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REFLEXIVITY AND COMPLETENESS IN
VECTOR-LATTICES

JOHAN F. AARNES*

In the present paper we are going to study vector-lattices which are
Dedekind-complete, in conjunction with certain natural vector-topologies.
No a priori topological assumptions are made, the topologies are all
derived from the inherent vector and lattice properties of the under-
lying spaces.

Our main result, Theorem 2, states that if £ is a Dedekind-complete
vector-lattice, and E°¢ is the linear space of all order-continuous linear
functionals on E, then the completion of Z with respect to the Mackey-
topology (¥, E¢) is again a Dedekind-complete vector-lattice, and may
be identified with a closed order-ideal of E°¢, the space of all order-
continuous linear functionals on Ee.

1. Notation and basic concepts.

A vector-lattice E is Dedekind-complete if each majorized subset af &
has a least upper bound. For all relevant information concerning such
structures, we refer to [1] and [3], where also other references can be
found. Here we are first going to give our notation, and a few facts
that will be of use.

Throughout the paper, E,F will denote Dedekind-complete vector-
lattices. The prefix “o-” to words in the text stands for “order-”.
A net {x;};c;<SE is o-convergent to an element x € K, and we write
x; - x (0) if there is a cofinal subset I' < I and two nets {y;'}sers {2 }rer
in E satisfying

(1) ypiz; zptx; ¢ el

(i) zpSa;Syp if 029,

A linear functional f on E is o-continuwous if f(x;) - f(x) whenever

x; - x (0). We will always assume that the linear space E¢ of all linear
o-continuous functionals on E separates points of E.
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A subset AcE is normal if €4 and |y|S|z| =>ye 4. A linear
subspace LS E is an o-ideal if L is a normal subset of Z. An o-ideal
L in E is a direct factor if it contains the supremum of any subset 4 < L
whenever the supremum exists in £. A linear functional on Z is o-bounded
if it is bounded on every o-interval [x,y]={z€ E: x<2=<y} in E. The
linear space of all o-bounded linear functionals on E is denoted EP.
The spaces E°¢ and E® are Dedekind-complete vector-lattices under
their natural ordering, and E° is a direct factor of E? (not necessarily
distinct from EPb).

If x € £ and L is a direct factor of E, then x; denotes the component
of z in L. For fe E° let f; be the linear functional z — f(x;), then
fr € E°. A Hahn-decomposition is possible: if f € B¢, then E is the direct
sum of three direct factors: £ =Z@® P@ N such that f vanishes identically
on Z=the zero-ideal of f, and is strictly positive (negative) on P (),
the positive (negative) ideal of f. Explicitly, we have

P={xek: 0<ys|z| = f(y)>0},

and similarly for Z and N.

Each element xz € E determines an o-continuous linear functional
on K¢ by the canonical map of ¥ into the algebraic dual of E¢. In this
way we may regard E as an o-ideal of E®. The canonical injection of
E into E° is o-continuous, if ; > = (0) in E, then z; — x (0) also in Ece,
E is o-reflexive if E = Ece.

If E and F are in duality, o(%,F) denotes the weak topology of K
with respect to ¥, and t(E,F) denotes the Mackey-topology of E with
respect to F. If # is a family of subsets of ¥, 7, denotes the topology
for E of uniform convergence on the sets in .#. The topology 7, is a
(locally convex) vector topology for £ if and only if each set in .# is
o(F,E)-bounded. For this and other statements of purely linear top-
ological nature, we refer to [2].

A vector-topology for E is o-continuous if o-convergence implies
convergence with respect to the topology. The topology =(Z, E°) is the
strongest o-continuous locally convex topology for X, thus a locally
convex topology for E is o-continuous if and only if it is weaker than
©(E,E°). A vector-topology for E is normal if it has a local base of
normal subsets. The lattice-operations are continuous with respect to
a normal topology, and (¥, E°) is normal.

2. The main results.

We consider E as an o-ideal of E¢. Our first result states that there
is a normal, locally convex, o-continuous topology 74 for K, compatible
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with the duality (E,E¢) such that the completion of E with respect to
74 may be identified with Ee,

Let # be the family of ¢(E°, E®)-compact, convex, subsets of E¢,
and let & be the family of o(E°, E)-compact, convex subsets of Ee.
Since B < E*, we have Z# < . We give K the topology 74. The topology
T4 restricted to K is clearly weaker than 7,=7(¥,E°) on E. Hence
the dual of E with respect to 74 is equal to E°.

THEOREM 1. The topology T4 is normal, and is the strongest o-continuous
locally convex topology on E°¢. With this topology Ec is complete, and
contains B as a dense subspace.

An immediate consequence of this result is that the completion of
E with respect to 75 is again a Dedekind-complete vector-lattice,
containing ¥ as a dense o-ideal. Of greater interest however, is to know
that this is also true for the completion of £ with respect to the Mackey-
topology 7,.

THEOREM 2. The topology t, is a normal, locally convex topology for Eee,
relative to which E is complete. The closure E of E in E° with respect
to 7, 18 a Dedekind-complete vector-lattice and an o-ideal of E¢. 7z, is the
strongest o-continuous locally convex topology for E, and E=E< if and
only if t, is o-continuous on E°°.

The following example is now quite pertinent. In the context of
Theorem 2, it shows that neither £ nor E need be equal to Ee°.

Let ¢, be the set of all real sequences {a,} such that a,, - 0 as n - oo,
and let I® be the set of all bounded real sequences. ¢, and I* are De-
dekind-complete vector-lattices under their natural ordering. We give [
the norm-topology

“a“ = supn Ianl; a = {a’n} € loo *

Then ¢, = ¢, < I°. The norm-dual of ¢, is linearly isometric to {!, and
one may show that convergence in norm is the same as o-convergence
in ¢,. Hence (co)°=1'. It follows that the family of closed balls in I*
is a co-base for G =the family of o(l!,¢,)-compact, convex subsets of I'.
Moreover, the norm-dual of /! is linearly isometric to I*, and we have
()e=1°. Hence 7, is the norm-topology for I*, and I*=(cy)**. Note in
particular that the norm-topology is not o-continuous on I%.
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3. Proofs and related results.
Again, we consider E as an o-ideal in E°.

LevMma 1.

(a) Ecc is the least direct factor containing E ;
(b) Ee¢= Ecce,

Proor. Let L be the complementary direct factor of £ in K¢, and
take X=>0in L. For any x € B, £2 0, we have xAX=0. Let P be the
positive ideal of X in E°, and let Z,, P, be the zero-ideal and positive
ideal of « in E¢, respectively. We claim that P,nP=(0). Indeed, if
feEe, f>0, we have

(xAaX)(f) = inf {x(f-9)+X(9): 0= g=f}.

The function g - z(f—g)+X(g) is o(&° E)-continuous on K¢, the
o-interval [0,f] is o(E¢, E°)-compact [1], so this function will obtain
its minimal value on [0,f]. If f belongs to P,nP, however, then
z(f—g)+X(g)>0 for all g € [0,f]. Hence (xaX)(f)>0, a contradiction,
so P,nP=(0). Now E°=Z,DP,, so we get PcZ_, Since x was arbi-
trary, it follows that

Pc(\{Z,:xcE, 220} = (0).

Hence X =0, and consequently L= (0), proving (a).

To prove (b), let r be the restriction map f-f|E; fe E«c. Then
r maps E°c onto E¢, for if i: E° — E°* is the evaluation map, then ro¢
is the identity map on E°. r is injective, for if r(f)=f|E£ =0, then f=0
by (a). Hence E°¢=E°*, and Lemma 1 is proved.

LemmMa 2. Let F be a Dedekind-complete vector-lattice. Then F¢ is com-
plete in the topology ©(F°,F).

Proor. By the Grothendieck completeness theorem it is sufficient
to prove that if f is a linear functional on F which is o(F, F*¢)-continuous
on each convex, o(F,F¢)-compact subset of F, then f belongs to Fec.
So let f be such a functional, and suppose that x; -~z (0) in F. Then
x; -« in the o(F,Fc)-topology, and there exist elements y,z € F' such
that 4214, implies y <z;<z. The o-interval [y,z] is convex and o(F,F¢)-
compact, so f|[y,z] is o(F,F¢)-continuous. It follows that f(x;) - f(x),
so fe Fe.

Proor or THEOREM 1. Since t4=t(£«,E°), we obtain by Lemma 2,
taking F = E¢, that B is complete with respect to 74. By Lemma 1 (b),
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we conclude that E¢=E°¢, s0 14=t(E*, E*°), and this topology is normal
and the strongest o-continuous locally convex topology for E¢. By
Lemma 1(a) it also follows that if X >0 is any element in K¢, then
there exists a monotone net {x;};.;< & such that z;t X in Ec. Since
74 18 o-continuous, it follows that £ is dense in E°c.

Recall that ¢ is the family of convex, o(Z¢, E)-compact subsets of E¢.
It is not a priori clear that 7, is a vector-topology for E¢, so we will
first establish this. Let s=s(E° E) be the strong topology for Ee, i.e.
the topology of uniform convergence on o(X, £°)-bounded subsets of E,
and let E¢® denote the dual of E¢ in this topology.

LemMma 3. E¢' 2 Eee.

Proor. It is sufficient to show that s is stronger than o(Z¢,E°),
for the dual of E° with respect to the latter is exactly E«. Let X € E°°,
X =0 and let

V= {feBe: X(<1).
Then V is a o(&¢, E°)-neighbourhood of 0 in E¢, and any other o(E°, £°)-
neighbourhood of 0 will contain a set ¥V of this type. Let 4=

{xe B: 02<X}; then 4 is a o(E,E°)-bounded subset of E. Indeed,
if fe B¢ and xz e 4, then |f(x)] < X(|f]), that is

Sup; 4 [f(@)] < oo

Hence U= {fe E°: |f(x)|<1, Vo€ A}=A° is a neighbourhood of 0 in E°
in the s-topology. Now there is an increasing net {z;}<A4 such that
z; 1 X in E¢. Hence, if fe U we get

1X (f)] = lim;|f(z)] = 1

since f is o-continuous on Ec. It follows that U<V which proves the
Lemma.

CoroLLARY. If A €d, then A is o(E°, E)-bounded.

Proor. Since A4 is o(E¢,E)-compact, A is strongly bounded, and
hence it is o(&° E°")-bounded. By the Lemma it then follows that
A is o(Xe, Bec)-bounded.

Proor or THEOREM 2. The corollary states that 7, is a locally convex
(vector) topology for Eee. Since the closed normal hull of a set 4 €4
is in 4 [1], we may assume the sets in £ to be normal, and 7, is therefore
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normal. Since 7, is stronger than 74, and both are admissible topologies
for Ec relative E¢, we know [2,18.3] that E¢ is complete with respect
to 7,.

Let E be the closure of E in Ee with respect to 7,. Since K is
Dedekind-complete, it will follow that E is Dedekind-complete once
we have proved that E is an o-ideal of E*. F is a linear subspace of Ec,
so it is sufficient to prove

(i) if X € E, then X+€ E,
(i) f 0L Y<XekE, YeEc~, then Y k.

Here (i) is easily settled: let X € £ and let {x;};.; be a net in E satis-
fying x; —~ X with respect to z,. Since 7, is normal, z,+ -~ X+ and
{a;*};es B, so X+e K.

To verify (ii), we first prove the following: if X eE, X0, and
{L;};c; is a monotone, descending family of direct factors in K¢ such
that M;.;L;=(0), then X; — 0 with respect to 7,. Indeed, let 4 €@
and e>0 be given, and choose x € & such that

I X(f)—=(f) < 3¢ forall feAd.

Now #;, e E for all tel since E is an o-ideal of E«, z,, — 0(0),
and 7, is o-continuous on E, so there is an i, € I such that ¢ 2 ¢, implies
|2z, (f)| < }e for all fe A. Hence, if 1214, and fe 4,

Xz, = 1X(fr)l = 1X(fr) —2(f)l+ 2 (fr)l <detde = e,

since fe A = f, € A for any direct factor L< E°, since 4 is normal.
It follows that X; — 0 with respect to 7,. Now let 0sY <X ek,
Y € Ecc. The space K is the linear space of those linear functionals
on E¢ which are o(E°, E)-continuous on the sets 4 € &, so we will show
that Y has this property. We first claim that there is a maximal direct
factor L< B¢ such that Y, € E. If we then can show that L=E°, we
will be finished. Suppose that {L,};.; is any totally ordered (by inclusion)
upward directed family of direct factors in E¢ such that Y L‘.EE for
each tel. Let L=lub,;L,, Put M,=LnL,, where L, is the com-
plementary direct factor of L; in Ee. Then N, ;M;=(0), so by the result
proved above X, — 0 uniformly on each 4 € 4. Pick any 4 € G; since
it is normal we get for fe 4

| Yar, () = 1Y (1FD] = 1 Xag(IFD] > O

uniformly, so also Y, — 0 uniformly on 4. It follows that Y, — Y
uniformly on A4, so by the assumption on Y, we obtain that Y, e E.
By Zorn’s Lemma this implies the existence of a maximal L such that
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Y, € E. Suppose L+E; then Y;,>0 so there is an element f>0, fe L’,
such that Y. (f)=Y(f)>0. The positive cone in E°¢ is convex and
o(E¢, E)-closed, so there is an element x> 0 in E such that 0 < Y (f) < f(x).
Let P be the positive ideal of x— Y, and put L,=PnL’. Since fe L/,
L,#(0). It follows that Y, <z, so Y € F since E is an o-ideal in E°.
Hence Y@= Yo+Y,cE,

contradicting the maximality of L. Hence L=E° and Y € E, so (ii)
is proved. Thus we know that E is Dedekind-complete and an o-ideal
in Eee,

The topology 7, restricted to E is the Mackey-topology z(E,E¢).
Clearly (E)*=E°, so 1, is o-continuous on E. It follows that if & = Eee,
then 7, is o-continuous on E¢. On the other hand, if 7, is o-continuous
on Ee, then 7, and 74 must coincide on E°, since by Theorem 1 we
know that 74 is the strongest locally convex o-continuous topology
on E°, and that 74 is weaker than 7,. By Theorem 1, £ is therefore
dense in E°¢ with respect to 7,.

This proves Theorem 2.

A lot more can be said about the space E¢ with its strong topology s.
We collect some of the information, most of which is well known, in
the following proposition:

ProrosiTiON 1. Let E° have the strong topology s=s(E¢,E). Then

(1) s 28 normal and complete,

(ii) Beeg E¢c Eeb,
(iii) Eec=E" if and only if s is o-continuous,
(iv) E<* = E° if s 1s bound.

PROOF. (i) s is the topology of uniform convergence on the 7,-bounded
subsets of E. Since 7, is normal, it follows easily that the normal hull
of each 7,-bounded set is bounded, so s is normal. s is clearly stronger
than t(E°¢,E), so E° is complete with respect to s since it is complete
with respect to (%K) (Lemma 2).

(ii) We already know that Ee<c< E¢* (Lemma 3). Since s is normal,
it follows readily that each o-interval of E¢ is strongly bounded. Hence
Ee* e Kb,

(iii) The topology s is o-continuous if and only if s is weaker than
(B¢, Ee), which is the case if and only if E¢* < Eec. Combined with (ii),
this gives (iii).

(iv) Follows from (A4) and (A5) in [1].
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Still more can be said about E°¢ with strong topology; we refer to [1].
The statements above cover what we shall need in the next section.

4. Reflexivity.

We have already seen that E°¢ is o-reflexive (Lemma 1(b)), and it
follows immediately that also K< is o-reflexive, while E itself need not be.
In this section we look into the relationship between o-reflexivity and
topological reflexivity for E.

ProprosITION 2. The following are equivalent:
(1) E s o-reflexive,
(ii) E is Tg-complete,
(iii) & is 7,-complete, and T, is o-continuous on Ee,

Proor. Immediate from Theorems 1 and 2.

ProrosiTION 3. The following are equivalent :

(i) E is semi-reflexive (rel. E°),
(1) E is o-reflexive and s is o-continuous on Ee.

Proor. We have EcEccE". If E is semi-reflexive, then
E=E«=E" so0 E is o-reflexive and s is o-continuous by (iii) of Propo-
sition 1. Conversely (ii) implies E = E° and E¢=E°* by (iii) of Proposi-
tion 1, so E is semi-reflexive.

Note. The topology s need not be o-continuous even if % is o-reflexive.
From the example following Theorem 2 it is clear that I! is o-reflexive,
but the strong topology for (I*)¢=I* is the norm-topology, which is not
o-continuous.

PRropoSITION 4. For the statements below, generally (i) = (ii) =~ (iii).
(i) E=E",

(il) E s o-reflexive, s 18 o-continuous and E¢=EP,

(iii) E s reflexive with respect to 7, .

If E is metrizable with respect to v, , then all three statements are equivalent.

Proor. (i) = (ii): The space E° is a direct factor of P, so there is
an injection of K in E* < E%. Hence E = E® implies E = E. If E°+ EY,
then there exists an element X +0 in E%=F vanishing identically
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on E°, a contradiction. We have E°c B¢ c E®=FE, so by Proposi-
tion 1 the topology s is o-continuous.

(ii) = (iii): By Proposition 3 the vector-lattice £ is semi-reflexive,
and E°=E" implies that 7,=7(E,E?) which is bound [1, (A4)], so E
is evaluable. Hence E is reflexive.

If E is metrizable, then it is bound [2, 22.3]. We prove the implica-
tion (iii) = (i). By reflexivity, £ is o-reflexive (Proposition 3) and
hence complete with respect to 7, (Proposition 2), so E¢=E® since
7, 18 bound [1, (A5)]. Moreover, s is bound since E is metrizable and
reflexive [2, 22.16], so from Proposition 1 it follows that E¢*=Ee,
and consequently E = Ebb,

Recall that a positive element e € ¥ is a strong o-unit for K if for any
x € E there is a positive integer n such that x <ne. The last part of this
paper is devoted to a proof of the fact that if Z has a strong o-unit,
then E is o-reflexive. This is, at least indirectly, a well known result.
A proof may be obtained using representation theory and theorems
from measure theory. Indeed, if £ has a strong o-unit it may be repre-
sented as an abelian von Neumann algebra, and from this fact one may
go on to prove the o-reflexivity. However, our approach is completely
intrinsic, and uses order and linear topological space methods only.
Of course it yields an alternative proof of the fact that each abelian
von Neumann algebra is a dual space as a Banach-space (which is true
even in the non-abelian case).

ProrosiTioN 5. If E has a strong o-unit, then E is o-reflexive.

Proor. We prove the stronger result (Proposition 3) that £ is semi-
reflexive. We first make K into a normed linear space; for x>0, x € E,
let

lle|| = inf{Aec R: Aexzx}.

Then, for a general z in X, let
[l = max {Jla*], 2~} -

It is well known that since E is archimedean it becomes a normed linear
space this way. The unit sphere § in E is given by

8= {xek: —esx=e}.

Since S is an o-interval, it is o(E, E°)-compact, so if we can show that
each o(E,E)-bounded set is norm-bounded, we will be finished.
Let E* be the norm-dual of E. Since each element f € E° is o-bounded,
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we have E°c E*, and it is easily seen that E°¢ is a norm-closed linear
subspace of E*. Let 8* be the unit ball of £*. We claim that if x € E,
then

Il = sup {If(2)] : fe B nS*}.

Note first that if Q={fe E°: f(e)=1; f=0}, then f(x)=0 for all fe 2
implies 2 0 if x€ E. Indeed, if ~+0, there is fe 2 satisfying f(x~) > 0.
Let L be the direct factor generated by x-. Then f;=40, and
g=(fr(x)) 1 fr €2, and g(x)= —g(z~)<0. Now let

Qy={wek: |f(z)|<1; VfeQ}.
By the argument above, x € 2, if and only if x € 8, and consequently
QP = {feE*: |f(x)|S1; Vee )} = 8*.

Now, if z € E, we have |lz||=sup;.s.|f(®)], and since S* is the o(E*, K)-
closed, circled, convex hull of Q< E°nS*, the claim is proved. But then
it follows [4, Theorem 4.4B], that a o(¥, E°)-bounded subset of & is
norm-bounded. The proof is complete.
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