IMMERSIONS OF COMPLEX FLAGMANIFOLDS

JØRGEN TORNEHAVE

In the following G denotes a compact connected Lie group. If H is any subgroup of G, we denote by C(H) the centralizer of H in G. Moreover if X_0 is a non-zero element in the Lie algebra $\mathscr{L}(G)$ of G, and L is the one-parameter subgroup of G in the direction X_0 , we put $C(X_0) = C(L)$. The purpose of this paper is to prove the following immersion theorem, where T is a maximal torus in G such that $X_0 \in \mathscr{L}(T)$:

THEOREM 1. Let $X_0 \in \mathcal{L}(T) \setminus \{0\}$ belong to some singular hyperplane in $\mathcal{L}(T)$, and define S to be the intersection of the singular hyperplanes to which X_0 belongs. Then $G/C(X_0)$ can be immersed in \mathbb{R}^{n-p} , where $n = \dim G$ and $p = \dim S$.

An explanation of the terminology follows below. In case G = U(n), Theorem 1 gives results on immersions of complex flagmanifolds (see Theorem 2 below).

1.

It is well known that the subgroups $C(X_0)$ are connected (they are precisely the centralizers of tori in G), and that the adjoint representation gives an embedding

$$G/C(X_0) \xrightarrow{\varphi} \mathscr{L}(G)$$
,

defined by

$$\varphi(gC(X_0)) = (\mathrm{Ad}g)X_0.$$

In this way $G/C(X_0)$ becomes a submanifold of $\mathcal{L}(G)$ whose tangent space at the point $(\mathrm{Ad}\,g)X_0$ is

(1)
$$\{[X, (\operatorname{Ad} g)X_0] \mid X \in \mathscr{L}(G)\}.$$

Now equip $\mathcal{L}(G)$ with an inner product (. , .) such that $\mathrm{Ad}g$ is an isometry of $\mathcal{L}(G)$ for every $g \in G$. Then the following relation holds for all X,Y,Z in $\mathcal{L}(G)$:

(2)
$$(X, [Y,Z]) = ([X,Y], Z).$$

Received November 1, 1967.

We choose an orthonormal basis in $\mathcal{L}(G)$ such that $\operatorname{Ad}|T$ with respect to this basis is described by the matrix

to this basis is described by the matrix
$$(3) \begin{cases} \cos 2\pi\theta_1(X) & -\sin 2\pi\theta_1(X) \\ \sin 2\pi\theta_1(X) & \cos 2\pi\theta_1(X) \end{cases} *$$

$$Exp X \rightarrow \begin{cases} \cos 2\pi\theta_1(X) & -\sin 2\pi\theta_1(X) \\ & & \ddots \end{cases}$$

$$\cos 2\pi\theta_m(X) & -\sin 2\pi\theta_m(X) \\ & & \sin 2\pi\theta_m(X) & \cos 2\pi\theta_m(X) \end{cases}$$

for $X \in \mathcal{L}(T)$. Here θ_{ν} are non-zero elements of $\operatorname{Hom}_{\mathsf{R}}(\mathcal{L}(T),\mathsf{R})$ which map $\mathcal{L}(T) \cap \operatorname{Exp}^{-1}(0)$ into Z , and the number of 1's is $l = \dim T$. We put

$$S_{\mathbf{v}} = \{X \in \mathcal{L}(T) \mid \theta_{\mathbf{v}}(X) = 0\}.$$

 S_1, S_2, \ldots, S_m are the so called *singular hyperplanes* in $\mathcal{L}(T)$. These are known to be mutually different (cf. Hopf [4]) and the Weyl group W as a finite group of isometries of $\mathcal{L}(T)$ is generated by the reflections in S_1, S_2, \ldots, S_m . The analytic subgroup U_* of T with Lie algebra S_* is an (l-1)-dimensional torus in T (Hopf [4]).

Suppose that X_0 lies in k of the singular hyperplanes, say $S_{r_1}, S_{r_2}, \ldots, S_{r_k}$, and put

(4)
$$S = \bigcap_{i=1}^{k} S_{r_i}, \qquad U = \bigcap_{i=1}^{k} U_{r_i}.$$

If k=0 it is understood that $S=\mathcal{L}(T)$ and U=T.

Lemma. With the above notation we have $C(X_0) = C(U)$.

PROOF. The one-parameter subgroup L of T in the direction X_0 is contained in U, and therefore

$$C(U)\subseteq C(L)=C(X_0)\;.$$

Since $C(X_0)$ is connected, we only have to prove that

$$\dim C(U) \ge \dim C(X_0)$$
.

That X_0 lies in exactly k singular hyperplanes implies that

$$\dim C(X_0) = l + 2k.$$

From the definition of U and (3) one concludes that

$$\dim C(U) \ge l + 2k.$$

PROPOSITION. The normal bundle of $G/C(X_0)$ in $\mathcal{L}(G)$ has p linearly independent cross sections, where $p = \dim S$.

Proof. We will define a bundle homomorphism

$$G/C(X_0) \times S \xrightarrow{\psi} \bar{\nu}$$
,

where \tilde{v} is the normal bundle of $G/C(X_0)$ in $\mathcal{L}(G)$, by

$$\psi((\mathrm{Ad}\,g)X_0,Y)=\big((\mathrm{Ad}\,g)X_0,(\mathrm{Ad}\,g)Y\big)\;.$$

To see that ψ is well defined, we first prove that, if $h \in C(X_0)$, then $(\operatorname{Ad} h)Y = Y$, but this is true since $h \in C(U)$ and $Y \in \mathscr{L}(U)$. Secondly we prove that $(\operatorname{Ad} g)Y$ is orthogonal to the tangent space (1). This follows from (2):

$$\begin{aligned} \left([X, (\operatorname{Ad}g)X_0], (\operatorname{Ad}g)Y \right) &= \left(X, [\operatorname{Ad}g)X_0, (\operatorname{Ad}g)Y \right] \right) \\ &= \left(X, (\operatorname{Ad}g)[X_0, Y] \right) = 0 , \end{aligned}$$

since X_0 and Y belong to the abelian Lie algebra $\mathcal{L}(T)$. Obviously ψ defines p linearly independent cross sections of \tilde{r} .

As a corollary we have the following theorem of Borel-Hirzebruch [1].

COROLLARY. G/T is a π -manifold.

PROOF. If $X_0 \notin S_{\bar{\nu}}$ for all ν , we have $C(X_0) = T$ and $S = \mathcal{L}(T)$, so ψ becomes a trivialization of $\bar{\nu}$.

Now we can prove Theorem 1. The main tool is the following theorem of Hirsch [3]:

THEOREM (Hirsch). Let M^n be a C^{∞} -manifold of dimension n and $\tau(M^n)$ its tangent bundle. If η is a real k-dimensional vector bundle ($k \ge 1$) over M^n such that $\tau(M^n) \oplus \eta$ is trivial, then M^n can be immersed in euclidean space \mathbb{R}^{n+k} of dimension n+k.

Hirsch also proved, that the immersion can be chosen to have η as normal bundle, but the above will be sufficient.

PROOF OF THEOREM 1. If X_0 belongs to at least one singular hyperplane we have a positive dimensional subbundle η of $\bar{\nu}$ complementary

to the trivial p-dimensional subbundle given by the proposition. Thus

$$\tau \oplus \eta \oplus p = n$$

from which one can conclude that

$$\tau \oplus \eta = n - p.$$

Now we apply the theorem of Hirsch to get Theorem 1.

The above theorem of Borel-Hirzebruch and the theorem of Hirsch show that G/T can be immersed in \mathbb{R}^{k+1} , where $k = \dim(G/T)$.

If X_0 belongs to only one singular hyperplane, $C(X_0)$ has dimension l+2 and S dimension l-1. In this case Theorem 1 shows that $G/C(X_0)$ is immersible in euclidean space with codimension 3.

2.

Now we shall apply Theorem 1 in the case G = U(n). As the maximal torus T we take the diagonal matrices and $\mathcal{L}(T)$ is identified with \mathbb{R}^n in the obvious way. The singular hyperplanes in \mathbb{R}^n are then given by

$$S_{ij} = \{(x_1, \dots, x_n) \mid x_i = x_j\}, \quad i > j.$$

Let $X_0 \in \mathbb{R}^n$ have the first n_1 coordinates equal to y_1 , the next n_2 coordinates equal to y_2 and so on. The last n_q coordinates are then equal to y_q , $\sum n_i = n$, and we assume that $y_1, \ldots, y_i, \ldots, y_q$ are mutually distinct. Then an easy matrix calculation shows that

$$C(X_0) = U(n_1) \times U(n_2) \times \ldots \times U(n_q)$$
.

Moreover S is the subspace of \mathbb{R}^n given by the condition, that the first n_1 coordinates are equal, the next n_2 coordinates are equal and so on. Since the dimension of S is q, we get

THEOREM 2. The complex flagmanifold

$$\begin{split} W(n\,;\,n_1,\ldots,n_q) &= U(n)/U(n_1)\times U(n_2)\times\ldots\times U(n_q), \qquad n = \sum n_i\;, \\ where \; q \leq n-1, \; can \; be \; immersed \; in \; \mathbb{R}^{n^2-q}. \end{split}$$

If q=n it is a π -manifold and can then be immersed with codimension 1.

The flagmanifold $W(n; n_1, \ldots, n_q)$ has dimension

$$n^2 - \sum_{i=1}^q n_i^2$$
,

and the theorem gives an immersion in euclidean space of codimension

$$\sum_{i=1}^{q} (n_i^2 - 1) .$$

Notice that the manifolds

$$W(n+k; n_1, ..., n_q, 1, 1, ..., 1), k \text{ numbers } 1,$$

are immersible in euclidean space with a codimension independent of k, whereas the dimensions of the manifolds tends to infinity as $k\rightarrow\infty$.

REFERENCES

- A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces III, Amer. J. Math. 82 (1960), 491-504.
- R. Bott, Morse theory and its application to homotopy theory, (Mimeographed, Notes by A. van de Ven), Bonn, 1960.
- 3. M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276.
- H. Hopf, Maximale Toroide und singuläre Elemente in geschlossenen Lieschen Gruppen, Comment. Math. Helv. 15 (1942-43), 59-70.

UNIVERSITY OF AARHUS, DENMARK