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POLYGONS OF ORDER = IN L, WITH »n+2 VERTICES

DOUGLAS DERRY
Dedicated to Otto Haupt on his eightieth birthday.

A polygon of order n in real projective n-space L, , n>1, with n+2
vertices is not uniquely determined by its vertices. This is a special
property of this class of polygon for if a polygon of order n has more
than n+ 2 vertices then it is the only polygon of order n with these
vertices. In as much as every polygon of order » with more than n 4 2
vertices is an extension of one with n+2 vertices this special class is
of importance in the general theory. An application along this line is
given in § 4 where compatible sets R are defined by means of the polygons
of order n with n+ 2 vertices. This notion is local in the sense that it
is defined by the subsets of R which contain =+ 3 points. It is shown
that R is the vertex set of a polygon of order # if and only if it is com-
patible. Polygons of order = in an affine subspace E, of L,, n even,
have applications in the theory of neighborly sets as the vertex sets
of such polygons are neighborly. (A set R of m points in K, , n even,
is defined to be neighborly if, for every subset of }n points of R, a hyper-
plane exists which contains the subset and supports E.) Gale [5] showed
that the convex hulls of neighborly sets B with m points, n+2<m <n+3,
are combinatorially equivalent to the convex hull of m points on the
moment curve in K,. By use of polygons of order » with n+ 2 vertices
it is shown in § 5 that all neighborly sets of m points in E,, are the vertex
sets of polygons of order n in E,, n+2<m=<n+3. As the polygons
of order n in E, can be constructed [1], this gives a direct construction
for all the neighborly sets in £, of m points, n+2 <m <n+ 3. Griinbaum
[6, pp. 124-125] constructed a neighborly set of eight points in E, the
convex hull of which is not combinatorially equivalent to the convex hull
of eight points on the moment curve in E, This example not only
shows that Gale’s result is the best possible but also indicates the com-
plexity of the problem of constructing all the neighborly sets. As the
convex hulls of polygons of order n with m vertices are all combinatorially
equivalent, Griinbaum’s example also shows that neighborly sets are
not necessarily the vertex sets of polygons of order n. A second example
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of a neighborly set of eight points in E, is given in the present paper
which is not the set of vertices of a polygon of order 4. Its interest
lies in the fact that its construction depends on polygons of order 4
with 6 vertices.

All the polygons of order » with n+2 vertices in L,, are constructed
in §2. In §3 R is a set of n+2 points in general position in an affine
subspace F, of L,. An invariant of R is defined by means of convexity
and its relationship to the polygons of order » with the vertex set R
is studied in this section.

The section which now follows contains definitions and known or
easily proved results needed in the proofs.

1. Preliminaries.

1.1. The symbol [4,B,...] denotes the subspace of the real projective
n-space L, spanned by the points or point sets 4,B,... .

1.2.1f 4,,4,,. . .,4,, are points of L, in general position,w: 4,4,...4,,
denotes a closed polygon with the sides 4,4;.,, 1=<4=<m, where the
subscripts are computed modulo m. The points A, are called the vertices
of 7. A segment A;A;.,... 4., 1=k=<m—1, of = with the endpoints
Aj,A;,y is called an arc.

If, for a given polygon =, L,_, is any hyperplane of L, for which
A;¢L, ;, 1=¢<m, then the number of points in the intersection
L,_,nx is either even for all such L,,_, or odd for all such L, _,. A poly-
gon x is defined to be even or odd according as the number of points
of an intersection L, Nz is even or odd.

For a given polygon n: 4,4,...4,, the maximum number of points
of L, ,nx for all L,_, with 4,¢ L 1<i¢=<m, is defined to be the
order of z.

If m2n+1, the order of a polygon is at least n. The symbol =, will
be used to represent polygons with exact order n.

n—1>

1.3. If 4,4,.4... A;43-1, 12kSn—1, is an arc of a polygon
7, A14,. .. 4,, in L, then the arc 4; ,4;...4,,; of =, can be closed
by exactly one of the two (projective) segments A, ;A4,;,, so that it
becomes a polygon x;,,. A space L, for which

[ApAiirse Al € Ly S [As 1, Ao Api), Lgn A4 =0,

is defined to be an osculating k-space of z, and will be represented by
the symbol L(A4;4;.,...4;.%_1). The spaces L(A4;) are also called tan-
gents of 7, .



POLYGONS OF ORDER n IN L, WITH n+ 2 VERTICES 75

1.4. If n>1, the projection from A; into a hyperplane of an arc
A Ay o Ay of a polygon z,: A, 4,...4, with the endpoints
A4 (=4, ) together with that of all the tangents L(4,) is a
polygon z, ;. We describe =, , simply as the projection of xz, from
the vertex A4,.

7,1 is even or odd according as n is odd or even. If 4, , 4, ..
be the projections of A;,,,4;,, . respectively, from A, then =x,_, is
the projection of the arc 4,,,4;.,...4,,,, from 4; closed by the
segment with endpoints 4;,,",4;,,_," chosen so as to make the resulting
polygon even or odd according as » is odd or even.

1.5. The number of vertices of a polygon =,: A,4,...4,, in a hyper-
plane L, , together with the number of points of L, _;nz, which are
on sides 4,4, of n, for which 4,,4,,, ¢ L, _, is at most n. This follows
by induction with the use of 1.4.

In [1], [2], [3] =,, was defined as a polygon for which the above number
was at most n for all spaces L, ,. Consequently if the order of =, is
defined, as in 1.2, to conform to weak order of Haupt the results of
the above three papers will be valid.

1.6. The symbol S will be used to denote a simplex or the set of its
interior points.

1.7. For a polygon =,: 4,4,...4,,, n>1, the set of all points
e L(A; Ay . Ay, 5) is an n-simplex which will be represented
by the symbol 8(4,,4,). Its vertices are
4y, [Ap A0 [Ap Ay, Apnil
[Ay,45,435) 0 [Apy A, - o Apponsal s
o [Ap A4, ANN[AL A1), A,

The side 4,, 4, is a 1-face of S(4,,4,) [2, 3.2].

1.8. For a polygon =, : 4,4,...4,,, n>1, a polygon 4;4,... 4,4,
composed of the arc 4,4,...4,, of n, with the endpoints 4,,4,, closed
by an arc 4,,4,,,,4, with the endpoints 4,,,4, has order » if and only
if all the interior points of 4,,4,,.,4, are within 8(4,,4,) [3,4.5].

1.9. If, for a polygon =,: A,A4,...4,,, P is a point of L, for which
P,A4,,A,,...,4,, are in general position in L, then P is contained within
at most n osculating hyperplanes L(4;4,,,...A;1,—3) of 7, [1,5.6].

1.10. For a set R: A;,4,,...,4,, m2n+2, of points in general
position in L, a segment A4,4; is said to be R-admissible if, for every
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hyperplane L, ; spanned by = points of R different from A;A4;,
L’n—l ﬂAiA, = @,

1.11. If, for m 2 n+3, =, is a polygon with the vertices A,,4,,...,4
then =, is the only polygon of order n with these vertices [4,3.2].

m

1.12. Any set R of n+3 points A,,4,,...,4,,5 tn general position in
L, is the set of vertices of a polygon =, of order n. The sides of =, coincide
with the set of R-admissible segments with endpoints in R.

Proor. A norm curve exists in L, which contains the points 4,,4,,
...,4,.3.- The polygon inscribed in this norm curve with the vertices
A, A,,. .., A, .5 has order n. Thus a polygon x, with the given vertices
exists. By 1.5 a necessary condition that a segment 4,4, be a side
of &, is that it be R-admissible. By [4,3.1] this condition is sufficient.

2. A construction for the polygons.

2.1. If R is a set of three points A,,A4,, A5 in general position in L,
then the sides of the polygon 7,: A,A,A5 are the three R-admissible seg-
ments with endpoints in R.

Proor. Because m; has order 1 and is closed, it coincides with the
projective line L;. Iach of its sides 4;4,,;, 1<i¢<3, is the segment
with the endpoints A4,,4,,; which does not contain the point 4,,,.
Hence A4,4,;., is R-admissible in accordance with 1.10. As there is
only one R-admissible segment with endpoints 4;,4;,, the result is
clear.

2.2. If, for a fixed point A, of a set R: A}, A,,...,A, ., of n+2 points
in general position in L,, n>1, A, is the projection of A; from A;, i+j,
and R’ is the set A, 4, ,...,4; ' A;i s ... Ap.s, then the projection
A, A, of a segment Ay A,, b1, k+1, from A, is R'-admissible if and
only if A4, is R-admissible.

Proor. The points of R’ are in general position in the projected space
for otherwise the set R would not be in general position in L, .

Let L,_, be the hyperplane spanned by the n points of R different
from 4,,A,. Now A;€ L,_, as A;+A4;, A;+A4,. Hence the projection
of L, , from 4, is a hyperplane L, , of the projected space spanned
by the » — 1 points of R’ different from 4," and 4,’. Because the points
of R are in general position the projection of [4;,4,] is the line [4,",4,']
and that of the point L, _,n[A4,,4,] is the point L, ,n[4,’,4,']. Con-
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sequently L, ,nA4,4,=0 if and only if L, ,nA4,'4," =0 where 4,'4,’
is the projection of 4,4,.
Thus the result is proved.

2.3. If A;,A;, A, are distinct points of a set R: Ay, 4,,...,4,,,0f n+2
points in general position in L,, n=1, the three R-admissible segments
A,A;,A;4,, 4,4, form an odd triangle.

Proor. If n=1, the three points 4,,4,,4, are the set R. By 2.1
the three R-admissible segments are the sides of a polygon x,. As this
has order 1 the result follows for n=1.

For n>1 the set R contains at least one point 4, different from each
of 4;,4;,4;. Let A, be the projection of 4, from A4;, p+¢, and
A A, A7A) A Ay those of 4,4, 4,4, A, Ay, respectively. If R’ be the
set Ay, 4, ..., 4,4, A ,..., A, then, by 2.2, 4’4/, 4,/4,’, 4,'4;’
are R'-admissible. If n=2 these segments are the sides of a polygon
7, by 2.1 and so form the projective line. This means that every line
through A4; intersects the union of the three segments A4,4;,4,4,,4,4,
in exactly one point. Hence they build an odd triangle and the result
is proved if n=2. We now assume it is true for spaces L, ;, n>2,
and proceed by induction. By the induction assumption the R’'-admis-
sible segments 4,'4,,4,/4,',4,'4;’ form an odd triangle. This means
that the triangle composed of 4,4;,4;4;,A4,4, is also odd because the
projection of an even triangle from a point outside its plane is even.
The proof now follows by induction.

2.4. If B,B,,...,B, ., ts any permutation of a set R:A,,A,,..., 4,5
of n+2 points in general position in L, then a polygon n: B\B,...B, .,
has order n if and only if each of its sides B;B;.,, 1 £1<n+2, ts R-admis-
sible.

Proor. If n: B;B,...B,,, has order »n then each side BB,
1<i£n+2, is R-admissible for otherwise the hyperplane spanned by
the n vertices of n different from B;,B;,,; would contain exactly one
interior point of B;B,,,, in contradiction to 1.5.

We now prove the converse that z has order » if each of its sides is
R-admissible. If n=1, the three points B,, B,,B; are the vertices of
a polygon x,: B,B,B, the sides B,B,, ByB;, B;B; of which are E-admis-
sible by 2.1. As there is exactly one R-admissible segment with given
endpoints, 7, coincides with z and the result is clear if n=1. We now
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assume it to be true in spaces of dimension n—1, #> 1, and proceed by
induction. A hyperplane H,_, which contains no vertex of = can be
displaced continuously to a position L,_; which contains exactly one
vertex B; of m in such a way that none of its intermediate positions
contains any vertex of w. The set L,_;nz contains at least as many
points as H,_;Nz except possibly in the case in which L,_;, contains
a tangent L(B;) in which case L,_;nz may contain one point less than
H, ,nn. Let B; ,B;,, be the segment which together with the sides
B;_,B;,B;B;., of n forms an odd triangle. As B; ,B; B;B;,, are, by the
hypothesis, R-admissible it follows from 2.3 that B; ;B is also
R-admissible. If B,’ be the projection of B, from B;, p=+j, B, B,
that of the side B Berl of w,p+j,p+1+7, and B, , B,H’ that of B, 1B]+1
then, by 2.2, the sides of the polygon n’: By'B,’...B; y'B;.,"...B, .,
are R’'-admissible where R’ is the set B,’,B,’,.. .,B i1 Bji1’s. - Bpys
The points of R’ are in general position otherwise the points of R would
not be in general position. Hence R’ satisfies the hypothesis and so
by the induction assumption has order n—1. If L, , be the projection
of L,_; from B; then, as B; is the only vertex of # in L,_,, L, _, con-
tains no vertex of n’. As &’ has order n—1, L,_, contains at most n —1
points of #’. If B;,;B;,,...B;,, ; be an arc of # with the endpoints
B; 4, B; ;- its projection will be the arc B;.," B;.; ... B}, with the
endpoints B;.,’, B;,,—,". As the projection defines a 1— 1 correspondence
between the two arcs both L, _,nB;,; B;,,...B;,,,and L, ,nB;,,'B; ,

..Bj,p-, contain the same number of points.
We now distinguish two cases. In the first of these L, ,nB;_,'B;,;’
is assumed not to be empty. This implies that L, ,nB;,,"B;,,

..Bj,,,—," contains at most n—2 points. Consequently L, ;nB;,;B;,,

..B;,,; also contains at most n— 2 points. It follows from the defini-
tion 1.3 that any line spanned by B; and an interior point of B;_; B,
is a tangent L(B;) of . Therefore, as L, ,nB;_,'B;.,"+0, L,_, contains
a tangent L(B;). As L, _;na contains at most n— 1 points of # including
B; it now follows that H,_ Nz contains at most » points of = because
L,,_, supports = at B;.

In the remaining case, where L, ,nB;_ ,'B;.,'=0, L,_; does not
contain any tangent L(B;) but intersects & in at most » points including
B;. As L,,_, does not support = at B;, H, Nz and L,_,;nz both contain
the same number of points. Hence H, ;nz contains at most n points
in both cases. It now follows by induction that = has order n which
completes the proof.

This theorem gives a construction for all the polygons of order =

which have the vertex set R.
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3. Convex hulls.

3.1. The following notation is wused throughout this section.
R:A,A4,,...,4,,, is a set of n+2 points in general position in an
affine subspace E, of L,. The space E, will remain fixed. C(R) is the
convex hull of R defined with reference to Z,. At most one of the
points A; of R can be an interior point of C(R) in which case C(R) is
the n-simplex of E, with the vertices 4,,4,,...,4; 1,4;,1,.--,4p1a-
In this case Sy(R) is defined to be the 0-simplex of the single point 4.
If all the points of R are on the boundary of C(R) then S,(R) is defined
to be a simplex with vertices belonging to R and of minimum dimension
k such that every interior point of it is an interior point of C(R).

3.2. If, for a given S,(R), 8',_.(R) 18 the n— k-simplex the vertices of
which are the points of R which are not vertices of S(R) then S, (R)nS’,,_,(R)
18 a single point interior to both simplexes.

Proor. If k=0, Sy(R) is an interior point of 8',(R) and the result
is clear. (The single vertex of a 0-simplex is to be regarded as an interior
point of the simplex.) If £> 0 then every point of R is on the boundary
of C(R). This in turn implies »>1. Let L, be the space spanned by the
vertices of S,(R) and L', _, that spanned by those of 8, _,(R). If X
is defined to be L, nL’,_,, then X is a single point because the points
of R are in general position.

We now prove (A) that X is not a boundary point of Sy (R). If this
were false, X would be an interior point of an A-face S, of S, (R), h<k.
This would imply that X € L,_,nL’,_, where L,_, is the space spanned
by the vertices of a k—1-face of S;(R) which contains §;. This is
impossible as L, _,nL’, ;=0 because the points of R are in general
position. (A) is now clear.

We next prove (B) that X €8, ,(R). If k=n this is trivial as X
would be the 0-simplex S'(R). If, for k<n, (B) were false then
L.n8,_(R)=0 as

Lyn8, (R s Ly,nl,,=X.

Then, by the separation theorem, a hyperplane H, , would exist for
which L, < H,_, and which would support S, _,(R) and consequently
R itself. As S, (R)<L,<H,_, this contradicts the fact that S,(R)
contains at least one interior point of C(R). Thus (B) is established.
We now suppose the theorem is false. It then follows from (B) that
X ¢ 8,(R) and also that X € O(R) as X € 8’ _,(R) =C(R). By its defini-
tion S,(R) contains a point Y interior to C(R). Hence every interior
point of XY is an interior point of C(R). As X,Y € L;, [X,Y]<SL,.
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Hence XY contains a boundary point of Sy (R) which by (A) cannot
be X. Therefore this boundary point of S,(R) must be an interior point
of C(R). Such a boundary point would be an interior point of a proper
face S, of S;(R). In this event every interior point of S, would be an
interior point of C(R). As p<k, k would not be a minimum in contra-
diction to the definition of S;(R) in 3.1. This contradiction establishes
the result and so completes the proof.

3.3. If k is the dimension of a simplex S,(R), then 0=k =[}n).

Proor. If the result is false and k>[}n] then n—k=[jn]<k. By
3.2 §',_x(R) contains an interior point of C(R). As 8, _(R)=C(R),
every interior point of 8, _,.(R) is an interior point of C(R). Thus
S’ —(R) is a simplex of dimension lower than % every interior point
of which is an interior point of C(R) in contradiction to the definition
of S,(R) in 3.1. Therefore k>[4n] is impossible and the proof is com-
plete.

3.4. A hyperplane spanned by n points of R supports R if and only if
exactly k of these n points are vertices of Si(R).

Proor. If a hyperplane spanned by = points of R contains exactly
k vertices of S,(R) it must contain exactly n—k vertices of §',,_,(R).
Such a hyperplane cannot contain either S,(R) or 8, _;(R) but must
support both simplexes. Both simplexes are on the same side of the
hyperplane as they have a common point by 3.2. Hence the hyper-
plane supports R.

A hyperplane which contains more than % vertices of §,(R) must
contain S;(R) and so must contain at least one interior point of C(R).
If a hyperplane spanned by » points of R contains less than k vertices
of S;(R), it must contain more than »—k vertices of S’,_,(R) and hence
contain ', _;(R) and so by 3.2 contain at least one interior point of C(R).
Thus any hyperplane spanned by » points of R cannot support R unless
it contains exactly k vertices of S;(R). This completes the proof.

3.5. If the vertices of an m-simplex S,,, 0 <m <n, are points of R, then
8, contains an interior point of C(R) if, and only if, one of Si(R),S’, _;(R)
s a face of S,,.

Proor. It follows by induction that if a face of §,, contains an interior
point of C(R) then every interior point of §,, is an interior point of C(R).
By 3.1 and 3.2 both S,(R),8,_.(R) contain an interior point of C(R).
Consequently if either of these simplexes is a face of §,, then S,, contains
at least one interior point of C(R).
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If neither Sy(R) nor S',_,(R) is a face of S,, then the vertices of §,,
are a subset of » points of R of which at most k points are vertices of
S,(R) and at most n—k are vertices of S’ _,(R). By 3.4 the hyperplane
spanned by these n points supports R. As it contains S,,, this simplex

cannot contain an interior point of C(R). This completes the proof.

3.6. If k<in, Sy(R) is uniquely determined by R. If k=13}n then S,(R)
and S',_.(R) are the only k-simplexes each interior point of which is an
interior point of C(R).

Proor. k is uniquely determined by the definition of S,(R) in 3.1.
Let S;, be a k-simplex with its vertices in R each interior point of which
is an interior point of C(R). By 3.5 one of S, (R), 8',_i(R) must be a
face of §,. If k<4n only S,(R) can be a face of S), in which case S, =
Si(R). If k=4n then either Sy (R) or §’,,_,(R) is a face of S,, which means
S, =8,(R) or 8;,=8",,_.(R). Thus the result is established.

3.7. A segment A;A; is R-admissible if and only if (1) exactly one of
A, A; is a vertex of Sy(R) and A;A;< E,, or (2) neither or both A;, A; are
vertices of Sy(R) and A;4;& E,, .

Proor. Let L, , be the hyperplane spanned by the n points of R
different from 4;,4;. In the case (1) L,_, contains k vertices of S;(R)
and n—k vertices of S, ;(R). By 3.4 L,_, supports R and so
L, ,n4,4;=0 if and only if 4,4;,<FE,. Again by 3.4 L, , does not
support R in case (2). Hence L, , must separate 4; and A; which
means L, ;nA4;4;=0 if and only if 4,4;¢ E,. The proof is now com-
plete.

3.8. We now suppose the vertices of S,(R) to be colored black and
those of §’,_,(R) to be colored red. If B, B,,...,B,,, is any permuta-
tion of the points of R let z: B\B,...B, , be the polygon constructed
so that a side B;B,., is within ¥, if B;, B,,, are points of different color
while B;B; .+ E, if B;, B,,, both have the same color. By 3.7 each
side of this polygon is R-admissible. By 2.4 z has order n. It follows
from 2.4 and 3.7 that all the polygons of order » with the vertex set R
can be constructed in this way.

4. Vertex sets of polygons of order n in L,,.

4.1. I, for a polygon =: 4,4,...4,,, m>3,in L,, 4, ,4;,, is the
segment which together with the sides A4, ,4;,4;4,,, of = forms an
even triangle then the polygon A,4,...4; ,4;,...4, obtained by

Math. Scand. 23 — 6
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closing the arc 4; ,4;.5...4;1m—1 0f w by 4, 14,,, is defined to be the
contraction of = with respect to the vertex 4;.

4.2. The contraction of any polygon x,: 4,4,...4,,in L,, m>n+1,
with respect to any of its vertices is also a polygon of order 7.

4.3. If, for a polygon m,: A1A,... 4, in L,, n>1, L,_, is a hyperplane
in L, for which A, A;.q,. .., Ayn o€L, 1, then L, is an osculating hyper-
plane L(A; A,y - - Aiin_s) Of 7, if L, N7, 15 the arc 4,44 .. Ajips-

Proor. If m=n+1, this is an immediate consequence of the defini-
tion 1.3. We assume the result to be true for polygons of order n with
m—1 vertices, m>n+ 1, and proceed by induction. Let

A(Ain): Aidiy o Appadiinin - Aiima

be the contraction of &, with respect to the vertex 4,,,,. By 4.2 a(4,.,)
has order n. By the definition 4.1 the sides A,;,, 14;1n, Aiindiinia
of n, together with the side A4,,, 4;.,+1 of #(4,,,) form an even
triangle. If L,  n=, is the arc A;A4,.,...4,.,_, it follows that
L, _,nn(4;,,) is also the arc 4,4,.,...4,,,_, for if a hyperplane inter-
sects one side of an even triangle it must intersect two of its sides. There-
fore by the induction assumption Z,_; is an osculating hyperplane
L(d;A;....4;,,-5) of n(4,,,). It follows then from 1.3 that it is also
an osculating hyperplane L(4;4;....4;,n_s) of 7,. The result now
follows by induction.

44. If, for a polygon =,: AA,... A, in L,, n>1, P is a point for
which the potnts of the set P,4,,4,,...,4, are in general position in L,
then m— 1 vertices A;,4,,,...,4,, , of m, exist so that, for the hyperplane
L,,=1[PA,;,. ..,4;, 1, a side A;4;, of =n, exists for which
L, nA;4;,%0, 4;4;,, ¢ L,_,.

Proor. As P,A4,,4,,...,4, are in general position, each space
[P,A;,Ayigse - -3 Ajin_s], 1S1<m, is a hyperplane. By 1.9 at most »
of these spaces can be an osculating space L(A4;4,.;...4;.,-0). As
m=n+1, at least one of these spaces L, =[P, 4;,4;.1,-.-,4;1n—-] 18
not an osculating space L(A4;4;,,...4;,,_5). By 4.3 this hyperplane
must contain a point of z, not in the arc 4;4;,,...4;,,_,. This point
must be an interior point of a side A;4,,, as P,4,,4,,...,4,, are in
general position. Hence L, ,nA4;4;.,+0, A;,A;,, & L, ; which proves
the result.

4.5. If Q: B, B,,...,B, ., is a subset of n+2 distinct points of a set
R: A}, A,,...,A4,, mzn+3, of points in general position in L,, n>1,
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then by 1.12 there is a unique polygon n(4,Q) of order n with the
vertices 4,B,,B,,...,B, ., A€ R, A ¢ Q. If, for each @, the contraction
of n(4,Q) with respect to 4 is the same for all 4 then the set R is defined
to be compatible.

4.6. HypoTHESIS: R: 4,,4,,...,4,, 15 a set of m points in general
position wn L,, n>1, m=n-+4, with the properties

(1) every subset of m—1 points Ay, Ay,. .., Ay 1, Ay, .., 4, 1SpEm,
18 the vertex set of a polygon of order m which will be written as =(p);

(2) the contraction of n(p) with respect to A, 1s the same as the contraction
of n(q) with respect to A, p+q.

ConcrLusioN: If the subscripts of the points of R are adjusted so that
m(m)is AyAy. . A,y , a side A;A; ., of n(m) exists so that every hyperplane
spanned by A,, and n—1 other points of R different from A A;. ., inter-
sects A;A ;.

Proor. As the points 4,,4,,...,4,, are in general position, the point
A, and the polygon n(m): A,4,...4,,_, satisfy the hypothesis of 4.4.
Consequently n—1 vertices 4;,4,,,...,4,,_, and a side 4;4;,,, where
j is to be computed modulo m —1, of n(m) exist so that if

Ln—l = [AM!A' A

i1° AR

* Aiu_l]

then
Ln—l n AjAJ’+1 + 07 AjaAj+1 ¢ Ln—l ‘

Let 4, be a point different from A4,,4;4;.,4,,4,...,4;, . By
(2) the contraction of n(p) with respect to A,, is the contraction
AA,. . A, 1A, ... A, of 7(m) with respect to 4,. Now by 1.5
A;A;,, cannot be a side of n(p) because L, ;nA;4;.,+0 as L,_, is
spanned by n vertices of z(p). Consequently n(p) must have the form
Ady. . AAA; .. Ay Ay, Ay, Hence its sides 4,;4,,,4,,4;,,
and the side 4;4;,, of its contraction with respect to 4,, define an even
triangle. Any hyperplane spanned by n vertices of =(p) including 4,,
but not A4; or A4;,, intersects A;4;,, otherwise it would support the
even triangle at 4,, and, if suitably displaced, would intersect the
sides 4;4,,,4,,4;., of n(p) and contain n—1 of its vertices in contra-
diction to 1.5. Thus the result is established for all the hyperplanes
spanned by 4,, and n—1 vertices of n(m) different from 4;4,,,,4,.
If 4, be any point of R different from 4,,,4,,4;,,,4, then as mzn+4,
a hyperplane exists spanned by 4,, and n—1 other points different from
A;,Aj4,4,,4,. Such a hyperplane intersects A4;4;,,. Exactly as
above it follows that any hyperplane spanned by 4,, and »—1 other
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vertices of n(q) different from A;A4;,, intersects 4;4;,,. If H, ; be
any hyperplane spanned by 4,, and n—1 other points of R different
from A;, A;,, then, as R contains at least n+4 points, a point 4, of R
exists for which 4, ¢ H,_,, A, + 4;, A, + 4;,,, A, + 4,. As H,_,
is spanned by n vertices of n(q) different from A;,4;,,, H, 1n4;4;,,+0
and the proof is thus completed.

4.7. A set of points R: A}, A4,,...,A,,, m=n+3, in general position in
L,, n>1, is the set of vertices of a polygon of order n if and only if it 1s
compatible.

Proor. The result is true for m=n+3 for in this case it is trivial
that R is compatible while R is always the set of vertices of a polygon
of order » by 1.12. We assume that compatible sets of m—1, m>n+3,
points are always the vertices of a polygon of order » and proceed by
induction.

The first step in the proof is to show that R satisfies the hypothesis
of 4.6. As every subset of a compatible set is likewise compatible, it
follows from the induction assumption that for every point 4, of R
a polygon n(p) of order n exists with the vertices 4,,4,,...,4,_,,
A,.4,...,4,. Thus R satisfies the condition (1) of 4.6. As R is com-
patible, the contraction of z(p) with respect to 4,, p+gq, is the same as
the contraction of 7(gq) with respect to 4, if m=n+4. If m>n44 then
by 1.11 there is at most one polygon of order » with m —2 vertices.
Hence in this case the contraction of n(p) with respect to A, coincides
with the contraction of 7(q) with respect to 4, as both of these con-
tractions are polygons of order n with the m —2 vertices 4,,4,,...,
A, A, A 44044, and m—22=n+3. Thus R also satis-
fies condition (2) of 4.6.

A class of polygons z(p), p<m, can now be constructed. It follows
from 4.6, applied to R, that a side 4;4,,, of n(m) exists so that every
hyperplane spanned by A4, and n—1 vertices of m(m) different from
A;,A;,, intersects A;A;,,. The subscripts may be adjusted, if neces-
sary, so that 4;4;,, becomes 4,,_,4,. Let n(p) be a polygon for which
l<p<m—1. Then 4,,_; A4, cannot be a side of #(p) by 1.5 as a hyper-
plane spanned by 4,, and n—1 vertices of n(p) different from 4,, ,, 4,
intersects 4,, ;A,. As R satisfies condition (2) the contraction of z(p)
with respect to 4,, is the contraction 4,4,...4, 14,.,...4,_, of 7(m)
with respect to 4,,. Thus #(p) has the form 4,4,...4, ,4,,,...4,,,4,
as this is the only possible form which does not contain the side 4,, , 4,
of n(m).

A polygon of order n with the vertices B can now be obtained. As
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R satisfies the condition (2), the contraction of n(p) with respect to 4,
coincides with the contraction of 7(q) with respect to 4,. Hence the
arc 4,, 4, A, is common to both n(p),7(¢9)if l<p<m—1,1<qg<m—1.
Let 7 be the polygon consisting of 4,, A4, A, and the arc 4,4,...4,, ;
of n(m) with the endpoints 4,,4,, ;. For 1<p<m—1, the contraction
of = with respect to 4, consists of the arc 4,, 4,4, and the arc
AA,.. A, 1A, ,,. .. A,_, of the contraction of 7z(m) with respect to 4,,.
But this contraction is by (2) the contraction of z(p) with respect to 4,,.
Hence the contraction of z with respect to 4, is #(p). To prove = has
order n, let L, , be any hyperplane for which 4;¢ L, ,, 15¢<m.
As 7(m) has order n, L, _;nn(m) contains at most n points. The arc
A 4,. .. A, of z(m) contains at least n+ 1 sides as m=n+4. Hence
at least one side of this arc does not contain any point of L,_,. If 4,
be an endpoint of such a side different from 4, and 4,,_,, it follows
that L,_,nzn(p) contains the same number of points as L, _ Nz since
71(p) is the contraction of 7z with respect to 4,. This means that L, ;nz
contains at most » points. Hence = has order n and it now follows by
induction that if R is compatible then R is the vertex set of a polygon
of order .

To prove the converse that the set of vertices B of a polygon
Mp: A14,...4,,, n>1, m2n+4, is compatible, let B, B,,...,B, .,
A be n+3 distinet points of B. By 1.12 these points are the vertices
of a unique polygon of order » which, after an adjustment of the sub-
scripts if necessary, can be written as B, B,...B, 1AB,...B, ,. This
polygon can be constructed by contracting =, Wlth respect to the vertices
not in the set of the »+3 points in which case it will have the form
Ay Ap,- - Apys 1SP1<Pa<...<Ppi3Sm. As this polygon is unique,
the cyclic order of the points B,,B,,...,B,,, is that defined by the
vertices of z,. By 2.4 there is exactly one polygon of order n» with
the n+2 vertices B,,B,,...,B,,, for which the order of the
vertices is prescribed Therefore the contraction of the polygon
B,B,...B, 1AB,...B,, with respect to 4 is the same for all points 4.
Thus R is compatlble and the proof is complete.

4.8. If every subset of n+4 points of a set of points R: A,,A4,,..., 4,
in general position in L,,, n>1, m=n+ 4, 18 the set of vertices of a polygon
of order n then R is compatible.

Proor. Let By, B,,...,B,.,,4,B be any n+4 points of RB. By the
hypothesis these points are the vertices of a polygon ¢ of order » which

after an a,djustment of the subscripts, if necessary, can be written
as BB,...B, ;4B,...B, \BB,...B,,,. By 111 the contraction
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B,B,...B, |AB,...B,,, of ¢ with respect to B is uniquely deter-
mined by its vertices as it has order n by 4.2. Consequently the cyclic
order in which the points B,,B,,. .., B, ., occur in ¢ is independent of B.
Again by 4.2 the contraction B, B,...B, ;BB,...B, , of ¢ with respect
to A has order » and in turn its contraction with respect to B is the
polygon B B,...B, , of order n. This polygon, by 2.4, is uniquely
determined by the vertices B;,B,,...,B, ., because their order is in-
dependent of B. Therefore the contraction of the polygon with the
n+3 vertices B, B,,...,B, 4, B is the same for all points B, B+ 4,
as that of the contraction of the polygon with the vertices By, B,,...,
B, .,,A with respect to A. Thus R is compatible and the proof is com-
plete.

It follows from 4.7 that R is the set of vertices of a polygon of order #.
An elementary proof of this result was given in [4]. The present proof
depends on the duality theorem for polygons of order » [1] used in 4.4.

5. Neighborly sets.

5.1. A set of m points R in general position in real affine n-space,
E,, nz2, neven, m=n+1, is said to be neighborly, if, for each subset
of in points of R, a hyperplane exists which contains this subset and
supports R.

5.2. A hyperplane L, _, which contains m wvertices of a polygon
7w, A1 Ay. . A, n E,, n even, supports n, if each vertex in L, _ N7,
is within an arc A A, ... A;nq of 7=, for which k is even and
Ap Ao Apga €Ly, but Ay, Ay ¢ L, .

Proor. Let H be the set of all arcs 4, ,4;...4,.,14;. of =, for
which 4, ,,4;,, ¢ L, bat A,A4,,,...,4; 4 1€L, . Let 4,,4,,
...,4, be the n distinct vertices of w,, in L,_,. By [4,2.11] sequences
X,,X,,...,X, of points of z, exist for which X; -~ 4,, 1<¢<n, and

Aj¢ Ly = [X, X, ., X, 15j5m.

Provided only that X, is sufficiently close to 4,,, 1s¢=n, L',_; will
intersect m,, only in points interior to the arcs of H and morcover L', _,
will intersect each arc 4, ;4,...4,;,, of H in at least £ points. It
follows from the order of =, and the fact that L, , contains n vertices
of m, that L',_; intersects each such arc 4; ,4;...4,,, in exactly
k points. As k is even, A;_,A4;,; are on the same side of L', ; provided
only that X, is sufficiently close to 4,, 1<4=<n. This implies that
A; 4, A;. areonthesamesideof L, ;. If 4, ;A;.. . A;;, A; 1A;.. Ay
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be two successive arcs of H, that is, arcs of H with the property that
no vertex of the arc 4;,,4;,;.,...4;_; is within L,_,, then as L',
contains no point of this latter are, all its vertices will be on the same
side of L’,_, and consequently on the same side of L,_,. Thus the
vertices of any two consecutive arcs of H as well as all the vertices of
a, between these arcs are either within L, ; or are all on the same
side of L, ;. This implies that all the vertices of =, are either within
L,_, or on the same side of L, ,. Asn,<k,, L, , supports z,. Thus
the proof is completed.

5.3. The set R of the vertices of a polygon 7, A14,...4,,in E,, n even,
is neighborly.

Proor. If @ is any set of at most }n vertices of s7,, then a hyperplane
L, _, exists which satisfies the hypothesis of 5.2 and contains . This
is clear if n=2. We assume it true for all polygons =, _,, =4, n even,
and proceed by induction. If @ is empty then L, , may be taken to be
any hyperplane spanned by 7 consecutive vertices. If ¢ contains at
least one vertex 4; of z,, let 4" be the projection of 4; from the line
[A;, Azl G+, j+t+1. Then it follows, by the use of 1.4, that the
projection of =z, from the line [A4;,4,;.,] will be a polygon =z, ,:
A4y . A, A . A, TE Q' be the set of vertices of n,_, which
are projections of vertices of ¢, then @’ contains at most }(» —2) points.
Hence, by the induction assumption, a hyperplane L, _, of the projected
space exists which contains @ and satisfies the hypothesis of 5.2,
that is, L, _5 is spanned by = — 2 vertices of =, _, and each arc of maximum
length in L, _;nx,_, contains an even number of vertices of n,_,. Let
L,,_, be the hyperplane of L, which is projected into L,,_;. Then Q< L, _,
and 4,4, €L, . Let A,A,,,...A4,,;; be an arc of 7, of maximum
length in L, ,nz,. If at least one of 4,,4;,, is included in the arc
A, ,4,...4,,; then both of A4;A;,, are within 4,4,,,...4,.,
as they are within L,_, while 4, ,,4,,, ¢ L,_;. The projection of the
arc A,A,.,...Apip— 18 an arc of maximum length with k—2 vertices
in L, _sN7w,_,. Such arcs are assumed to contain an even number of
vertices. Therefore I is even. If, on the other hand, neither of 4,,4;,,
is within 4,_;4,,...4,,;, the projection of 4,4,,,...4,,, is an arc
of maximum length in L, jnz,_, which contains k vertices. Again k
is even. Hence it follows by induction that @ is contained in a hyper-
plane L,_, spanned by = vertices of &, with the property that each arc
of maximum length in L, _,nx, contains an even number of vertices.
Consequently, by 5.2, L,_, supports B. This completes the proof that
R is neighborly.
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5.4. A set of n+2 poinis R in general position in L, , n even, is neighborly
if and only if the dimension k of a simplex Sy(R) ts }n.

Proor. If k< 3n then, by the definition 3.1, S (R) has at most in
vertices. Hence the vertices of S,(R) are contained in a subset of in
points of RB. As S,(R), by its definition 3.1, contains at least one interior
point of C(R), no hyperplane which contains this subset of the }» points
can support E. Hence, by 5.1, R is not neighborly. By 3.3, k< in.
Therefore if R is neighborly k= }n.

If k=4in then any subset of }n points of R is within a subset of =
points of R of which exactly in points are vertices of S,(R). By 3.4
the hyperplane spanned by this set of » points of R supports B which
shows R is neighborly and completes the proof.

5.5. A set R of n+ 2 points in general position in K, , n even, is neighborly
if and only if R is the set of vertices of a polygon =, in E,, .

Proor. The set R of the vertices of a polygon 7, is neighborly by 5.3.
If a set R of n+2 points is neighborly, the dimension % of the simplex
Si(R) is n by 5.4. It follows from 3.8 that R is the vertex set of a
polygon =z, in E, and so the result is proved.

5.6. HypoTHESIS: R is a neighborly set of n+3 points 4,,4,,..., 4.1,
By, B,,...,B; ., tn general position in E,, n=2h even, n=2.

83,841 are the simplexes with the vertices Ay, 4,,...,4,.1; By, B,
.., B} 49, respectively.

Every interior point of S, is an intertor point of C(R).

CoNCLUSION:

(1) 8xn 8y, 28 an open segment AB for which A,B € S,,.

(2) A4,B are interior points of different h-faces of S, with the vertices

C.,0C,,...,0hX; C,,C,,...,C7Y.
(8) XY ts R-admisstble.

Proor. Let L, be a projective space which contains Z,. Because
the points of R are in general position,
[4,,4,,. .., 43410 [By,B,,. .., By .,]
is a line L, of L, while
[4,,4,,...,4; 1, Az, Ap N [By,By,. . . ,B; 1, Bj,.. ., Byl = 0

for 1=4<h+1, 15j<h+2. This latter relation implies that the
boundary of S, has no point in common with that of S,,;.
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If 8, is the closure of S;, we now show

[Al,Az,. .. "A‘h+1] n C(R) = Sh .
Clearly
S, < [44,4,,...,4;, 40 C(R).

It is therefore sufficient to show that
[41,4,,. .., 4,41 NCR) = S, .

If this were false, a point U of the intersection would exist for which
U ¢8,. By the hypothesis an interior point V of C(R) exists in ;.
Hence every interior point of the segment UV of E, would be an interior
point of C(R). But as U ¢S,, V€8, and [U,V] is in the space spanned
by the vertices of S,, UV would contain a boundary point of §,.
Consequently a proper face of S, would contain an interior point of
C(R) in contradiction to the assumption that R is neighborly. This
shows that no point U exists and proves that

[4,,4,,..., 4, ,1nCR) = 8, .
We have
(4,45, Ay NSy + 9,

for otherwise, by the separation theorem, a hyperplane L,_; containing
[41,4,,...,4;.,] would exist which supported S,,,. As each vertex
B, is a limit point of interior points of §;,,, this would imply that L, _,
supported R in contradiction to the assumption that S, contains at
least one interior point of C(R).

By the two previous paragraphs

O+ [Ay Ay, . Ap] N Spyy S [A Ay, - A ] N CR) N Sy
=8N 81 & Ly

Hence L,nS,,, is an open segment AB. Moreover
AB < [A17A27' . 7Ah+1] n U(R) = gh .

It was proved in the first paragraph that no boundary point of S,
can be a boundary point of S,. As A4,B are boundary points of S,
it follows that 4,B € §;. Hence

AB = 8,08, € LinSy,y, = AB.
Thus (1) is proved. As
[AI’A2" . ?Ah+l] n [.Bl,Bz,. . "Bj—l’Bf+1’ . e "Bk—l"Bk+1" .o "Bh+2] = 0
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for j=+k, A,B must be interior points of A-faces of S;,,. They cannot
be on the same A-face for then L,nS,,,=0. This proves (2). Accord-
ingly let C,,C,,...,C,,X be the vertices of the kh-face of S,,; which
contains 4 and C,,C,,...,C,,Y those of the h-face of S,., which
contains B. To show that XY is R-admissible let H,_, be any hyperplane
spanned by n points of R different from X,Y. Suppose first that
Sy=H,_,. Therefore A,BeH, ,. Now, H, , can only contain A—1
of the vertices C,C,,...,C, of S,,; and so C; exists with C, ¢ H,,_,.
Further, H,_, cannot support the simplex with the vertices C,,C,,. ..,
Cp, X as it contains the interior point A of this simplex. As C},C,,...,
C;1,Ciq,- - .,Ch,eH, , it follows that H,_, separates C; and X,
that is, H, ,nC;X=+0. Similarly H,_,nC;Y+d. Consequently
H, .nXY=0 as C;X,C,Y,XY form an even triangle. In the remain-
ing case H,_; contains C,,C,,...,C, and all but one of the vertices
A, 4,,...,4,,, of S;,. Hence H,_, supports S, and the simplex C,,C,,
...,04,X. These simplexes are on the same side of H,_, as they have
the common interior point 4. Likewise 8, and C,,C,,...,0,,Y are
on the same side of H,_; as H,_; supports both of these simplexes and
B is a common interior point. Hence R is on one side of H, ; and
H, .nXY=¢. This completes the proof that XY is R-admissible and
so the result (3) is established.

5.7. A set R of n+ 3 points in general position in K, , n=2h even, n>2,
s nesghborly if and only if it is the set of vertices of a polygon of order n.

Proor. The set of vertices R of a polygon x, is neighborly by 5.3.
To prove the converse let L, be a projective space which contains £, .
As RcE,<L,, by 1.12, R is the set of vertices of a polygon =, the
sides of which are the R-admissible segments with endpoints in R.
Consequently to show that =, = £, it is sufficient to show, for an arbitrary
point X of R, that the two sides of x,, which have the endpoint X are
within ,. The subset R’ of the n+2 points of R different from X
is neighborly as R is neighborly. As, by 5.4, a simplex S;(R’) has dimen-
sion in=~rh, such a simplex can be written as §,. By its definition each
interior point of S, is an interior point of C(R’) and consequently also
of C(R). Let S, be the simplex the vertices of which are points of R
which are not vertices of S,. Then §;,8;,, satisfy the hypothesis of 5.6.
It follows from that result that S,nS,,; is an open segment AB where
A, B are interior points of different h-faces of S;,,. The points of R’
which are not vertices of S, are the vertices of a simplex S',(R’) which is
an h-face of S,.,. By 3.2 8,n8,(R’) is an interior point of S;. This
intersection must be one of 4,B, say B, as these are the only points
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of §, within an h-face of §,.,. If C1,C,,...,C, X be the vertices of
the h-face of §;,, which contains 4, then a vertex Y of §;,, exists
so that the vertices of §',(R’) are C,,0,,...,0,,Y. It follows then, from
5.6, that the segment XY of E, is R-admissible and consequently,
by 1.12, a side of =,. If 8, is defined to be S, (R’) a similar procedure
leads to a second side XZ of n, in E,. As Y e 8y (R'), Z € Sy(R), it
follows that Z+ Y, as S,(R’),S',(R’) have no common vertex. Thus
the two sides of 7, with the endpoint X are within ¥,. As X is arbitrary,
n, < H,. The proof is now complete.

5.8. 01,0,,0;,0,X,Y are points in general position in L,.

(1) If =t: O XC,CyC,, n%: C,0,C,YC, both have order 2, then the
polygon o: C;XC,C,YC, composed of the arc C,C,XC,Cy of ' and the
arc C,YC, of n? has order 2.

(2) If =a': 0, XC,0C,C,, =3: C,0,ZC,Cy both have order 2 and
[Co, Z1nAt=0C,, then the polygon v: C,XC,ZC,Cy composed of the arc
0,00, XCy of 7t and the arc C,ZC5 of n® has order 2.

Proor. To prove ¢ and 7 have order 2 it is sufficient to show that
they are boundaries of convex regions. By 2.8 a unique polygon
ay: C10,0,C, exists with the vertices taken in this order. Let K, be
an affine subspace of L, in which =, is a parallelogram. The strip of
E, bounded by the lines [(,,C,], [C,,C;] is subdivided by the sides
C,C,,C,C, of 7, into two triangles and the interior P of n,. Let T be
the triangle of the strip with the side C;C,. As =z, is uniquely defined
by its vertices and their order, the contraction of ! with respect to X
is m,. Consequently the arc C,C,C, is common to =z, and ='. As the line
[C1,X] cannot intersect C,C,C,, by 1.5, this line supports P. Hence T
intercepts [C},X] in a segment C,D of E,. The line [X,C,] likewise
supports P and so separates C; and D. Thus X € T'. Moreover the seg-
ment C\.X of E, is a side of #' as its complement in the projective line
contains the point D of [C,,0,]. Similarly it follows that XC, is a side
of 71 and that C,Y, Y, are sides of n2 all three of these segments being
in E,. As the six lines spanned by a side of o: C,XC,C,YC, all simul-
taneously support n! and #3, o is the boundary of a convex region and
so has order 2.

As above it follows that =3 is the polygon C,C,ZC,C, of E,. Any
line spanned by one of the sides ZC,,C,C,,C,0,,C X of 7: 0,XC,ZC,C,
supports 7 as it supports n! and = simultaneously. The same is true
for the line [C,, Z] as, by the hypothesis, [C,, Z]nat=C,. If the remaining
line [X,C,] were not to support v it would separate Z and Cj in which
case the line [Z,C,] would separate C; and X contrary to the hypothesis



92 DOUGLAS DERRY

that [Z,C,]nn'=C,. Hence v has order 2 as it is the boundary of the
convex hull of its six vertices. Thus (1) and (2) are now both established.

5.9. If the two hyperplanes [By, 4,4, By, Y], [A1,B5,45,Y] both support
a set R of eight points 4,,A,, A3, B,,B,,B;, X,Y in general position in E,
for which the two polygons o: A, XB,A,ByA;B,, v: AyB;AB,YA,B, of B,
both have order 4, then R is neighborly but is not the vertex set of a polygon
of order 4 in E,.

Proor. The projections A, ,B,,4,,B,,X',Y’' of the points
A,,B;,A,,B,, X,Y from [A4,, B,], respectively, are in general position
in the projected space as the points of R are in general position in E,.
Consequently, as the polygon 4,XB,4,B, of E, is even, its projection
A,'X'B,'A,’'B,’ is likewise even. Hence this projection may be regarded
as the projection of the arc 4,XB,A,B, closed by the segment with
endpoints 4,’,B,’ chosen so as to make the resulting polygon even.
It follows from 1.4 that the projection A4,'X'B,’4,’B," has order 2 as it
coincides with the projection ¢’ of o: A, XB,;4,B,A,B, from [A4,, B,].

If the vertices of 7 are written in the reverse order it becomes
B;A,YB,A,B;4,. As in the previous paragraph its projection
v A,/B,A,’Y'B,’ from [A, B3] coincides with that of the polygon
A,B,A,YB, of E,. We check that the polygons o', 7’ satisfy the hypothe-
sis of 5.8 (1). If C,,C,,C,,C4, X ,Y are replaced by 4,',B,",4,',B,, X", Y’,
respectively, then 71,72 become the polygons ¢’, 7’ of order 2. It follows
then, by applying 5.8 (1), that the polygon 4,'X'B,’A,’Y’B,’ composed
of the arc B,’4,'X'B,’A,’ of ¢’ and the arc A,"Y’B,’ of 7’ has order 2.
But as these arcs are the projections of the arcs B,4,XB;A4,, 4,YB,
of E, from [A; B;] it follows that the projection of the polygon
@1 A, XB,4,Y B, from [A,, B;] has order 2.

If o’,7 now denote the projections of o, 7 respectively, from [B;,4,],
it follows, as in the first paragraph, that these projections coincide with
the projections of the polygons 4,XB,4,B;, A,B,YA;B; of E, from the
same line. The method of the previous paragraph can now be used to
show that the projection ¢,": 4,/X'B,’Y'4,’B,’ of the polygon
@s: A1 XB,YA3B, of E, from [B,,4,] has order 2. To show that o', 7,
satisfy the hypothesis of 5.8 (2), C,,C,,C5,C,, X, Z are now replaced by
A/,By,Ay,By', X", Y’, respectively. nl,n® thus become the polygons
d',7’ of order 2. The additional condition of 5.8 (2) that [C,,Z]nn!=C,
which becomes [B,’,Y']n¢’ =B, is equivalent to

[By,A45,B,, Y1 n A, XBy,A3B; = B, .
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By the hypothesis [B;, 4,,B,,Y] supports R and consequently ¢,. Hence

[By, 45, By, YNy = B, Y
which implies that

(By, Ay, B, Y] n A, XB,A4,B, = B, .

Thus o', " satisfy the hypothesis of 5.8 (2). It follows from that result
that the polygon 4,"X'B,’Y'A4,B,’ composed of the arc 4,'B,’A,'X'B,’
of ¢’ and the arc B,’Y’'A4," of 7" has order 2. But this polygon is the
projection of ¢,: A, XB,YA;B;. Thus its projection ¢,’ from [B,,4,]
has order 2.

To prove R neighborly it is necessary to show that any line spanned
by two points of R is within a hyperplane which supports R. As the
projection of ¢,: A, XB,A,YB, from [A,, B;] has order 2, any hyperplane
spanned by [4;,B;] and a side of ¢, supports R. Likewise any line
spanned by [B;,4,] and a side of ¢, supports E. Consequently any line
spanned by two points of R of which at least one is one of the four
points A, B;, B,,4, is within a hyperplane which supports R. The
three lines which contain the vertex B, which remain to be considered
are [By,A,], [By, X], [By,Y]. As A,B, is a side of ¢, while B,X,B,Y
are sides of @, each of these three lines is within a hyperplane which
supports B. Of the lines which contain the vertex 4, only [4,,X], [4,,Y]
have not already been considered. As A,X is a side of ¢, and
[4,,Y]<[A,,B,y,A;,Y] which by the hypothesis supports R, both of
these lines are within a hyperplane which supports R.

If an interior point of XY is on the boundary of C(R) then [X,Y]
is within a hyperplane which supports C(R) and consequently R itself.
Accordingly we assume that every interior point of XY is an
interior point of C(R) and obtain a contradiction. As the contraction
A;B;A,B,A,B; of ¢ with respect to X is a polygon of order 4 in E,,
it follows from 3.7 that 4,4,4, is a simplex S,(R’) where R’ is the set
Ay, Ay, Ay, By, By, By. By 3.4 Ly=[A4,,4,,B,,B,] supports R’. It separates
the segment XY from R’. If this were false at least one of X,Y would
be on the same side of L, as R'. If L, did not separate X and R’ then it
would contain a tangent L(4,) of o: 4,XB;A,B,A,B,. A suitable dis-
placement of L; would then intersect the sides By4,,4,X of ¢ and contain
its vertices A,,B,,B,. This is impossible by 1.5 as ¢ has order 4. If
R’ and Y were on the same side of Ly then Lg; would contain a tangent
L(4,) of 7: A,BA,B,YA,B;. A similar displacement of L; would
intersect the sides Y A,, A,B, of 7 and contain its three vertices 4,,B,, B,
in contradiction to the order of v. These contradictions prove that L,
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separates XY from R’. As every interior point of XY is assumed to be
an interior point of C(R), [X,Y]nC(R)=XY because X,Y are boundary
points of C(R) by the previous paragraph. Hence

[X,Y]nOR) < [X,Y]nOR) = XY .

Consequentl
WY X YInO®) € XY nCOR) = 0

as L, separates XY from R’ and does not contain X or Y because the
points of R are in general position. Hence, by the separation theorem,
a supporting hyperplane of R’ exists which contains [X,Y]. This con-
tradicts the assumption that XY contains an interior point of C(R).
Hence [X,Y] is contained in a hyperplane which supports E. Thus
the proof that R is neighborly is complete.

The points of B are not compatible in the sense of 4.3 as the contrac-
tion A4,B,4,B,A,B; of ¢ with respect to X is different from the con-
traction 4,B,4,B,4,B, of v with respect to Y. Hence by 4.6 the points
of R are not the vertices of a polygon of order 4. The proof is now
complete.

5.10. To check that eight points exist in X, which satisfy the con-
ditions of 5.9, let R’ be the set of the vertices of two 2-simplexes
A, 4,45, B,B,B; which intersect in a single point interior to each of them.

A hyperplane which contains this interior point separates the vertices
of at least one of the simplexes. Hence this interior point is an interior
point of the convex hull of R’. Any hyperplane spanned by a l-face
of one simplex and a l-face of the other supports R’. Hence the
simplexes are the simplexes S.(R'),S’,_,(R’). By 3.8 the polygons
A,B,A,B,A.B,, A,B1AB,A,B, in E, both have order 4. By 1.8, if the
interior points of the arc A,X B, are within the simplex S(4,B,) defined
for the polygon A4,B,;4,B,A,B,, then the polygon o: A, XB,4,B,4,B,
has order 4. By 1.7 the side 4,B; is a 1-face of S(4,B;). Hence ¢ will
be in E, if the arc 4,X B, is chosen sufficiently close to 4,B,. Similarly
a polygon 7: 4,B,4,B,YA,B, of order 4 can be constructed in E,. By
5.2 the hyperplane [B;, 4,,B,,Y] supports 7. If this hyperplane does not
support ¢ it intersects 4,X. If ¢ is modified by taking X sufficiently
close to A; in A,X, it will still be of order 4 and the hyperplane will
support the simplex 4,XB; and so support ¢. Again by 5.2 the hyper-
plane [A,,B,, A5, Y] supports z. If it does not support o (modified)
it intersects X B,. If X is chosen sufficiently close to B, in the side XB,,
the hyperplane will support the resulting simplex 4,XB, and conse-
quently will support o. The set A4,,4,, 43, B,,B,,B;3,X,Y now satisfies
the conditions of 5.9.
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