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MEASURES AND PSEUDOMEASURES ON COMPACT
SUBSETS OF THE LINE

YITZHAK KATZNELSON and CARRUTH Mc GEHEE

1. Introduction.

Suppose that f is a continuous function defined on a compact subset
E of the real line R, such that

| [1@dn@)] < e supyer

fe—ixyd‘u(x)‘ for every ue M(H),

where ¢ is a constant and M(E) is the class of finite, complex-valued
Borel measures whose support is contained in . Does it follow that
f is the restriction to E of a Fourier transform? That is, must there
exist an element f of LY(R) such that

f(x) = f(y)e*m/dy for xe B?

3 ——3

In Section 2 we construct a set E, consisting of a convergent sequence
and its limit point, such that the answer is No. In Section 3 we show
that the answer is No for every set E of this description except when
E is a Helson set. In Section 4 we construct a perfect set F for which
the answer is No, and which also has the following property: every
pseudomeasure S supported by F decomposes uniquely into a sum
S=8;+8,, where S’d is almost periodic and 8, is a continuous measure
(i.e., one which annihilates countable sets); and such that the total
variation of §, is bounded by a constant times ess sup,.p IS'(y)l. In
Section 5 we list some open questions.

Before further discussion, we need to introduce some notation. Let
A denote the Banach algebra of Fourier transforms g of functions §
in L'=LYR). In A we have pointwise multiplication and the norm
induced by L. Let PM denote the conjugate space of A. Its elements
are called pseudomeasures, S: for each § € L™= (L')*, § is the functional
on 4 defined by
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(9,8) = f@(y)g’a)dy forged.

Thus . .
I8llpar = ISllLeo = esssup|8(y)| .
yeR
Let C denote the Banach algebra of continuous functions on R which
vanish at infinity, with pointwise multiplication and the supremum
norm, |/f|lc. Then M=M(R), with the total variation norm [u|,,
is the conjugate space of C; let

g
1
(fop) = ff(x d,ux) = lim 27 f y)dy for feC, unweM;
-y

Y—)oo

5]

ay) = j edu(x) for yeR.

We have

A<, and |glo = llglly for ged;
M < PM, and |ullpy S llplyy for pe M.

We denote by AP the closed subspace of L*® consisting of the con-
tinuous almost periodic functions. It contains g for every u e M with
countable support. It contains 8 for every S e PM with countable
and compact support ([12]; or cf. [10, Chapter 6]).

Let I(E) denote the closed ideal in 4 consisting of those functions
in A which vanish on E; let A(%) denote the quotient algebra A/I(E)
An element of 4(E) may be viewed as the restriction to £ of a function
in 4. When we say, “fe A(E)”, we mean that f|; € A(E). The norm
in A(E) is given by

(L.1) Ifllae = inf{llglls: ge 4 and gly=flg} -

Let N(E) denote I(E)', the subspace of PM which is the conjugate
space of A(E). Similarly, M(E)=C(E)*. The set K is a Helson set
if A(E)=C(E); or, equivalently, if M(E)=N(E); or, if the quantity

(1.2)

m) = int {100, i, o] = int 190, g ), oo
”/‘“M ”f”A(E)

is positive.
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For fe C(E), let
[(f.0)]
lleellpar
Let B(E) be the class of those functions fe C(E) for which ||f||zy, is
finite. Clearly,

A(E) = B(E), and |flpw = Ifllaw for fe A(E);

B(E) = C(E), and |flow = [Iflpw for feC(B).

1l = sup we ME), u =|=0}.

It is easy to show that B(¥) forms a Banach space.

Let us restate the question we asked at the outset: Given the com-
pact set ¥, does A(E)=DB(E)? The characterization of sets E for which
A(F)=B(E) remains a problem. This paper gives examples of sets E
for which A(#)=+B(E); in the other direction, Helson proved that if
every portion of E (i.e., every non-void intersection of #/ with an open
interval) supports a measure u such that lim,_, ., d(y) =0, then A(E)=
B(E). It is true, furthermore, that if >0 and if for every fe O(E),

,(f”u)l: we M(E), p+0, and
leell pae

gy = sup

lim Sup|y|-—>oo |IL2(?/)|

lleell par

él—'n’

then A(E)=B(E). For proofs of these assertions see [13, Section 10];
see also the methods of [5].

Another question of interest is the characterization of the sets E
such that the A(F) and B(E) norms are equivalent in A(¥), that is,
for which the quantity

/1l
1f1Laczy

is positive. In the terminology of Dixmier [6], b(X) is the characteristic
of M(E)in N(E); it is positive if and only if the weak* limits of sequences
in the unit ball of M(Z) fill a ball of positive radius in N(E) (cf. [6]).
So far as we know, b(F) always equals one.

We have different questions if, in the definition of B(¥) and b(E),
we replace M(E) by M'(E), the space of measures supported by finite
subsets of E. For this case let us write B'(E) and b'(E). Rudin con-
structed a set B for which C(E)=B'(E)+A(F) and b'(E)=0 ([16];
or [9, p. 103]; cf. also [8], [11], [20]). In the other direction, Bochner [2]
proved the fundamental result that every element of B'(R) is a Fourier—
Stieltjes transform; for the generalization to locally compact abelian
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groups see [17, 1.9.1] (cf. also [14] and [7]). Krein proved that B'(E)=
A(E) if E is a compact interval (see [15], or [1, Section 77]); and Rosen-
thal [15] has shown that if every portion of a compact set £ has positive
measure, then B'(E)=A(E).

2. An elementary example.

One way to construct a set £ with A(¥)+B(E) is as follows. Let
E=U,F;, where F,={0} and, for j> 0, F; is an arithmetic progression
of length 47:

F; = {rj+ks;: k=1,2,...,47},

where the 7,’s and s;’s are chosen so that F; is contained, say, in the
interval ((j+1)7%,j~!); and so that the set
{ri:g=0L2,...3u{s: j=12,...}

is linearly independent over the rationals. From a well-known result
about arithmetic progressions (cf. [21, V. 4.7]; or [9, p. 134, Lemma 2]),
we know that A(F;) <c2-7 for all j, for some constant ¢ (4 is defined by
(1.2)). Therefore there is a function f;eA4 such that |[f}] awp=1,
||f,-||C(F1)<02—". Let f be the function in C(F) defined by lef=fj for
§>0 and f(0)=0. We shall show that f¢& A(E) and that fe B(E).

If f were in A(X), then for each ¢>0 we would have, taking j> &1,

”f”A(En[—s,s]) 2 HfjHA(F,') =1
(cf. (1.1)). But this situation is impossible, by a classical theorem of

Wiener (cf. [17, 2.6.4 and 7.2]): if g€ A and ¢(0)=0, then

lim,_q (l9ll 4g—e,ep = O -

Therefore f & A(E).

Now we shall prove that fe B(E). Consider an arbitrary ue M(#),
written in the form u=332,u;, where u; € M(F;); and look at the func-
tions f;(y). It may be shown from Kronecker’s Theorem [4, p. 53 or 99]
and our independence condition that

llullpar = '%”MHPM for ue M(E) .
j=

Then for g e C(E), we have
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oo

o]
= 'Zo 191Lacar leasll pae
j=

EO f gdu;

= (SuPogj<oo”9”A(F,-)) lullpar for all uwe M(E).
It follows that

9/l By = SUPo<j<o0 ||9”A(F,~) for ge C(E) .
In particular, ||f|pm=1 and fe B(X).

3. Countable sets.

TrEOREM I. Let E be a countable set with a finite number of accumulation
points. If E is not a Helson set, then A(E)+ B(E).

Noration. For 1>0 let K,(x) denote the function whose graph
is an isosceles triangle, centered at 0 with height 1 and base 24. Then
the family {K,(y): >0} is the familiar Fejér kernel.

Lemma 1. Given 0<e<1 and a finite set G of nonzero real numbers,
there exists a positive measure v, with finite support contained in the real
subgroup gemerated by @, such that the following conditions hold:

(1) »({0})=1 and v({x})=1 for x € G.
(i) ||»xK,)| 4 =1+ € for small enough 1> 0.
(iii) The support of v is contained in {x: |x|<a(l+4e1)}, where a=
max {|z|: z € G}.

Proor. The measure » will be a modification of a Bochner-Fejér
measure o (cf. [3, p. 80-88]). Let ¢,...,ty be real numbers which are
linearly independent over the rationals, such that each point of G' can
be written as a linear combination of the ¢,’s, using integer coefficients.
Let ¢ be the measure defined by the equation

R il Ipl\ )
= 1 — e Wptn .
2(y) ,,[Il (sz ( P) e

Then if P is sufficiently large, there exists a positive measure o € M(G)
such that ||, <}e and (¢+0)({x})=1 for ze€ G. Note that v=p+o
would satisfy (i) and (ii); but to obtain (iii) also, let 6> 1 and let

b 1
Y = (b-—-———iKab—g:_—i Ka) (Q+0') .
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Then » agrees with p+o on [—a,a] and vanishes outside [—ab,ab];
also,

b+1
lv*K,|l 4, < l;j-_l (1+}e) for small enough 1>0.

If we set b=1+4¢1, then the measure » satisfies (i), (ii), and (iii). The
lemma is proved.

Proor or THEOREM I. It suffices to deal with the case in which
E has only one accumulation point, equal to zero. We shall select
two subsets of K:

F=UF, 6¢6=UG0a, with Fo=0,={0} and G, <F;;
k=0 k=0
where the F, are finite, pairwise disjoint sets. We shall select also
functions g, € A(E) for k=1,2,... . The following conditions will hold.

(B.1)  lgkllow < 27%;  gkllum = 15  gxl®) = 0 for xe ENG, .

(3.2) 19kl arpy 2 % -

(3.3) If pe M(F) and py, = plp,, then kzO”:uk”PM = 13|lpllpa -

Condition (3.2) and the methods of Section 2 show that although the
function
g=2d
E=1
belongs to C(E), nevertheless g & A(E). We shall first describe the selec-
tion process inductively, and then prove that g € B(E).

Let >0, TTjZ,(1+¢;)<2. It is easy to show that we may choose
a finite set G, < £\ {0} and a function g, € A(¥) satisfying (3.1) for k=1.
Let »; be a measure selected as in Lemma 1 where ¢=¢; and G=G,.
Let F; be the intersection of E\ {0} with the support of »,.

Let k=2 and assume that G, g;, »;, F; have been selected for j=
1,2,...,k—1. Let n>0. Since F; is finite, there exists a number 7'
such that if 4 € M(F;) and z € R, then in every interval of length T,
{4 takes on a value differing from f(z) by at most 2-79|u|psr (cf. [13,
Lemma 2]); that is, given >0 and F;, there exists 7'; such that

(3.4) i[y,y+T;]) is (27 n|ullpa)-dense in 4(R)
for every y € R and for all ue M(F;).
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Now we choose a small enough ;> 0 so that
(3.5) 28, < min {lx—y|: e ULZIF,, ye B, x+y};

and so that for u e M([—6,,6,]), the value of u is “‘almost constant”

on every interval of length Y*217';; precisely,

2l(yy) — aa)l £ 277 |lullpa
(3.6) if

peM([—6,8] and |y—yl < 31T,

This choice is possible because if >0, u € M([—4,6]), and y,,y,€ R,
then

li(y,) — fa(ys)| < ”(eixyl— izyz)”A([—«S,d]) (el par
= ”(eim(yl_yz)_ 1)”11([—0,6]) lullpar = 40|y — Yol llellpar -
Now let a;, > 0 be so small that
(3.7) 0 = ai(l+4/e) .

Let G,<{xe E: 0<|z|Za;} be a finite set, and let g, € 4, such that
(8.1) is satisfied. Let v, be a measure selected as in Lemma 1 where
e=¢, and G=G,. Let F, be the intersection of £\ {0} and the support
of v;; by (3.7) we know that

(3.8) Fy = [—04,0] -

Our selection process is now completely described.
To prove (3.2) it suffices to prove that for k=1,2,.
9l aep Z 1/(2+ &) -
For ue M(E), let p'=((v*K,)—K,)u. For small enough i>0,
[+ Kjllas1+e, and p [Gk Ul 80 that

' llpar S (2+ &) [lellpas >
and

(95 0] [(gr> ")
19kl 4zrp = sup = su ;
neM(Fy) lleell par ue M(E) || par

I(gknu’)l — 1
wert® (2t elpller 2+ &

Now to prove (3.3). We know that (3.4), (3.6), and (3.8) hold for
every j=1 or k= 2. It is an easy exercise to show from these facts that

I
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for every nz2, if u=3}_,u, where u,e M(F,) for 1<k<n-1 and
Un € M([—6,,6,]), then

A(R) is (20 3 Iilear)dense in 3 f(F)

It is another easy exercise to show that

E )|

n
kEI]]ﬂk”PM =< 12 sup
It follows that

12— 2m) z”/‘k”ﬂ = |lullpar = sup |[A(R)],

for every m». Condition (3.3) follows if # is small enough.
It remains to show that g € B(E). First we define a map u — i from
M(E) into M(F) such that

(3.9) l@llpar = 2lellpyrs Bl = plg; for j=0,1,....
By (3.5), for each k> 2,
k-1
(T (x40 2 Kp)@)+0}nE < (=8,,8)ulJ F;.
j=1

Therefore if u € M(E), the measure
(3.10) (vr%. . cxvp 2Ky )
is supported in the set En((—6,0;) U UL, F;) and thus has the form
de:u' + zﬁg >
j=1
where ;€ M(F;). But (3.5) insures that for j<k, f; is independent
of k; that the norm of (3.10) is no greater than ||u|py, 1'[]’-:}(1+s,~)<

2|lullpae; and that fjlg,=ple. Let Fo=u|g=lim; . Kyp and let
f=3520i;; (3.9) is immediate. Then

oo | o] - |

(sup; 19;1.ac) ‘21 &1l par
Jﬂ

IA

IIA

13 ||@llpa = 26 ||ullpy  for all pe M(E) .

Therefore ||g||px =26 and g € B(E). Theorem I is proved.
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_ Remarg. The support of S € N(E) is compact and countable, so that
S € AP, and thus the restrictions of S to finite subsets of E are well-
defined. Slightly modified, the above proof shows that for all S € N(E),
(9,8) may be defined in the natural manner, (g,8)= 72195 8]g;), and
that |(g, )] < 26(1S]p;-

4. Perfect sets.

THEOREM II. There exists a perfect set E such that for every portion
G of B, A(G)+ B(G).

Proor. The set B will be the closure of the union of a sequence of
arithmetic progressions

F; = {r;+ms;: m=1,...,4}, j=12,...

)

which we define inductively. The set {r;: j=1,2,...}u{s;:j=1,2,...}
will be chosen to be linearly independent over the rationals.

Select F,, subject only to the condition that r; and s; be independent.
Suppose that k=1 and that F,,...,F, have been selected. Consider an
arbitrary partition P of this class of sets into two classes:

.P: {Fl,...,Fk}:{F' ..,an}U{Fj F

iy SURPRRYY 1
Let V,(x)=2K,,(x)— K,(x), so that {V,(y): A>0} is the familiar de la
Vallée Poussin kernel:
Vals = 3; Vi) =0 for |2|221,
Vix) =1 for |z|<4.

By independence of {ry,...,r;,8;,...,8,} and by Lemma 1 (parts (i)
and (ii), using < }), we may select a measure op such that

op({e}) =1 if e UL, F;,,
op({a}) =0 if we UL, F;;
and such that for a small enough A, >0 we have, whenever A< 1p,

lop* Villy < 4,

(op*V)(x) = 0 if distance (z, Ui, F;)

t=n+1

<2,
(op*Vy)(@) =1 if distance (x, Ul F;) < 4.

Let d;, be the minimum value of 1., considering all the possible par-
titions P. We now select F,,,, subject to two conditions: first,
Fi1 < (g — 3dy, 2o+ 3d)), where z, is a point of U]’LIF,- chosen so that

Math. Scand. 23 — 5
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the distance from z, to the rest of the set UJ’LIFj is maximal; second,
741 and 8, are chosen so that the set {ry,...,r,,,,8;,...,8;,4} is linearly
independent over the rationals. The first stipulation insures that the
set F, which is the closure of U;-’ilF,., is a perfect set. Clearly
Ec U}‘_,IFj+ (—dy.d;) for every k, and hence F is a totally disconnected
set of Lebesgue measure zero.

Let Se N(E). We shall show that

00
(4.1) 8=u+38;, where S;e M(F)),

J=1

peME), and |ully = 16[S|py -

For an arbitrary k, let v, be a measure which assigns mass 1 to each
point of U};IF,. and annihilates each point of U2, F;, and such that

[ve*Valla < 4 for p =k k+1,....

Then for each k, the sequence {(v* Vdp)S :p=k,k+1,...} is bounded
in norm by 4||S||psr and hence includes a subsequence which converges
weak* to an element of M (U;-LIF,-). Therefore by a diagonal process
we may find §; € M(F;)for j=1,2,... and a sequence {p(m): m=1,2,...},
such that for each £k,

k
weak* lim (v # Vg, )8 = 3 8,

-
m—>o00 j=1

Since by Kronecker’s theorem
k
2 5;
=1

the series 372, .S; converges in norm to a pseudomeasure whose trans-
form is in AP. To show that the remainder,

k
S 18, lear =

j=1

< 4||S|lpyy  for all £,
PM

p==8-2358;,

i=1

is a measure with ||u|[;; < 16(|S||ps, it suffices to prove that

(4.2) [(g,p)] = 16 [ISlpar l19llcm

for all the step functions ¢ in C(X), since I is totally disconnected.
So we consider first a function g € C(E) with range {0,1}. Let &> 0.
Fix k large enough so that

(.3 18ae) o < ¢ nd hence (g (5- 5.5,))

Je=k+1 J=1

< €.
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Now fix p=p(m)>k large enough so that

(g,zs —Sx Y, ))]

j=1
(g, =S —wx V) < 2

Since g is constant (0 or 1) on each set Fy,,...,F, there exists a measure
v such that vV, agrees with g on UJ=,0+1F,+( »8,) and equals
zero on U}, F;+(—d,,d,), on which (1—w;* V4,) also vanishes; and
such that ||»* Vd ls= 4 Thus

(g: 80 =nx V) = 1 Vap S)| < 411Sllear

Consequently |(g,u)| < 4||S|lpayr; and therefore if g is an arbitrary step
function in C(E), the inequality (4.2) holds. Our decomposition property
(4.1) is proved.

For each j, let fjeA be constant on each of the 4/ sets
{x+[—d;,d;]: x € F;} and zero on every other portion of , such that

Then

and hence

Ifillap 2 13 llf:llcm) < 277,

Let f=352,f;- Then clearly fe C(E). If G is any portion of E, then
by the methods of Section 2 it follows that f¢ A(G); and it is easy
to show, using (4.1), that fe B(G); thus A(G)+B(G). Theorem IT is
proved.

ReMARK. Rudin ([16]; or [8, p.103]) constructed a perfect set of
multiplicity £ whose points are independent over the rationals. Then
E is not a Helson set, even though ||u|y=]lullpar for all g with finite
support; so the “mischief” which makes 2(Z)=0 all occurs among the
continuous measures. But on the set F of Theorem II, the mischief
is due to the discrete measures.

5. Some questions.

(1) Does M(E) always have characteristic 1 in N(E) (cf. Section 1)?
Can it ever have characteristic 0 in N(E), or is A(E) always closed in
the B(E) norm?

(2) We say that x is a non-Helson point of E if for every &>0,
En(x—e,x+¢) is a non-Helson set; if, for some ¢>0, x is the only
non-Helson point of E in (z—e,2+¢), then we call  an isolated non-
Helson point of E. Is A(E)+ B(E) whenever E possesses an isolated
non-Helson point ?

(3) Is A(E)+ B(E) whenever E is a countable non-Helson set ?
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(4) For 6> 2, let

E, = { D07 £=0 or 1 for each j}.
j=1
For which 0 is it the case that A(E,)=B(E,)? (It is known that equality
holds if 0 is an integer or if 6 is not a Pisot-Vijaraghavan number
(cf. [18], or [9, Chapter VI]).
(5) What structural properties characterize the sets F which have
A(E)=B(E) (or =B'(E))?
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