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UNIFORM APPROXIMATION ON COMPACT SETS IN C*

L. HORMANDER and J. WERMER*

1. Introduction.

If K is a compact set in the space C" of » complex variables we denote
by A(K) the class of functions defined on K which are uniform limits
of functions holomorphic in some neighborhood of K. Thus fe A(K)
means that there exists a sequence of functions f,, each analytic in
some neighborhood 2,, of K, such that f,, — f uniformly on K. Similarly,
we define P(K) as the class of functions on K which are uniform limits of
polynomials in the complex coordinates. Evidently

P(K) < A(K) < C(K)

where C(K) as usual denotes the space of all complex valued continuous
functions on K.

We shall be principally concerned with sets K lying on certain smooth
submanifolds of C”. Let X be such a manifold, of real dimension k.
If x € 2 we denote by 7', the tangent space to X at x, viewed as a real
linear subspace of C*. By a complex tangent to X at ¥ we mean a com-
plex line, that is, a complex linear subspace of C” of complex dimension 1,
contained in 7',,.

Results connecting complex tangents to X with the space P(K) have
been given for 2-dimensional X' in Wermer [9], [10] and Freeman [1].
The general case of a smooth k-dimensional manifold in C” with no com-
plex tangents was discussed in a recent note by Nirenberg and Wells [6].
They made use of the solution of the d Neumann problem due to Kohn [4]
in tubular neighborhoods of 2. The results announced are quite com-
plete for the case where X is a C* manifold having no complex tangent
vectors. Our methods here are similar but based on the uniform bounds
for solutions of the 3 Neumann problem proved in Hormander [2]. This
proof was communicated to R. Wells in 1965. We also give some essen-
tially geometrical arguments which permit the study of certain cases
where complex tangents may exist. The results we prove contain the
following one:

Received December 15, 1967.
* Fellow of the U. 8. National Science Foundation.



6 L. HORMANDER AND J. WERMER

THEOREM 1.1. Let S be a v-dimensional submanifold of C* which is of
class CT where rz v+ 1. Let K be the set of those points where S has o
complex tangent. Assume that K is a compact polynomially convex set <8
such that K, is in the interior of K relative to S. Every we C(K) with
Ul g, € A(K,) ts then in P(K).

When 8§ is a 2-dimensional disk this result is closely related to that
given in the Appendix of Wermer [10]. Another approximation theorem
we obtain is the following:

THEOREM 1.2. Let X be a compact set in C* and let N be a neighborhood
of X. Consider a vector function R=(R,,. ..,R,) with values in C", defined
and of class O™+ in N. Suppose that there is a constant k<1 such that

|R(z)—R(2')| = k|z—2'| for all 2,2’ e N .
Every w e C(X) is then a uniform limit of polynomials in the functions

25, 22+ Ry(2),. . ., 2, + R, (2) .

The case n=1, under slightly weaker hypotheses, is Theorem 1 in Wer-
mer [9].

2. Preliminaries.

We shall collect in this section a few definitions and facts concerning
functions of real variables which will be needed later on. Let 2 be an
open subset of RN, If r is an integer =0 we denote as usual by C7(2)
the space of functions with continuous derivatives of order <7 in Q.
When s<r<s+1, where s is a non-negative integer, we use the same
notation for the space of all u € C3(Q) such that for |x|=s

D*u(x) — D*u(y) = o(jx—y|""%) when 2,yec K€L and z—y —>0.

Here x=(x,,...,xy) is a multi-order, that is, the components are non-
negative integers, and |x|=3«,, D*=0l*/ox," ... dxy*¥. The notation
K € 2 means that K is relatively compact in Q.

A submanifold 2 of R¥ of dimension » is said to be of class C7 if it can
be locally parametrized by a regular map »: w — RY where w is an open
subset of R” and the mapping belongs to C7, r=1. In a neighborhood
of any point on X one can take x to be the inverse of the projection of X
on some »-dimensional coordinate plane, identified with R’.

Denote by d(z,2) the Euclidean distance from x to 2 and by d(x,T')
the distance to the tangent plane at y € 2. In order to be able to work
with C! manifolds we shall need the following fact in Section 3.
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LemMA 2.1. Let X be a closed Ct submanifold of an open set Q<RY,
Then there exists a function g € C3(£2) such that for all ye X

Q(x)-d(x>Ty)2 = O(W—ylz), x—>y el.

Since g(x) —d(x,T',)? is the remainder term in Taylor’s formula, this o
will be uniform for y in a compact subset of 2. Hence we have, if y is
chosen to be the closest point to x in X, that

1d(x,2)? < o(x) < 2d(z,2)?
in a neighborhood of 2.

Proor or LEmma 2.1. If 2 were in C? we could take o(x)=d(z,X)?
in a neighborhood of 2. Under our weaker hypotheses the lemma fol-
lows instead from the extension theorem of Whitney [11] provided that
we show that for z,y in compact subsets of 2 we have uniformly for
¥ £2

DAd(z, T)2 (2, ), = ollx—y|*1) .

But this follows immediately from the fact that 7', - T, as z - y.

The following lemma is also closely related to Whitney’s extension
theorem and will be used in section 4 to keep down the differentiability
hypotheses.

Lemma 2.2. For x=(y,...,%y) € RN we set x’'=(xy,...,2,) and '’ =
(%1, - .»xy) for a certain v with 1<v<N. For every u e C7(R") one can
find U € C7(RYN) so that

U(x',0) = w(x') and z*U e C™e(RY)

for every multi-order x=(0,...,0,00,11,...,05).

Proor. Choose @ € C;®°(R’) with integral 1, and set with g’ e R’
v<j<N
N . N . .
(2.1) U@ = [u(v'~ 3 a9) TTet) dy'.
r+1 r+1
Since the functions

x - uw(@ - ;y)

belong to a bounded set in C7(RY¥) when all 3’ belong to a compact set,
it is clear that U € C*. It is also obvious that U(z’,0)=wu(z'). To complete
the proof it suffices to show that if 1<j<N and »<k <N, then D, U
is a sum of integrals of the same kind as used in the definition of U,
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for Lemma 2.2 then follows by induction with respect to |x|. To simplify
notations we may assume that k=N.
Let 2+ 0 and introduce

N .
yl — xl _ z xj y]
»+1
as a new variable instead of y¥. Then we obtain

N-1 . . N-1
ayU(x) = lele“’fu(y’) I'I1 o) dy’ ¢ ((w -y -2 w‘jy") /wzv) dy’ .
s

»+1

We can differentiate here under the sign of integration. Writing
9i(x') = op@)[oz;, @) = —mp),  1=j<v,
py(a’) = (L=v)p(a’) E 1 PH)

we conclude that DxyU(x) is given by (2.1) with ¢(yV) replaced by
@;(yN) if j<» or j=N, and is otherwise the sum of such integrals with
(%) replaced by ¢*(y’) and ¢(yV) replaced by ¢,(y¥), the summation
being made for 1<k=<». But integrals such as (2.1) are continuous
everywhere so it follows that the conclusion is not only true when x, + 0.
This proves the lemma.

REMARK. From the continuity of the map u — 2*U it also follows
that for || < |x| we have D%x*U =uDPx* when 2’’ =0.

3. Construction of some domains of holomorphy.

It is well known that tubular neighborhoods with small radius of a
manifold in C» are pseudo-convex if there are no complex tangents to
the manifold. However, we shall study certain cases where complex
tangents may occur. This requires the construction of tubular neighbor-
hoods with highly variable radius made in the following theorem.

THEOREM 3.1. Let S be a closed subset of an open set 2<C", and let K,
be a compact subset of S such that S\ K, is a C* manifold with no complex
tangent. If there exists a holomorphically convexr set K,<S8 which is a
netghborhood of K, relative to S, it follows that every compact set K with
K,=K<S8 is holomorphically convex. Moreover, for any mneighborhood
N of K, one can for all small & > 0 find a domain of holomorphy w, decreasing
with & so that

(i) o, contains all points at distance <¢f2 from K,

(ii) all z€ w,N[N have distance <2¢ from 8.
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Here we have called a compact set holomorphically convex if it has a funda-
mental system of neighborhoods which are domains of holomorphy.

Proor. Let £ be any open neighborhood of K which is contained
in 2. We shall construct domains of holomorphy containing K which
are relatively compact in 2. This will be done by fitting together
small neighborhoods of K, which are domains of holomorphy with tubular
neighborhoods of § away from K,. The crucial fact is that an open set
which is locally a domain of holomorphy is indeed a domain of holo-
morphy (see e.g. Hormander [3, Theorems 2.6.10 and 4.2.8]).

Using Lemma 2.1 we choose a function g e C%Q2\ K,) such that
0(2)+0 when z ¢ S and for every { e S\ K,

0()—d(z,T)? = o(lz—{|*) as z->(.
This implies that for some open set U with S\ K,=U <2\ K, we have
(2.1) 1d(z,8) < 0(2) £ 2d(2,8)3,, zeU.
We can write
d(z,T,)* = H(z—{) + Re A (2 —{)

where H, is a hermitian symmetric form and 4, is an analytic polynomial.
Since no complex line lies in 7', we obtain for every w#0 in C"

0 < d(w, T +d(w,T,)* = 2H (w) .

Thus the Levi form H(w) of ¢ at { is positive definite. For reasons of
continuity this is still true in a neighborhood of S\ K. Shrinking the
open set U if necessary we may therefore assume that g is strictly pluri-
subharmonic in U.

Choose compact sets K', K" and open sets £2',02",£""" so that

(2.2) K€EK' CEQECK'EQREQRA"ECQ(NN; Q"nK,=2"n8S.

Here N is the neighborhood of K, occurring in the statement of the
theorem. Then it follows that for some constant C

(2.3) d(z,K,)? < Co(z), zeQ'\K".

In fact, in a neighborhood of the closure of 2\ K’ the functions
d(z,K,)? and p(z) have the same zeros and d(z, K,) =d(z, S) near the zeros,
so (2.3) follows from (2.1).
The sets
Qo =0, 0Q,=02"'\K', 8,=80g\K"

are all open, and
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(2.4) Qp=82,u,uL, L2,n2,=0.

We shall define our domains of holomorphy by different conditions in
each of these three open sets, making sure that the various conditions
agree in the intersections 2,n; and 2,n0Q,.

Choose two functions ¢,y € C3(UNQg) such that

(2.5) 0
(2.6) 0

@ £ 1, ¢ = 1in aneighborhood of K\ £,
p=1l, p=0in 2, yp=11in {z;2e2'\K',0(z)<n},

IA A

for some 5 >0. Since K\ £’ is a compact subset of Unf2; there exist
functions in C;®°(Un2g) satisfying (2.5). Similarly one can find  with
the required properties since {z;z€ 2'\K’, o(z)<n} € UnQx for suf-
ficiently small # while £, and 2'\ K’ have disjoint closures.

Let ¢ be a positive number such that

Pes(2) = 0(2) —£2@(2) — 6°y(2)

ig strictly plurisubharmonic in suppeuUsuppy when 0<e<cand 0<d=c.
Then
{z; 2 2 nU, p,4(2) <0}

is a domain of holomorphy for such ¢ and §, and is relatively compact
in xnU since it is contained in supppuUsuppy.
Let o, be a domain of holomorphy containing K, such that

(2.7) 0(2) < min(n,c?) when zew;n(2'\K'),

and define w, as the set of points z € 2 such that

Peol?) < 0 if ze ,,
(2.8) Pool2) < 0 and zew, if zel2,
ZE Wy if z€8,.

We shall prove in a moment that these definitions are compatible in the
sets 2,002, and 2,n2, when ¢ is sufficiently small. But first we note
that since {z;p,,(2) <0} =supppUsuppy € Qx, and since 2,UQ,=
Q" € Qg, it is clear that w, € 2. In view of the remark made at the
beginning of the proof we conclude that w, is a domain of holomorphy,
for every boundary point has a neighborhood V such that w,nV is a
domain of holomorphy.

Since KN <8SnQ"'=K,nQ""<K, €w, and since ¢=1 in a neigh-
borhood of K\ Q' by (2.5), we have K —w,. In fact, the 3¢ neighborhood
of K belongs to w, for small ¢ since p(z) <2d(z,K)?* in a neighborhood
of K\ ©Q'. On the other hand,
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(2.9) 0(z) < e?@(z) £ i 2e£, and p, (2)<0,

which in view of (2.1) proves that o,N[N<w,nQ, is at distance <2
from S for small e.

It remains to verify that the definitions (2.8) are compatible for small .
First assume that z € 2,nQ2,=02""\ K"’ and that p, ,(2) <0. By (2.9) we
have p(z) <%, so we may conclude using (2.3) that d(z, K,)?<Ce?. For
small ¢ this implies that z € w;. Hence the first two definitions (2.8) are
compatible in 2,n£,.

Next let z€ 2,n2y=2'\ K’, and let z € w,;. Then we know by (2.7)
that o(z) <7, so it follows from (2.6) that y(z)=1. Using (2.7) again we
obtain

0(z) < ¢ = 2p(z) +c?y(2) ,

that is, p, ,(2) <0. This completes the proof of the consistency of (2.8)
and thus the proof of Theorem 3.1.

Theorem 3.1 would have been false if we had only assumed that K,
is holomorphically convex and not that there is a holomorphically convex
neighborhood K, of K, in S. In fact, we have

ExampLE 3.2. Let S={z;2€ C? |2]>=1, Imz,=0} and let K;={(0,1),
(0, —1)}. Then S\ K, has no complex tangents and K, is holomorphi-
cally convex. However, every domain of holomorphy containing S also
contains the convex hull of § by Hartog’s theorem, so § is not holomor-
phically convex. (We owe this example to E. Bishop.)

4. An approximation theorem.

The purpose of this section is to prove the following somewhat more
general version of Theorem 1.1.

THEOREM 4.1. Let the hypotheses be as in Theorem 3.1 and assume in
addition that S\ K, is of class C* where r is so large that the dimension
of S\ K, is at most 2r—2. If u e C(K) and u|g, € A(K,) it follows that
u € A(K).

It will be clear from the proof that the high differentiability assump-
tions are caused by the fact that we are considering approximation in
maximum norms while our methods are based on L? estimates. If we
only want to approximate in L2 norms on K with respect to a smooth
density (assuming that K lies on a manifold) it would be sufficient to
assume that S\ K, is of class C'. We do not know if such an improvement
is possible in Theorem 4.1. However, it would not be difficult to relax
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the hypothesis that dim S\ K, < 2r — 2 to assuming that dim S\ K, < 2r.
This requires that in the proof of Theorem 3.1 one also constructs a
plurisubharmonic function which is uniformly bounded in w, but has
a lower bound for the Levi form in w,n[N which is 2¢-2. We leave for
the reader to make these improvements, which also require that one
uses the full force of Theorem 2.2.1’ in Hérmander [2].

In order to prove Theorem 4.1 we must first show that smooth
functions on K can be extended to a neighborhood so that the Cauchy-
Riemann equations are satisfied to a high order on K. This is a simple
algebraic fact, analogous to solving the Cauchy problem for a differential
equation in terms of formal power series, but for lack of a suitable refer-
ence we shall give a proof here.

Lemma 4.2. Let T be a real linear subspace of C* containing no complex
line, and let P, be the ring of polynomials generated by the real linear forms
which vanish on T. Then the equations

(4.1) oujez; = f,  j=1,...,n,
have a solution u € Py, for all f; € Py such that
(4.2) of;|0%, = ofyfoz;, j.k=1,...,n.

If f; are homogeneous of degree u we can choose w homogeneous of degree
w+1.

Proor. A real basis for 7 is linearly independent over C and can there-
fore be extended to a complex basis for C*. We may therefore assume
that 7" is given by the equations z,= ... =2,=0, Rez, ;=...=Rez,=0.
Every g € P, can then be uniquely written as a finite sum

g = 29%®)2%, & = (xp,...,0),

where g, is a polynomial in x=Rez, and conversely every such sum
belongs to P,. Since 92%/dZ; =0 consideration of each monomial 2* sepa-
rately reduces the proof of the lemma to the case where f; are polyno-
mials in # alone. Since 9/Z; coincides with }0/dx; when acting on func-
tions of x alone, the lemma now follows from the Poincaré lemma for
functions of the real variables x; the last statement is obvious.

Note that the lemma would be false already for constants f; if 7' con-
tains a complex line.

LevMma 4.3, Let S be a closed subset of an open set 2<Cn, and let K,
be a compact subset of S such that S\ K is a CT manifold with no complex
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tangent, r= 1. Let w € C7(Q) and du=0 in a neighborhood of K. Then one
can find v e C"(2) so that v=u on S and in a neighborhood of K,, and
n addition

(4.3) v(z) = o(d(2,8)™1) asz—>8,

uniformly on compact subsets of S.

Proor. By induction we shall prove that for every integer s <r there
is a function v € C7(R2) such that v=wu on § and in a neighborhood of K,
and such that the derivatives of v of order <s vanish on 8. When s is
the largest integer < this statement implies Proposition 4.3. Since it
is obviously true for s =0 we may assume that s > 1 and that the statement
is already proved for smaller values of s. Thus we may assume that ou
vanishes of order s —1 on S, that is, that the derivatives of order <s—1
vanish there.

Let { € S\ K, and let T, be the tangent space of S at { regarded as
a real linear subspace of C*. If cu=f,dz,+ ... +f,dz, we have by Tay-
lor’s formula and the hypothesis made above

fiC+2) = f2)+o(]z|*)) as z—0,

where f;% is a (non-analytic) polynomial of degree s —1 which belongs to
Py, in the notations of Lemma 4.2. We claim that

of0lez, = of,0)ez; .

This is evident if s=1 since f;° is then a constant. When s> 1 the state-
ment follows from the fact that

of(E+2)[02), = Ofi(C +2)0z,

if we equate the terms of degree s — 2 in the Taylor expansion with respect
to z of the two sides. In view of Lemma 4.2 it follows that there exists a
homogeneous polynomial %,° € Py, of degree s such that

4

fjo = (')uco/azj, jzl,...,n,
which means that

o(u(z) —u2(z—1¢))

vanishes of order s at . Clearly %, is unique modulo analytic polyno-
mials in the complex linear forms vanishing on 7',.

After studying the problem at a single point we shall now look at the
local solution in a neighborhood of a point (e S\ K,. Writing z,=
%+ 1%y, We may assume that S\ K, in a neighborhood of {, can be
described by equations of the form
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xj=(p’-(xl,...,z‘,), j=v+1,....2n,

where v=dim S\ K,. If y;x)=x;—g@;x;,...,2,), j=v+1,...,2n, the
equations y;(x)=0 define S\ K, in a neighborhood of {,, and for any
{ e S\ K, in a neighborhood of {, the differentials of the functions y;
form a basis for all linear forms vanishing on 7',. Hence it follows from
the first part of the proof that there exists a homogeneous polynomial
h? of degree s such that

7 0(u(2) — Xy 41(2), - - -, Y20 (2)))

vanishes of order s at {. But this amounts to a system of linear equations
for the coefficients of 4,° with rank independent of {, equal to the number
of linearly independent homogeneous polynomials in 2n—v variables of
degree s minus the number of linearly independent analytic polynomials
in n—» variables which are homogeneous of degree s. To proceed we
now need the following well known fact:

Let ¥V and W be two finite dimensional vector spaces and @,: V - W
be a linear transformation which is a C7 function of { in a neighborhood
of a point {,, with rank independent of {. If { - w({) € W is a C” func-
tion and w(Z) is in the range of @, for every , it follows that one can find
a Or function v from a neighborhood of {, to V such that @,v(l)=w({).

We leave the proof of the reader. Writing {, =&, + &, we conclude
that we can take

ROWyi1- - Wan) = 3 @ (E1,- - 8) 9*

lal=s

for suitable a, € C7—2; here o« = (x,,,. . ., %y,). By Lemma 2.2 it is possible
to find A, € Cr-% in a neighborhood of {, so that with & =(&,...,&)

A&, @) = a, &) and A[(x)yp(x)*eCr.
In view of the remark following Lemma 2.2 the function

v(@) = u(@) — 3 A,(e) p()*

|o}=8
will then have the required properties in a neighborhood of ¢,, and
(4.4) v(z) —u(z) = O(d(z,8)%) .

Let now {x,} be a partition of unity in 2, s=0,1,..., such that yy=1
in a neighborhood of K,, du=0 in a neighborhood of suppy,, and such
that for 740 the preceding discussion gives a function v; with the re-
quired properties in a neighborhood of suppy;. Set v,=wu and

v = EXi”i'
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Then v is equal to » on § and in the neighborhood of K, where y,=1.
Noting that 39y,=0 we have

00 = 3 100+ 2 0,08 = 3, 2:00+ 3, (v;—u)0y
so it follows from (4.4) that v has the desired properties.

The last preparation for the proof of Theorem 4.1 is an elementary
lemma which allows us to pass from L2 estimates to estimates in the
maximum norm.

LemMA 4.4. Let B,={z;2€ C", |z|<¢&); let we L¥B,) and du=f in the
sense of distribution theory. If fis continuous it follows that w is continuous,
and we have

(4.5) [u(0) = Cle™|[ullLes, + € supg,|fI) -

Proor. It suffices to prove the a priori estimate (4.5) when w e C*.
For if we apply it to regularizations of « in balls which are relatively
compact in B,, it follows that  is continuous and that (4.5) is valid
when « merely satisfies the hypotheses in the lemma. We may also
assume that e=1 in proving (3.5). Choose y € C;*(B,;) so that y=1 in
B,. With E denoting the fundamental solution of the Laplacean in
R2", we have

u(0) = (z)(0) = [ (@) A(u) da

i

J.E(x)(Ax)(x) u(x) de+2 fE(x)(gradx, gradu) dx + fE(x)x du dx

I

—4 f S f,0(4 ) 2z, da: + f (B(2)Az(x) 2 div(E(z) grad z(z))u(z) dz .

Here we have used that Au=43 df;/0z;. Since the first order derivatives
of E are homogeneous functions of degree 1—2n, hence locally inte-
grable, we obtain the estimate (4.5).

Proor or THEOREM 4.1. It suffices to prove the statement assuming
that u can be extended to a function which belongs to C in all of C»
and is analytic in a neighborhood N of K. In view of Lemma 4.3 we
may assume that

f = 0w = o(d(z,8)1) .

If w, is chosen according to Theorem 3.1 and » is the dimension of S\ K,
we obtain

/1l L2wry = o(em 1) |
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for the measure of w,N[N is O(¢2*~*) by condition (ii) in Theorem 3.1.
In view of Theorem 2.2.3 in Héormander [2] we conclude that there is a
function w, € L¥(w,) with dw,=f in o, and

ledizewy = Cliflzey = o(e™te@m=) .

The difference u,=u —w, is then analytic in ,, and by Lemma 4.4 we
obtain when z € K, using (i) of Theorem 3.1,

[wy(2)] = Cle™[wlLowy T EllflLooy) = 0(e™17F) as e 0.

Since we have assumed that v < 2(r —1) it follows that « is the uniform
limit of u, on K.

5. Polynomial approximation.
Let X be a compact space and let f,,...,f, € C(X). Denote by

[fis- - ->fi| X] the class of all functions which are uniform limits on X of
polynomials in f,,. . .,f, with complex coefficients.
It is a general problem to give conditions on fj,...,f, and X assuring

that [f},. . .,f;| X]=C(X). Necessary and sufficient conditions are known
only when k=1 (Mergelyan [5]). For arbitrary compact X <C» the
Stone—Weierstrass theorem gives

(21, - 320,21, . ,2, | X] = C(X) .

We are concerned here with a certain perturbation of this result.

Let R,,...,R, be functions in C**+1(N) for some neighborhood N of a
compact set X in C*, We write R for the vector valued function (R,,
...,R,) from N to C». If z=(z,,...,2,) € C* we write

2| = (.é:l |zj|2)* .

The following is Theorem 1.2 of the introduction.

THEOREM 5.1. Assume that there is a constant k<1 such that
(5.1) |R(z)— R(z')] < klz—2'| when 2,2’ N .
Then it follows that
[21,- « 3202+ R1(2),. . ., 7, + R,(2) | X] = O(X) .
Note that if we allow k=1 in (5.1) the assertion of the theorem may

become false. Take for example n=1, X =the closed unit disk and
R(z)= —2z.
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Let @ denote the map of N into C2» defined by
D) = (2,7 +R(2))
and let X' be the image of N under @. Evidently 2'is a C**+1 submanifold
of C2»,

Lemma 5.2. The submanifold X has no complex tangents.

Proor. If 2 has a complex tangent, then there exist two tangent
vectors to X differing only by a factor «. Hence one can find &7 e C"
different from 0 so that at some point of N

(5.2) dd(n) = idD(£) .

If we write R, for the n x n matrix whose (j,k)-th entry is dR;/éz, and
define R similarly, the equations (5.2) can be written

(m, T+ R+ R;7)) = i(§,E+ R, E+ RSE) .

Hence n=1£ and
(5.3) E+RE=0.

Now we have by Taylor’s formula
R(z+¢e0)—R(z) = R,e0+ R;e0+o0(e)

as ¢ — 0 through real values for fixed z € NV and 6 € C*. Hence it follows
from (5.1) that

(5.4) |R,60+R;0| < k10| .

Replacing 0 by 0 gives

(5.4) |R,0—R;0| < k|6 .

Combining (5.4) and (5.4)" we get

(5.5) |R;0| < k|6] forall heCn,

which contradicts (5.3) if £40. Hence X has no complex tangent, as

claimed.

Lrmma 5.3. The set X*=®(X) is a polynomially convex compact set in
C2n,
Proor. Denote the coordinates in C** by z,,...,2,,, and let

A = [21,. . 1202+ R1(2),. . .2, + Bp(2) | X],  A* = [21,...,25, | X*].

Math. Scand. 23 — 2
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The map @ induces an isomorphism between A and 4*. To show that
X* is polynomially convex in C?» is equivalent to showing that every
homomorphism of 4* into C is evaluation at a point of X*, and so to the
corresponding statement about 4 and X.

Let /& be a homomorphism of 4 into C. Choose a probability measure
1 on X representing h, that is, so that

W) = [fdu, fea.

X

Put h(z;)=0o;, 1=1,...,n, and a=(x,,...,x,). Choose an extension of R
to a map from C» to C» such that (5.1) remains valid for 2,2z’ € C*. This
can be done by a result of Valentine [8].

Define, for all ze X,

n
fz) = 21 (2= ) ((Z: + Rif2)) — (& + Ry(w)) -
Pom
Since z; € 4, Z;+ R,(2) € A, and the «; and R,(x) are constants, we have
fe A. Evidently A(f)=0. Also, for z e X,

n n
F@) = 3 =il + 3 (25— )(Ref) - Ry(w)) .
1=1 =1
The modulus of the second sum is <|z—«| |R(2)— R(«)|Sk|z—«2 by
(5.1). Hence Ref(z)>0 for a4z X. On the other hand,

0 = Reh(f) = fRefd,u.
X

It follows that « € X and that u is concentrated at x. Thus % is evalua-
tion at « and we are done.

Proor or THEOREM 5.1. We now know that X* is a polynomially
convex compact subset of 2, and X is a C**! submanifold of C2* of
dimension 2n having no complex tangents. Hence P(X*)=A4(X*)=
C(X*) in virtue of the Oka—Weil approximation theorem and Theorem
4.1. But this means precisely that

[20- - 520,21+ By(2),. . ..Z2, + R,(2) | X] = C(X).
One might be tempted by Theorem 5.1 to believe that if X is a com-

pact set in some differentiable manifold, the set of all ¢,,...,¢, € C(X)
such that [g,...,¢.|X]=C(X) is open, at least in some C” topology.
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This is not true, however, as is shown by Example 6.2 in the next sec-
tion. On the other hand, we have

THEOREM 5.4. Let X be a compact subset of a differentiable manifold M
of dimension n and class r' 2max(2,14+4n). Let ¢y,...,p, € C"(M) and
assume that

@) [p1,. - ,(}JkIX]=C(X),

(ii) the differential of the map ¢=(gy,. . .,@;) from M to C¥ extends to an
injective map from the complexification of the tangent space at any point
of M into Ck; if (xq,...,%,) are local coordinates on M this means that
(O@;fox;), i=1,...,k; j=1,...,n, has rank n.

Then it follows that [y,,. . .,y;| X]=C(X) for all y; € C"(M) sufficiently
close to @; in the C? topology.

Proor. Choose an open set M, with X < M, € M such that ¢ separates
points in M,. This is possible since ¢ separates points in X by (i) and
since ¢ is a regular map by (ii) and so separates nearby points. Then all
y in a C? neighborhood N of ¢ (in C7) are also one-to-one and satisfy (ii)
on M,, which implies that y(M,) is a C" manifold with no complex tan-
gents. If d (2) is the distance from z € C¥ to (M), it is easy to see that
there is an open neighborhood 2 of ¢(X) and a C? neighborhood N; <N
of @ such that for all p € N, and some positive constant ¢ we have

a) {reM,;ypx)efR} €M,

b) d2eC¥Q) and 302d ?*/0z;0%, w;wzc|w|® if ze 2, weCk
(See the beginning of the proof of Theorem 3.1.) Choose y € C;*(£2) so that
0<y=<1 and y=1 in a neighborhood of y(X) if y belongs to some C?
neighborhood N,=N, of ¢. From b) it follows for some 6> 0 that
d,?— 0y is strictly plurisubharmonic in £ when y € N,. The sets

Oy, = {ze Q; d,p(z)2<6x(z)—s}, 0<e<d,

are thus domains of holomorphy having the Runge property relative to
each other for fixed y € N,. They shrink to ¢(M;)ny~(1)>y(X) when
e/'0. This is a compact set in view of a), and it belongs to (M,) which we
recall is a C™ manifold of dimension n with no complex tangent. Hence
it follows from Theorem 4.1 that all continuous functions on (X) can
be approximated uniformly by functions analytic in o, , for some ¢<4,
and so by functions analytic in o, , by the Runge property.

Since ¢(X) is polynomially convex by (i), there exists a Runge domain
U with ¢(X)=U € w, ;. For all y in a 0% neighborhood Ny <N, of ¢ we
still have p(X)= U € w,, 4. If y € N3 we have proved that every continu-
ous function f on y(X) can be uniformly approximated by a function g
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which is analytic in w,,>U; and g can then be approximated by a
polynomial P uniformly on the compact set p(X)<U. Hence polyno-
mials are uniformly dense among the continuous functions on y(X),
which means that

[pr,.. v | X] = C(X), peN,.

The proof is complete.

REMARK. The hypothesis that y is close to ¢ in C2? can be relaxed.

6. Examples.

Let K be a compact set in C*. Assume

a) K lies on a smooth submanifold of C* without complex tangents,

b) K is topologically a cell.
If dimX'=1 then a) and b) together imply that P(K)=C(K). In other
words, P(I)=C(I) when I is a smooth Jordan arc in C". (See Stolzenberg
[7] and the references there.) Of course, when dim2'=1, the absence of
complex tangents is automatic.

Do a) and b) imply that P(K)=C(K) in general? The following ex-
ample shows that the answer is negative for dim2X'=2.

ExampLE 6.1. For z € C put f(z)= — (1 +1)z + 222+ 222%. Denote by X
and K the images of C and the unit disk {z;|2|<1} under the map
z—(2,f(2)) € C2. Then X has no complex tangents, K is a disk but
P(K)+C(K).

In fact, 9f/0Z must have a zero if 2" has a complex tangent. But, setting
r2=2%Z, we have

ofjoz = — (1+14)+ 2ir2+ 3rt
which is never 0. Since K contains all points (z,0) with |z| =1, the poly-

nomially convex hull of K contains the disk {(z,0), |z <1}. Thus K is
not polynomially convex and so P(K)+C(K) as claimed.

ExampLE 6.2. Let X be the unit disk {z;z € C, |z| £1}. Fix an integer
k>0. We claim that

(i) [z,2%] X]=C(X)

(ii) there exist functions f arbitrarily close to z2* in C* norm such that

[z, fIX] + C(X) .

Set A =[z,22*| X]. In order to prove (i) we note that since 9(z2¥)/0z + 0
on X except at a single point it suffices by Wermer [10] or Theorem 4.1
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above to prove that every homomorphism m: 4 — C is evaluation at
some point of X. (See the proof of Theorem 5.1.) Put m(z)=z,. Since
m is represented by a positive measure on X we have m(z2*) =z,2%*. Hence
for each polynomial @

m(Q(2,2%)) = Q(z0,%*) ,

so that m(h)="h(z,) for all h e A. Thus (i) holds.

To prove (ii) we note that since z2* vanishes at 0 to an order >k there
exists a sequence f, € C¥(X) such that f,=0 in some neighborhood U,
of 0 and f, ~ 2% in C*. Each element of [z, f,,| X] is analytic on U,
80 [z, f,| X]+C(X) for every ». Thus (ii) holds.
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