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A NOTE ON HYPERBOLIC POLYNOMIALS

WIM NUILJ

We shall show that the space of polynomials of a given degree which
are hyperbolic with respect to a given vector has trivial connectivity
properties. We shall also show that every such polynomial is the limit
of strictly hyperbolic polynomials. Precise formulations are given in
the theorem below. The proofs, which are very simple, use a splitting
operator

J@®) — f@)+sf(t)

that reduces the multiplicity of the multiple zeros of a polynomial f(¢).
Except for two simple references to Hormanders book [1], the paper is
self-contained.

A polynomial P of degree m in n variables &£=(&,,...,&,) and with
principal part P,, is said to be hyperbolic with respect to a real vector
N if P, (N)+0 and P((+tN)=0, & real, implies Im¢< ¢, where ¢, does
not depend on £ For homogeneous polynomials this implies that
P(£+tN) considered as a polynomial in ¢ has only real zeros, when
& is real. If a polynomial is hyperbolic so is its principal part and
P, (&)/P,(N) is real [1, p. 133]. A hyperbolic polynomial P is said to be
strictly hyperbolic if the zeros of P,,(£+¢N) are simple for every real £
which is not proportional to N. We define a topology in a space of
polynomials of given degree by using the euclidean norm for the co-
efficients.

We assume for the sake of simple notation that the vector N points
in the direction of the first coordinate and we define operators 7', .
by

Ty, sP(&) = P(&)+5&,0P(£)[0€, ,
where k>1 and s is real. The following lemma shows that 7' ,P is
also hyperbolic.

LeMMA. If the zeros z; of a polynomial p in one variable satisfy Imz;<a
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(or Imz; > a) then the zeros of p+sp’ obey the same relation for every real
number s.

Proor. We write p(z)=ATI}_,(2—2z;)™ and get

k \
p(z)+8p'(2) = p(z) (1 +szlmj(z—zj)-1) .
j=
If now Imz=a then the imaginary part of each term in the sum is
positive and therefore p(z)+sp’(z) cannot be zero. In the case of real
zeros it follows in particular that p+sp’ has only real zeros as well,
and multiple zeros of p give rise to zeros with a multiplicity that is one
less (if s is not zero), while zeros of p+sp’ which are not shared by p,
are simple, as is seen by a simple argument using change of sign.

The following theorem summarizes what we shall prove. It is under-
stood that the polynomials have a fixed degree m and are hyperbolic
with respect to a fixed vector N. We say that P is normalized if
P, (N)=1.

THEOREM. a) The space of strictly hyperbolic (homogeneous) polynomials
8 open.

b) Every hyperbolic (homogeneous) polynomial is the limit of strictly
hyperbolic (homogeneous) polynomials.

c) The space of (strictly) hyperbolic polynomials is contractible to the
space of (strictly) hyperbolic homogeneous polynomials.

d) The space of normalized (strictly) hyperbolic (homogeneous) poly-
nomials 18 connected and simply connected.

Note: Words within parentheses may be left out. When such a word
occurs in two places in the same statement it should be suppressed or
included in both.

Proor. We start the proof by collecting some properties of the
operators T ,. First we remark that if P is hyperbolic with respect to
(1,0, ...,0) then 7', P has the same property and if P is homogeneous
then T, P is homogeneous. In that case all zeros of P({+tN) are real
and according to the lemma, T , reduces the multiplicity of the zeros
except when s&,=0. Therefore

F,P(t+iN) = T,...T? P(E+iN)

has simple zeros if s+ 0 except when &,=...=§, =0, which means that
F P is strictly hyperbolic. Because of the linearity of F'; this is the
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case also if P is inhomogeneous. It is clear that F P converges to P
if s approaches zero. This proves b).

To prove c), put H,P(§)=t"P(t-1£) when 0<¢<1 and H P(&)=P,(&).
If P(6+tN)=0 implies Im¢< A4, it follows that H P(£+¢N)=0 implies
Imt<sA. Further, the principal parts of H,P and P are the same.
Hence H, is a contraction with the properties required to establich c).
To prove that the set of strictly hyperbolic homogeneous polynomials
is open we note that the number

inf {|¢;(&')—8(&)] 5+ 4, 1§ =1}

where &' = (&,,...,£,) and the ¢;(¢’) denote the zeros of P(¢,£'), is greater
than zero, and depends continuously on the coefficients of P. Now
openness follows for inhomogeneous polynomials as well. In fact,
corollary 5.5.2 of [1] shows that one may add an arbitrary lower degree
part to a polynomial that is strictly hyperbolic without destroying
this property.

In order to prove d) we first define an operator @, by G,P(&,,&')=
P(&,,t¢') acting on homogeneous polynomials, and remark that G,P
is strictly hyperbolic if P is and if ¢t+0. Also 4P=P and G,P=
P, (N)&™ We connect a normalized hyperbolic homogeneous poly-
nomial P with the polynomial F,;G,P via the polynomials F,_ G P,
0<s=<1. They are normalized and homogeneous and strictly hyper-
bolic when s<1, and also when s=1 if P is strictly hyperbolic. This
connecting operation is an equicontinuous function of s on every bounded
set of polynomials, so it follows that an arbitrary closed curve in the
set of normalized (strictly) hyperbolic homogeneous polynomials can
be contracted to a single point F,G,P, which proves d) in the case of
homogeneous polynomials. The general case follows by using the con-
traction H, defined in connection with c).

ReEMARK. In Theorem 5.6.1 of [1] it is proved that the operator
P(D) has one and only one fundamental solution with support in the
halfspace {z;{xz,N)=0} if P is hyperbolic with respect to N. Here
{z,N) stands for z;N,+ ...+, N,. It is easy to prove that this fun-
damental solution E, of F,P(D), of G,P(D), and of H,P(D) depends

continuously on s. In fact, E, is given by the formula
WE+HUN)

E(u) = 2n)™ | — - dE,

o) = (27) F.PE+4) £

where t < t, and 4 is the Fouriertransform of ». From the lemma it follows
that
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|[FoP(E+itN)| 2 [Ppy(N)] [t —to|™

if t<t,, whatever be s. The same inequality is valid for G P, and for
H_Pif |s|<1. Let B be a bounded set in . Then there exists a constant
C such that [@(&+N)| < C(1+]&)~ ! for all » in B. Now if ¢> 0 there
is a constant M such that for all s

A& +itN)

F.PEran) | ¢

& >M

On the set |§|<M, F P(£+itN) converges uniformly, which proves
that E, converges strongly in 2'.
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