IMMERSIONS OF COMPLEX FLAGMANIFOLDS

JØRGEN TORNEHAVE

In the following G denotes a compact connected Lie group. If H is any subgroup of G, we denote by $C(H)$ the centralizer of H in G. Moreover if X_0 is a non-zero element in the Lie algebra $\mathcal{L}(G)$ of G, and L is the one-parameter subgroup of G in the direction X_0, we put $C(X_0) = C(L)$. The purpose of this paper is to prove the following immersion theorem, where T is a maximal torus in G such that $X_0 \in \mathcal{L}(T)$:

THEOREM 1. Let $X_0 \in \mathcal{L}(T) \backslash \{0\}$ belong to some singular hyperplane in $\mathcal{L}(T)$, and define S to be the intersection of the singular hyperplanes to which X_0 belongs. Then $G/C(X_0)$ can be immersed in \mathbb{R}^{n-p}, where $n = \dim G$ and $p = \dim S$.

An explanation of the terminology follows below. In case $G = U(n)$, Theorem 1 gives results on immersions of complex flagmanifolds (see Theorem 2 below).

1.

It is well known that the subgroups $C(X_0)$ are connected (they are precisely the centralizers of tori in G), and that the adjoint representation gives an embedding

$$G/C(X_0) \overset{\varphi}{\to} \mathcal{L}(G),$$

defined by

$$\varphi(gC(X_0)) = (\text{Ad}g)X_0.$$

In this way $G/C(X_0)$ becomes a submanifold of $\mathcal{L}(G)$ whose tangent space at the point $(\text{Ad}g)X_0$ is

$$\{[X, (\text{Ad}g)X_0] \mid X \in \mathcal{L}(G)\}.$$

Now equip $\mathcal{L}(G)$ with an inner product (\cdot, \cdot) such that $\text{Ad}g$ is an isometry of $\mathcal{L}(G)$ for every $g \in G$. Then the following relation holds for all X, Y, Z in $\mathcal{L}(G)$:

$$X \cdot [Y, Z] = ([X, Y], Z).$$

Received November 1, 1967.
We choose an orthonormal basis in $\mathcal{L}(G)$ such that $\mathrm{Ad} | T$ with respect to this basis is described by the matrix

\[
\begin{pmatrix}
\cos 2\pi \theta_1(X) & -\sin 2\pi \theta_1(X) \\
\sin 2\pi \theta_1(X) & \cos 2\pi \theta_1(X) \\
\vdots & \ddots & \ddots & \ddots \\
\end{pmatrix}
\exp X \rightarrow
\begin{pmatrix}
\cos 2\pi \theta_m(X) & -\sin 2\pi \theta_m(X) \\
\sin 2\pi \theta_m(X) & \cos 2\pi \theta_m(X) \\
\vdots & \ddots & \ddots & \ddots \\
1 & \ddots & \ddots & \ddots & \ddots
\end{pmatrix}
\]

for $X \in \mathcal{L}(T)$. Here θ_ν are non-zero elements of $\mathrm{Hom}_R(\mathcal{L}(T), R)$ which map $\mathcal{L}(T) \cap \exp^{-1}(0)$ into \mathbb{Z}, and the number of 1's is $l = \dim T$. We put

\[
S_\nu = \{ X \in \mathcal{L}(T) \mid \theta_\nu(X) = 0 \}.
\]

S_1, S_2, \ldots, S_m are the so called singular hyperplanes in $\mathcal{L}(T)$. These are known to be mutually different (cf. Hopf [4]) and the Weyl group W as a finite group of isometries of $\mathcal{L}(T)$ is generated by the reflections in S_1, S_2, \ldots, S_m. The analytic subgroup U_ν of T with Lie algebra S_ν is an $(l-1)$-dimensional torus in T (Hopf [4]).

Suppose that X_0 lies in k of the singular hyperplanes, say $S_{r_1}, S_{r_2}, \ldots, S_{r_k}$, and put

\[
S = \bigcap_{i=1}^k S_{r_i}, \quad U = \bigcap_{i=1}^k U_{r_i}.
\]

If $k = 0$ it is understood that $S = \mathcal{L}(T)$ and $U = T$.

Lemma. With the above notation we have $C(X_0) = C(U)$.

Proof. The one-parameter subgroup L of T in the direction X_0 is contained in U, and therefore

\[
C(U) \subseteq C(L) = C(X_0).
\]

Since $C(X_0)$ is connected, we only have to prove that

\[
\dim C(U) \geq \dim C(X_0).
\]

That X_0 lies in exactly k singular hyperplanes implies that

\[
\dim C(X_0) = l + 2k.
\]
From the definition of \(U \) and (3) one concludes that
\[
\dim C(U) \geq l + 2k.
\]

Proposition. The normal bundle of \(G/C(X_0) \) in \(\mathcal{L}(G) \) has \(p \) linearly independent cross sections, where \(p = \dim S \).

Proof. We will define a bundle homomorphism
\[
G/C(X_0) \times S \xrightarrow{\varphi} \hat{\nu},
\]
where \(\hat{\nu} \) is the normal bundle of \(G/C(X_0) \) in \(\mathcal{L}(G) \), by
\[
\varphi((\text{Ad}g)X_0, Y) = ((\text{Ad}g)X_0, (\text{Ad}g)Y).
\]
To see that \(\varphi \) is well defined, we first prove that, if \(h \in C(X_0) \), then \((\text{Ad}h)Y = Y \), but this is true since \(h \in C(U) \) and \(Y \in \mathcal{L}(U) \). Secondly we prove that \((\text{Ad}g)Y \) is orthogonal to the tangent space (1). This follows from (2):
\[
[[X, (\text{Ad}g)X_0], (\text{Ad}g)Y] = (X, [\text{Ad}g]X_0, (\text{Ad}g)Y)] = (X, (\text{Ad}g)[X_0, Y]) = 0,
\]
since \(X_0 \) and \(Y \) belong to the abelian Lie algebra \(\mathcal{L}(T) \). Obviously \(\varphi \) defines \(p \) linearly independent cross sections of \(\hat{\nu} \).

As a corollary we have the following theorem of Borel–Hirzebruch [1].

Corollary. \(G/T \) is a \(\pi \)-manifold.

Proof. If \(X_0 \notin S_\nu \) for all \(\nu \), we have \(C(X_0) = T \) and \(S = \mathcal{L}(T) \), so \(\varphi \) becomes a trivialization of \(\hat{\nu} \).

Now we can prove Theorem 1. The main tool is the following theorem of Hirsch [3]:

Theorem (Hirsch). Let \(M^n \) be a \(C^\infty \)-manifold of dimension \(n \) and \(\tau(M^n) \) its tangent bundle. If \(\eta \) is a real \(k \)-dimensional vector bundle \((k \geq 1) \) over \(M^n \) such that \(\tau(M^n) \oplus \eta \) is trivial, then \(M^n \) can be immersed in euclidean space \(\mathbb{R}^{n+k} \) of dimension \(n + k \).

Hirsch also proved, that the immersion can be chosen to have \(\eta \) as normal bundle, but the above will be sufficient.

Proof of Theorem 1. If \(X_0 \) belongs to at least one singular hyper-plane we have a positive dimensional subbundle \(\eta \) of \(\hat{\nu} \) complementary
to the trivial p-dimensional subbundle given by the proposition. Thus

$$\tau \oplus \eta \oplus p = n$$

from which one can conclude that

$$\tau \oplus \eta = n - p.$$

Now we apply the theorem of Hirsch to get Theorem 1.

The above theorem of Borel–Hirzebruch and the theorem of Hirsch show that G/T can be immersed in \mathbb{R}^{k+1}, where $k = \dim(G/T)$.

If X_0 belongs to only one singular hyperplane, $C(X_0)$ has dimension $l+2$ and S dimension $l-1$. In this case Theorem 1 shows that $G/C(X_0)$ is immersible in euclidean space with codimension 3.

2. Now we shall apply Theorem 1 in the case $G = U(n)$. As the maximal torus T we take the diagonal matrices and $\mathcal{L}(T)$ is identified with \mathbb{R}^n in the obvious way. The singular hyperplanes in \mathbb{R}^n are then given by

$$S_{ij} = \{(x_1, \ldots, x_n) \mid x_i = x_j\}, \quad i > j.$$

Let $X_0 \in \mathbb{R}^n$ have the first n_1 coordinates equal to y_1, the next n_2 coordinates equal to y_2 and so on. The last n_q coordinates are then equal to y_q, $\sum n_i = n$, and we assume that $y_1, \ldots, y_i, \ldots, y_q$ are mutually distinct. Then an easy matrix calculation shows that

$$C(X_0) = U(n_1) \times U(n_2) \times \ldots \times U(n_q).$$

Moreover S is the subspace of \mathbb{R}^n given by the condition, that the first n_1 coordinates are equal, the next n_2 coordinates are equal and so on. Since the dimension of S is q, we get

Theorem 2. The complex flagmanifold

$$W(n; n_1, \ldots, n_q) = U(n)/U(n_1) \times U(n_2) \times \ldots \times U(n_q), \quad n = \sum n_i,$$

where $q \leq n - 1$, can be immersed in $\mathbb{R}^{n^2 - q}$.

If $q = n$ it is a π-manifold and can then be immersed with codimension 1.

The flagmanifold $W(n; n_1, \ldots, n_q)$ has dimension

$$n^2 - \sum_{i=1}^{q} n_i^2,$$

and the theorem gives an immersion in euclidean space of codimension
\[\sum_{i=1}^{q} (n_i^2 - 1) . \]

Notice that the manifolds
\[W(n+k; n_1, \ldots, n_q, 1, 1, \ldots, 1), \quad k \text{ numbers } 1, \]
are immersible in euclidean space with a codimension independent of \(k \), whereas the dimensions of the manifolds tends to infinity as \(k \to \infty \).

REFERENCES

2. R. Bott, Morse theory and its application to homotopy theory, (Mimeographed, Notes by A. van de Ven), Bonn, 1960.

UNIVERSITY OF AARHUS, DENMARK