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ON A CONCEPT OF SUMMABILITY
IN AMENABLE SEMIGROUPS

STEVEN A. DOUGLASS

1. Introduction.

Banach’s generalized Limit [1, page 33] gives rise to a notion of
almost convergence of a sequence {z,} to s — namely, that Lim, x,=s
for each generalized Limit. Lorentz [7] obtained the following interesting
characterization:

THEOREM (Lorentz). 4 sequence {x,} almost converges to s if and only if

ln—-l

lim - Y, =s
n—>c0 'Y k=0
unsformly in m.

The purpose of the present note is to extend the notion of an arithmetic
mean to amenable semigroups, following the lead of Fglner [5], Day [2]
and Namioka [8], and to obtain the same characterization of almost
convergence in the more general setting. We also obtain an analogous
result for vector-valued functions.

The author is indebted to Professor H. A. Dye for his guidance during
the preparation of this paper.

2. Preliminaries.

Let G denote a discrete semigroup, m(@) the real Banach space of
all bounded, real-valued functions on @, endowed with the sup norm
Ifll,=sup,ea!f(g)l, and 1,(G) the collection of all fem(G) satisfying
Iflli=24ca!f(g)] <oo. Endowed with the convolution

(firxf2)9) = Zhh’=gf1(h)f2(h') B
1,(G) is a Banach algebra.
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A weight, or a finite mean, on @ is a non negative function ¢ € ,(Q),
having finite support such that ||¢[;=1; a simple weight is a weight
which is constant on its support. We denote by @ the collection of all
weights on G.

A mean on m(G) is a real, linear functional 4 on m(@) such that

inf{f(g): ge@} = A(f) = sup{f(9): g€ G}
for all f e m(@). Clearly, A2 0 and A(1)=1 where 1 denotes the function
identically unity on G. A mean A is said to be left invariant if A(9f) =2(f)
for all g € G and all f € m(Q), where 9f(h)=f(gh). There is the obvious,
analogous definition of right invariance: A(f?)=A(f) where f9(h)=f(hg).
The semigroup G is said to be left (right) amenable if there exists a left
(right) invariant mean on m(@), and @ is amenable if it is both left and
right amenable. Let G' be amenable. A function fe m(G) almost con-
verges to s if A(f)=s for every left and every right invariant mean A.

3. Summing sequences.

Throughout this paper ¢ will denote a discrete, countable amenable
semigroup with identity e in which both the right and the left cancella-
tion laws hold. Namioka [8] has shown that G is amenable if and only
if, for each finite subset F of @ and each &> 0, there exists a finite subset
S of G such that

ISgn S| > (1—¢)S] and [gSNn S| > (1—e)|S]

for all ge F. Here |4| denotes the number of elements in the finite
set A. Namioka showed also that, if G is a countable, amenable group,
then there exists a sequence {S,} of finite subsets of @ such that

(1) G = U?Sn’

(2) S, < 8,4, n=12...,

(8) 1lim,|S,I"tS,9n8, =1, lim,|S,|*gS,nS,| =1 forallge@.
An appeal to Day’s theorem in the 2-sided case (see [2]) and a simple

modification of Namioka’s proof of the Fglner—Frey theorem (see

[8, Theorem 3.5]) lead to a similar proof of the existence of such a

sequence in case ( is a countable, amenable semigroup in which both
cancellation laws hold.

DEriniTION 3.1. Any sequence of finite subsets of @ satisfying (1), (2)
and (3) is called a summing sequence for G.

Let {S,} be a summing sequence for @&. Denote by y, the simple
weight ¥,(g) = |S,|2x.(g9) Where yx, is the characteristic function of S,,.

Math. Scand. 23 — 7
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The significance of a summing sequence for ¢ is that the sequence {y,}
of simple weights approximates, in a sense, any weight on G.

LemMma 3.1. For any ¢ € D,
lim, |ly,*@—yuly = 0 and lim,[lp*y,—y,l, = 0.

Proor. Let F be the (finite) support of ¢. Given >0, property (3)
of Definition 3.1 insures the existence of n, such that n = n, implies

(*) |S nnheFS h' > 1_%,Fl_18)lsnl .

For convenience, put R=8nN, xS,k and put G,(k,g9)={h' € G: k'h=g}.
By the right cancellation law G,(h,g) is either empty or consists of a
single point. Now

Ib’n *‘P“?’n”l = z

2 va(h)p(h) —Vn(y)’

geG | Wh=g
(5 25 2 ) sem] 5 nm-nol|
geR geSp\R geG\Sy/ |heF heGyh, g)

If ge R<8,, then for every h € F there is a unique A’ € §,, such that
g=h"h; so y,(h')=y,(9). Therefore

2

geR | heF

th(h){n(h')—yn(g)}’ =0.

Consider the second sum:

hEZF q)(h){ 2 Valk)=7a g)”

h'eGyh, 9)

geSp\R
< > oh Ya(h') = vul9) i
heF geSp\R | k’eGi(h, 9)

< D @RS, ISy N Rl =[S, S, \R| < }e
heF

by (*).

In disposing of the third sum we argue as follows. Fix ge G\ S, so
y.(9)=0. Suppose h'h=g. Then ¢(h)y,(h')=0 unless he F and »' € S,,,
that is, unless g=h'h € 8, \S,. Observe that [S,A\S,|=|S,\R| for
all h € F. The number of g € @\ 8, for which these conditions hold is

= ZheFlth\Sn} = |F||Sn\R! < ‘}]Snls
by (*). We conclude, since ¢(k)<1 and y,(h")=[S,|™? for A" € S, that

> p(h)ya(h') < fe.
9eG\8Sp h'h=g
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Therefore |y, *@—v,ll,<¢ and the first assertion is proved. The
second is proved by taking R=S,nMN, xk'S, and invoking the left
cancellation law.

4. Almost convergence.

This section is devoted to the proof of the promised generalization
of Lorentz’ theorem.

THEOREM 4.1. Let G be a countable, amenable semigroup with identity e
wn which both cancellation laws hold. A necessary and sufficient condition
that f € m(G) almost converge to s is that, for any summing sequence {8S,}

for G,
limnlsnl“_IZﬂeS,,f(gh) =s and limnISn‘—lzgeSnf(hg) =$§

wniformly in h.

In order to prove the theorem we introduce the following functions:

ﬁf = inf¢ed> Supqedﬁ' ZgZh(p(g) W(h)f(gh) ’
Qf = Supqyed) infnetb 292h¢(g) ﬂ(h)f(gh) )
wf = infnped) Supr]ew EgZh(p(g ﬂ(h)f(hg) )

)
wf = SUPeq infﬂw 2. 2n (@) n(h)f(hg) .
It is easy to show that
5f = infcped) Suphe(}zy(p(g)f(gh)’ ?f = SUPgeo lnfheGZg(p(g)f(gh)

with similar equations holding for %@ and w. Dye [4] has proved that
fem(@) almost converges to s if and only if ¥f=vf=wf=wf=s. We
shall utilize this fact in proving Theorem 4.1.

LemMma 4.1. For f e m(Q) and &> 0, there exists an ny such that, if n=n,,
then

1) SUPpeq Zg'yn(g)f(gh) < 5f"'" &, Buphe(} Zg'}/n(g)f(hg) < Z_Uf"' &,
2) infheG zg Yn(g)f(gh) > Z’f"" & infheG zg yn(g)f(hg) > @f'— €.

Proor. Choose ¢ € @ such that
(*) SUPpeq 2y P(9)f (9h) < of + e .

By Lemma 3.1, choosing » sufficiently large, we have

E
*k *Y, — -,
(**) lg*yn—valli < T
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Now

SUDpeq 29 (@ *¥2)19) f(gh) = SuDpeg Xy Znnrmg PR ) yu(B”) f(B B R)
S Shvec Yalh) SUDneq 2y Shreamr, g P W) f(B'R) < Bf + }e

by (*). Consequently

SUPeq 2Vn(9)f(gh) < Bf +de+lyn—@*yal Iflle < Bf +e

by (**). The remaining statements are proved similarly, using the
fact that [y, *@—y,ll; > 0 in connection with the formulas involving
w and w.

Proor or THEOREM 4.1.
(1) If |8, 1X,es,f(gh) converges to s uniformly in /, then for any left
mean A,

A(f) = ISn{—l deSn }'(af) e l(-S‘) =S.

Therefore A(f)=s. Likewise for any right mean, A(f)==s. Consequently
f almost converges to s.
(ii) Given ¢>0 and fe m(G), for » sufficiently large, we have

z)f_ & < infheG Zg yn(g)f(gh) = SUPpeq Zg yn(g)f(gh) < T)f"*' ¢
and

wf—e < inf, .o 3, va(9)f(hg) < subPpea 3y val9)f(hg) < Wf+¢.

Since the almost convergence of f to s entails of=1vf=uf=wf=s, the
conditions of the theorem follow immediately.

5. Vector-valued functions.

Let X be a real Banach space and denote by m x(G) the collection of
all norm-bounded X-valued functions on G and by (@) the collec-
tion of all ¥ € mx(G) such that 9F and F?9 are in #iy(G) whenever F
is and such that co{F(g):g € G} is weakly compact. Here co denotes
the norm closure of the convex hull.

An X-mean A on #iy(#) is a continuous, linear map of 7 (G) into X
such that A(F)eco{F(g):ge G} for all F € #my(GQ) (see Dixmier [3]).
Using the same notions of left and right invariance, Dixmier has shown
that every left (right) invariant mean 4 on m(G) induces a left (right)
invariant X-mean A on 7y (@) via the relation

NEF(-),u)) = (AF),u) ,
for F € i x(@) and u € X*, the dual of X.
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THEOREM 5.1. Let G be a countable, amenable semigroup with identity e
tn which both cancellation laws hold. A mecessary and sufficient condition
that F € i x(Q) almost converge to & € X is that, for any summing sequence

{Sn} for G,

and

(lSnl—lzgeS,, F(gh)’u) - (’E:u)

(18al " Zgesy, F(hg),u) ~ (£,u)
untformly in k, for all w e X*.

Proor. (i) Suppose F' almost converges to &, that is A(F)=¢& for each
left invariant and each right invariont X-mean 4. Let A1 be any left
(right) mean on m(@) and let v € X*. We have

MF(-),w) = (AF),u) = (§u)

where A is the left (right) X-mean induced by A. In other words, the
function (F(-),#), qua function in m(@), almost converges to (& u).
By Theorem 4.1, the conditions of the theorem follow.

(ii) Suppose, on the other hand, that |S,|'3 ¢ ?F(h) converges to
& weakly, uniformly in h. For each g € G let X,=X, endowed with the
weak topology, and let ¥ =] ,.sX,. The weak topology on Y is the
product of the weak topologies on X, (me Kelley et al. [6, page 160]).
Any element of 7 x(G) can be considered as a member of ¥ and, given
any left X-mean A and any e X*, the linear functional A, =(A(-),u)
can be extended to an element /iu of Y*. Of course, an extension of
A, will not possess, generally, the left invariance property except on
elements of 7 x(@). Observe that & can be considered as a member of Y,
and that & is in the weak closure of co{?F':ge @} in Y. This follows
immediately from the definition of the weak topology in Y and from
the hypothesis. Since A is left invariant on elements of 7 y(G),

A(F) = A(I8p] 2 pes, F) -
Hence, by the weak continuity of A,,
(AF),u) = A F) > A (E) = A, &) = (£,u)  forallue X*.

So A(F)=¢&. Similarly A(F)=¢ for any right-invariant X-mean. That
is, F' almost converges to &.
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