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IMMERSIONS OF COMPLEX FLAGMANIFOLDS

JORGEN TORNEHAVE

In the following G' denotes a compact connected Lie group. If H is
any subgroup of ¢, we denote by C(H) the centralizer of H in G. More-
over if X is a non-zero element in the Lie algebra #(G) of G, and L
isthe one-parameter subgroup of ¢/ in the direction X, we put C(X,) = C(L).
The purpose of this paper is to prove the following imrersion theorem,
where 7' is a maximal torus in G such that X,e £(T):

THEOREM 1. Let X, e L(T)\{0} belong to some singular hyperplane in
L(T), and define S to be the intersection of the singular hyperplanes to
which X belongs. Then G|C(X,) can be immersed in R*=?, where n=dimG
and p=dim 8.

An explanation of the terminology follows below. In case G = U(n),
Theorem 1 gives results on immersions of complex flagmanifolds (see
Theorem 2 below).

It is well known that the subgroups C(X,) are connected (they are
precisely the centralizers of tori in @), and that the adjoint representa-
tion gives an embedding

GIC(X,) = L&),
defined by
p(9C(X,)) = (Adg)X, .

In this way G/C(X,) becomes a submanifold of #(G) whose tangent
space at the point (Adg)X, is

(1) {{X, (Adg)X,] | X e Z(@)} .

Now equip #(G) with an inner product (. , .) such that Adg is an
isometry of £ (@) for every g € G. Then the following relation holds for
all X,Y,Z in Z(G):

(2) (X [Y,Z2]) = (X,Y], 2).
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We choose an orthonormal basis in Z(#) such that Ad|7T with respect
to this basis is described by the matrix

(3) cos2n0,(X) —sin2xz0,(X)
sin 270,(X)  cos2x0,(X) %
ExpX — cos270,,(X) —sin2x0,,(X)
% sin 270,,(X) cos2x0,(X)
1
1

for X € #(T'). Here 6, are non-zero elements of Homg(£(T'),R) which
map Z(T)n Exp-1(0) into Z, and the number of I’s is I=dim7'. We put

8, = {Xe2(T) | 0,(X)=0}.

S1,8,,...,8,, are the so called singular hyperplanes in #(T). These
are known to be mutually different (cf. Hopf [4]) and the Weyl group
W as a finite group of isometries of Z(7T') is generated by the reflections
in 84,8,,...,8,. The analytic subgroup U, of T' with Lie algebra S,
is an (I —1)-dimensional torus in 7' (Hopf [4]).

Suppose that X, lies in %k of the singular hyperplanes, say

S,I,S,,z,. . .,S,k, and put
k k

(4) 8 =18, U=ﬂlU,,1.
t=1 1=

If k=0 it is understood that S=%(T) and U=T.
Lemma. With the above notation we have C(X,)=C(U).

Proor. The one-parameter subgroup L of 7' in the direction X,
is contained in U, and therefore

C(U) c C(L) = C(X,) .
Since C(X,) is connected, we only have to prove that
dimC(U) z dimC(X,) .
That X, lies in exactly k£ singular hyperplanes implies that
dimC(Xy) = I+2k.
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From the definition of U and (3) one concludes that
dimC(U) z 1+ 2k .
ProposiTION. The normal bundle of G[C(X,) in L(G) has p linearly
independent cross sections, where p=dim S.
Proor. We will define a bundle homomorphism
GIO(X) xS ¥ 5,
where # is the normal bundle of G/C(X,) in Z(G), by
y((Adg)X,, Y) = ((Adg)X,, (Adg)Y).

To see that y is well defined, we first prove that, if e C(X,), then
(AdR)Y =Y, but this is true since ke C(U) and Y € £(U). Secondly
we prove that (Adg)Y is orthogonal to the tangent space (1). This
follows from (2):

(X, (Adg)X,] , (Adg)Y) = (X , [Adg)X,, (Adg)T])
= (X, (Adg)[X,, Y]) = 0,

since X, and Y belong to the abelian Lie algebra #(7'). Obviously
p defines p linearly independent cross sections of #.

As a corollary we have the following theorem of Borel-Hirzebruch [1].
CororLLaRY. G[T is a m-manifold.

Proor. If X, ¢ 8, for all », we have C(X,)=7 and S=2L(T), so y
becomes a trivialization of 7.

Now we can prove Theorem 1. The main tool is the following theorem
of Hirsch [3]:

TrEOREM (Hirsch). Let M™ be a C®-manifold of dimension n and
T(M™) its tangent bundle. If 5 is a real k-dimensional vector bundle (k= 1)
over M™ such that ©(M™)D is trivial, then M™ can be immersed in euclidean
space R*+% of dimension n+k.

Hirsch also proved, that the immersion can be chosen to have 7z

as normal bundle, but the above will be sufficient.

Proor or TeEOREM 1. If X, belongs to at least one singular hyper-
plane we have a positive dimensional subbundle % of # complementary
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to the trivial p-dimensional subbundle given by the proposition. Thus

TENDp = n
from which one can conclude that
@Pn =n—p.

Now we apply the theorem of Hirsch to get Theorem 1.

The above theorem of Borel-Hirzebruch and the theorem of Hirsch
show that G/T can be immersed in R¥+!, where k=dim(G/T).

If X, belongs to only one singular hyperplane, C(X,) has dimension
1+ 2 and S dimension /—1. In this case Theorem 1 shows that G/C(X,)
is immersible in euclidean space with codimension 3.

2.

Now we shall apply Theorem 1 in the case G=U(n). As the maximal
torus 7' we take the diagonal matrices and Z(T') is identified with R»
in the obvious way. The singular hyperplanes in R* are then given by

Sy = {(@y,...om) |z=2},  1>].

Let X, € R® have the first n, coordinates equal to y,, the next =, co-
ordinates equal to y, and so on. The last n, coordinates are then equal
to y,, XIn;=n, and we assume that y,,...,y;...,y, are mutually dis-
tinct. Then an easy matrix calculation shows that

C(Xy) = Uny) x U(ng) x ... x U(n,) .

Moreover S is the subspace of R* given by the condition, that the first
n, coordinates are equal, the next m, coordinates are equal and so on.
Since the dimension of § is ¢, we get

THEOREM 2. The complex flagmanifold

Wn;ny,...mg) = Um)[U(ny) x Ung) x ... xU(n,), n=3mn,,

where g <n— 1, can be immersed in R*-1,

If g=n it is a m-manifold and can then be immersed with codimen-

sion 1.
The flagmanifold W(n; ny,...,n,) has dimension

g
n? — > n?,
=1

and the theorem gives an immersion in euclidean space of codimension
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Notice that the manifolds
Wn+k;ng,...,n,1,1,...,1), k numbers 1,

are immersible in euclidean space with a codimension independent of k,
whereas the dimensions of the manifolds tends to infinity as k—>oco.
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