| \leq r} |\alpha(z+w)| \ dA_w < \infty ,$$

and

$$P^{1}(|\alpha|; D) = H^{1}(|\alpha|; D)$$

if for some $\varepsilon > 0$

$$(5') \qquad \int\limits_{D} \frac{1}{|\alpha(z)|^{\epsilon}} dA_z \left\{ \sup_{r>0} \frac{1}{r^2} \int\limits_{|w| \le r} |\alpha(z+w)| \ dA_w \right\} < \infty .$$

PROOF OF THEOREM 3. Since α has no zeros, we can define a regular branch of α^{λ} for all λ . To prove the theorem it is enough to show that $\alpha^{-1/p} \in P^p(|\alpha|; D)$. (See [2, p. 132]). In fact, if $\alpha^{-1/p} \in P^p(|\alpha|; D)$, then so does $Q\alpha^{-1/p}$ for every polynomial Q, and the approximation of h

in $H^p(|\alpha|; D)$ by functions $Q\alpha^{-1/p}$ is equivalent to the approximation of $h\alpha^{1/p}$ in $H^p(1; D)$ by polynomials.

We use an idea due to H. S. Shapiro [4, p. 327]. Suppose (5) or (5') is satisfied for some $\varepsilon > 0$. Then, by Theorem 1, $\alpha^{-\varepsilon/p} \in P^p(|\alpha|; D)$.

We shall show that if $\alpha^{-(1-\lambda)/p} \in P^p(|\alpha|; D)$ for some λ , $0 < \lambda < 1$, then also $\alpha^{-(1-\lambda(1-\epsilon))/p} \in P^p(|\alpha|; D)$. It is clearly sufficient for this to show that there are polynomials Q such that

$$\int\limits_{D}|\alpha^{-(1-\lambda(1-\epsilon))/p}-Q\alpha^{-(1-\lambda)/p}|^{p}\ |\alpha|\ dA\ =\int\limits_{D}|\alpha^{-\lambda\epsilon/p}-Q|^{p}\ |\alpha|^{\lambda}\ dA$$

is arbitrarily small. But this follows from Theorem 1 applied to the weight $|\alpha|^{\lambda}$, for by Hölder's inequality

$$\begin{split} \int\limits_{D} dA_z &\int\limits_{|w| \leq r} |\alpha(z)|^{-\lambda \varepsilon} \, |\alpha(z+w)|^{\lambda} \, dA_w \\ & \leq \left\{ \int\limits_{D} dA_z \int\limits_{|w| \leq r} |\alpha(z)|^{-\varepsilon} \, |\alpha(z+w)| \, dA_w \right\}^{\lambda} \left\{ \int\limits_{D} dA_z \int\limits_{|w| \leq r} dA_w \right\}^{1-\lambda} \\ & \leq \operatorname{Const.} \, r^{2\lambda} r^{2-2\lambda} \, , \end{split}$$

by (5), and similarly for p=1.

It follows by induction that $\alpha^{-(1-(1-\epsilon)^n)/p} \in P^p(|\alpha|; D)$ for all positive integers n.

But by Lebesgue's theorem on dominated convergence

$$\lim_{n\to\infty} \int\limits_{D} |\alpha^{-1/p} - \alpha^{-(1-(1-s)^n)/p}|^p |\alpha| \ dA = 0 \ ,$$

for the integrand tends to zero pointwise, and

$$|\alpha|^{-(1-(1-\epsilon)^n)} |\alpha| = |\alpha|^{(1-\epsilon)^n} \le 1+|\alpha|$$
.

This proves the theorem.

REMARK. A similar argument shows that in H. S. Shapiro [4], Theorem 1, his condition (2) is redundant.

Proof of Theorem 2. Let

$$\alpha^*(z) = \sup_{r>0} \frac{1}{\pi r^2} \int_{|w| \le r} |\alpha(z+w)| \, dA_w \,,$$

and assume that (4) is satisfied for some $\delta > 0$. Then (5) or (5') is satis-

fied for $\varepsilon \leq \delta^2/(1+\delta)$, by Hardy's maximal theorem and Hölder's inequality.

If α is bounded we can also prove the following theorem, which depends only on the Farrell-Markuševič theorem. Since $\alpha(z) \neq 0$ we can write $\alpha = e^{-\beta}$, where β is an analytic function.

Theorem 4. Let β be analytic in D, and assume $|\alpha(z)| = |e^{-\beta(z)}| < 1$ in D. Then

$$P^p(|\alpha|; D) = H^p(|\alpha|; D), \quad 1 \leq p < \infty$$

if there are positive constants C_1 and C_2 so that

(6)
$$|\operatorname{Im} \beta(z)| \leq C_1 \operatorname{Re} \beta(z) + C_2, \quad z \in D.$$

PROOF. It is clear from (6) that $\beta^n \in H^p(|\alpha|; D)$ for all positive integers n. We claim that also $\beta^n \in P^p(|\alpha|; D)$. We show this first for n = 1.

The assumption implies that $\text{Re}\,\beta > 0$ in D. Thus the function $\gamma = (\beta - 1)/(\beta + 1)$ is bounded by 1 in D, and hence, by the Farrell-Markuševič theorem, $\gamma^p \in P^p(|\alpha|; D)$ for all positive integers ν . But

$$\beta = (1+\gamma)/(1-\gamma) = 1+2\sum_{1}^{\infty} \gamma^{\nu},$$

and therefore it is enough to show that

$$\lim_{m\to\infty} \int\limits_{D} \left| \beta - 1 - 2 \sum_{1}^{m} \gamma^{\nu} \right|^{p} |\alpha| \ dA = 0 \ .$$

This follows, however, from Lebesgue's theorem on dominated convergence, for

$$\left|\sum_{1}^{m} \gamma^{\mathbf{y}}\right|^{p} |\alpha| \leq 2 |\alpha|/|1-\gamma|^{p} = |1+\beta|^{p} \exp\left(-\operatorname{Re}\beta\right),$$

which is a bounded function, by (6).

Now assume that $\beta^n \in P^p(|\alpha|; D)$ for some positive integer n. Then also $\beta^{n+1} \in P^p(|\alpha|; D)$, for if Q is any polynomial,

$$\int\limits_{D} |\beta^{n+1} - Q\beta^n|^p \ |\alpha| \ dA \ = \int\limits_{D} |\beta - Q|^p \ |\beta|^{np} \ |\alpha| \ dA \ ,$$

which can be made arbitrarily small, by the above argument applied to the bounded weight $|\beta|^{np}|\alpha|$. It follows by induction that $\beta^n \in P^p(|\alpha|; D)$ for all positive integers n, and hence also that the sum

$$Q_N = \sum_{n=0}^{N} \frac{t^n \beta^n}{n!}$$

belongs to $P^p(|\alpha|; D)$ for all N and t. We claim that

$$\lim_{N\to\infty}\int |\alpha^{-t}\!-Q_N|^p\;|\alpha|\;dA\;=\;0\quad \text{ for }\quad 0\leqq t\leqq 1/(C_1+1)p\;.$$

Again, this follows from Lebesgue's theorem, for $\lim_{N\to\infty} Q_N(z) = \alpha(z)^{-t}$ pointwise, and by (6)

$$\begin{split} |Q_N| \; & \leq \; \sum_0^N \frac{t^n}{n!} \left((C_1 + 1) \, \operatorname{Re} \beta + C_2 \right)^n \\ & \leq \; e^{C_2 t} \, |\alpha|^{-(C_1 + 1)t} \, \leq \; e^{C_2 t (C_1 + 1)p} \left(1 + |\alpha|^{-1/p} \right) \, . \end{split}$$

Thus,

$$\alpha^{-1/(C_1+1)p} \in P^p(|\alpha|; D)$$
.

To complete the proof we now only have to repeat the induction in Theorem 3 with $\varepsilon = 1/(C_1+1)$, applying the above argument to the weight $|\alpha|^2$.

Example. Let D be the unit disc and

$$\alpha(z) = \exp\left(\frac{z+1}{z-1}\right)^t.$$

Then the above theorem shows that $P^p(|\alpha|; D) = H^p(|\alpha|; D)$ for 0 < t < 1. On the other hand, Keldyš has shown (see [2, p. 134]) that $P^2(|\alpha|; D) \neq H^2(|\alpha|; D)$ for t = 1, and the proof extends to $p \neq 2$.

We shall now consider general weights. We denote by f a Riemann mapping function which maps D onto the unit disc U, and we denote by φ the inverse to f.

THEOREM 5. Let a(z) > 0 be continuous in D. Then

$$P^p(a\,;\,D)\,=\,H^p(a\,;\,D),\quad \, 1\,{\leq}\,p\,{<}\,\infty\;,$$

if $a \in L^s(D)$ for some s > 1, and if $a \circ \varphi \in L^1(U)$ is such that $P^p(a \circ \varphi; U) = H^p(a \circ \varphi; U)$.

PROOF. The proof is similar to that of Theorem 3. Suppose a satisfies the above conditions. Since f is univalent, $f'(z) \neq 0$, and we can therefore define regular branches of $(f')^{\lambda}$ and $(\varphi')^{\lambda}$ for all λ .

It is enough to show that for every integer $n \ge 0$ we have

 $f^n(f')^{2/p} \in P^p(a; D)$. (See [2, p. 136]). Indeed, if $h \in H^p(a; D)$, and Q is a polynomial,

$$\begin{split} \int\limits_{D} |h\,-\,Q(f)(f')^{2/p}|^p \; a \; dA \; &= \int\limits_{D} |h\,(f')^{-2/p} - Q(f)|^p \; a|f'|^2 \; dA \\ \\ &= \int\limits_{U} |(h\circ\varphi)(\varphi')^{2/p} - Q|^p \; (a\circ\varphi) \; dA \; , \end{split}$$

which can be made arbitrarily small by the assumptions, since

$$\int\limits_{U} |(h\circ\varphi)(\varphi')^{2/p}|^p\;(a\circ\varphi)\;dA\;=\int\limits_{D} |h|^p\;a\;dA\;<\;\infty\;.$$

Then it is clearly also enough to prove that $(1+f)^n (f')^{2/p} \in P^p(\alpha; D)$, $n \ge 0$. We fix n and put $(1+f)^n (f')^{2/p} = g$. Then $g(z) \ne 0$, and g^{λ} is analytic for all λ . We know that

$$\int\limits_{D} |g|^{p} \; dA \; = \int\limits_{U} |1+w|^{np} \; dA_{w} \; < \; \infty \; ,$$

so, by Corollary 1, $g^{1-1/8} \in P^p(a; D)$.

We claim that if $g^{1-\lambda} \in P^p(a; D)$ for some λ , $0 < \lambda < 1$, then also $g^{1-\lambda/s} \in P^p(a; D)$. Put $\delta = \lambda(s-1)/s$. Then, for every polynomial Q we find

$$\int\limits_{D} |g^{1-{\lambda}/s} - Q \, g^{1-{\lambda}}|^p \; a \; dA \; = \int\limits_{D} |g^{\delta} - Q|^p \; |g|^{p(1-{\lambda})} \; a \; dA \; .$$

Here $g^{\delta} \in L^{p/\delta}(D)$, so the assertion follows from Corollary 1, if we show that the weight $|g|^{p(1-\lambda)}a \in L^{1/(1-\delta)}$.

We obtain by Hölder's inequality

$$\begin{split} \int\limits_{D} |g^{p(1-\lambda)} \, a|^{1/(1-\delta)} \, dA &= \int\limits_{D} |g^{p} \, a|^{(1-\lambda)/(1-\delta)} \, a^{\lambda/(1-\delta)} \, dA \\ & \leq \left\{ \int\limits_{D} |g^{p} \, a| \, dA \right\}^{(1-\lambda)/(1-\delta)} \left\{ \int\limits_{D} a^{\lambda/(\lambda-\delta)} \, dA \right\}^{(\lambda-\delta)/(1-\delta)}, \end{split}$$

which is finite, since $\lambda/(\lambda-\delta)=s$. It follows by induction that $g^{1-1/s^n} \in P^p(a; D)$ for all positive integers n.

Now Lebesgue's theorem on dominated convergence shows that

$$\lim_{n\to\infty} \int_{D} |g - g^{1-1/s^n}|^p \ a \ dA = 0 ,$$

for the integrand converges to 0 pointwise, and $|g|^{p-p/s^n} \le 1 + |g|^p$. This proves the theorem.

In [1] we also studied the problem of finding generators of the Banach algebra $l^1(0,\infty)$, or, equivalently, the algebra A of all analytic functions, $g(w) = \sum_{0}^{\infty} g_n w^n$, in the unit disc, such that $||g|| = \sum_{0}^{\infty} |g_n|$ is finite. See [1] for references. We can now improve the result given there.

COROLLARY 2. A function $\varphi(w) = \sum_{n=0}^{\infty} \varphi_n w^n$ is a generator for A if it is univalent in $|w| \leq 1$, and if, for some $\varepsilon > 0$,

$$\sum_{n=0}^{\infty} n (\log n)^{1+\varepsilon} |\varphi_n|^2 < \infty.$$

The proof is the same as in [1].

REFERENCES

- L. I. Hedberg, Weighted mean square approximation in plane regions, and generators of an algebra of analytic functions, Ark. Mat. 5, 541-552 (1965).
- S. N. Mergeljan, On the completeness of systems of analytic functions, Amer. Math. Soc. Transl. (2) 19, 109-166 (1962) (= Usp. Mat. Nauk (N. S.) 8 no. 4 (56), 3-63 (1953)).
- S. N. Mergeljan, On the representation of functions by series of polynomials on closed sets, Amer. Math. Soc. Transl. (1) 85, (1953) (= Dokl. Akad. Nauk SSSR (N. S.) 78, 405-408 (1951)).
- H. S. Shapiro, Weighted polynomial approximation and boundary behaviour of analytic functions, Sovremennye problemy teorii analitičeskih funkcij, Moscow, 1966, 326– 335.
- H. S. Shapiro, Nekotorye zamečanija o vesovoj polinomial'noj approksimacii golomorfnyh funkcij, Mat. Sbornik (N.S.) 73 (115) (1967), 320-330.
- F. S. Lisin, Ob odnoj zadače srednekvadratičeskoj approksimacii, svjazannoj s izyčeniem obrazujuščih algebry l¹, Mat. Zametki 3 (1968), 703-706.

UNIVERSITY OF UPPSALA, SWEDEN