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NEAR-RINGS
WITH IDENTITY ON ALTERNATING GROUPS

JAMES R. CLAY and DONNA K. DOI

In [1] it was shown that the symmetric groups (S,, +) cannot be the
additive group of a near-ring with identity if n>3. A natural question
arises as to what happens in the corresponding alternating groups
(4,, +). In this paper we shall see that similar results are obtained for
the alternating group (4,, +) for n=>4. Our main result is

THEOREM A. For n=4, the alternating groups (4,, +) cannot be the
additive group of a near-ring with identity.

Proor. The corollary to Theorem 2 of [1] shows that every simple
group of composite order cannot be the additive group of a near-ring
with identity. From Theorem 5.4.3 of [4] we know that each alternating
group (4, +) is simple for » > 5. There remains to show the result holds
for n=4 and does not hold for n=3.

If n=3, (4,, +) is cyclic and Theorem 1 of [1] shows that the near-
rings with identities on cyclic groups are actually commutative rings
with identity.

In 4,, the orders of the elements are 1, 2, and 3. But by Theorem 3
of [1], the order of each element must divide the order of the identity,
80 (4,, +) cannot be the additive group of a near-ring with identity.

ReMARK. Theorem 2 of [1] and its corollary depends heavily upon 1)
agsociativity of the multiplication of a near-ring, and 2) the fact that
simple groups of composite order are of even order. The proof of this
latter result, see [3], is based on advanced techniques. We shall now give
a generalization of Theorem A based on elementary techniques. We will
first need some results concerning the order of elements of 4, .

OBSERVATION. If 2 € S, and the order of z is O(z) =¢%1¢52 . . . ¢’ where
the ¢; are distinct primes, then in the cycle decomposition of x, there
are cycles of length ¢% ¢=1,2,...,s. This follows directly from Theo-
rems 5.1.1 and 5.1.2 in [4].
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We now introduce some notation to be used in the sequel. If G is a
finite group, let
P(G) = Lem. {O(x) | xeG}.

(Here l.c.m. means least common multiple.) Let
Y(n) =lem.{k| 1=sk=<n and kis odd}.

In what follows, n will be an integer =>4.

Lemma 1. If n or n—1 is not a power of 2, then
D(8,) = D(4,) = lem.{1,2,3,...,n} = 29¥(n),
where 21 <n but 29+ >,
Proor. It follows directly from Theorem 5.1.2 of [4] that
D(S,) = L.em.{1,2,3,...,n} = pPrpP... pi

where the p; are the primes <z and a, is the maximum power of p, such
that pi<n. We will assume that 2=p, <p,<p3< ... <py.

If p,+£2, then the cycle (1,2,...,p¥) e 4, and has order p}. There-
fore p}|D(A4,). Since 2% =<n-2,

@ =(1,23,...,2%(2%+1,2%+2) € 4,
and z has order 2%. Hence &(S,)=®(4,,).
Lrmma 2. In S, there are no elements of order @(S,,).
Proor. This follows from the proof of Theorem 4 in [1].
LemMa 3. If n or n—1 is a power of 2, say 2%, then D(A4,)=2%"1¥(n).

Proor. If k€ {1,2,...,n}is odd, then (1,2,...,k) € 4, and has order k.
Hence ¥(n)|®(4,,). Similarly,

(1,2,...,2¢1)(2%141,2+142) € A,

has order 2+, so 2+-1|®(4,). If there is an 2 € A, with order O(x)
such that O(z)1 2*-1¥(n), then by Lemma 1, the element x has a cycle
of length 2*. Hence x= (2,,%,,. . .,%5), contrary to x € 4,,.

Lemma 4. If x€ A, and 2% € {n,n—1}, then O(z) <2*1¥(n).

Proor. If there is an z € 4, such that O(z)=2*-1¥(n), then in the
cycle decomposition for z, there are cycles of length 2* and p where p
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is a prime and 2*!'<p=n. (There is such a prime p by Bertrand’s
postulate, Theorem 8.3 of [6].) Hence

n g 2a—1+p > 2«—1_'_20:—1 — 24x’

a contradiction if n =2+ 1If n—1=2% then z has a cycle decomposition
T=(xy,...,%0)(Y1,- - .,Y,) contrary to xe 4,.

TarorREM B. If * is a left distributive binary operation with identity on
an alternating group (4,, +), then n < 3.

Proor. By Theorem 3 of [1], if an element e of a finite group (G, +)
is an identity with respect to a left distributive binary operation, then
the order O(e) of e is @(GF). Then Lemmas 1 and 2 eliminate all n>3
where neither n nor n— 1 are powers of 2, and Lemmas 3 and 4 eliminate
all n >3 where either » or n—1 is a power of 2.

Theorem B generalizes Theorem A in that associativity of multiplica-
tion is not needed, whereas it is needed for the proof of the corollary to
Theorem 2 in [1] and the proof of Theorem A depends upon this coro llary

The infinite alternating group 4 =U;._, 4, is simple, and an element

of 4, is of finite order. But since the orders of elements of 4 are not
bounded above by some integer N, Theorem B, hence Theorem 4 ex-
tends to A, ; that is, there is no left distributive binary operation with
identity definable on the infinite alternating group (4, +). The proof of
this follows directly from the above remarks and Theorem 3 of [1] men-
tioned earlier in this paper. This argument also extends to the infinite
symmetric group S,,=U;>, S, , hence extends Theorem 4 of [1]; that is,
there is no left distributive binary operation with identity definable on the
infinite symmetric group (S, +).
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