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RAMANUJAN’S SUM AND NAGELL’S TOTIENT
FUNCTION FOR ARITHMETICAL SEMI-GROUPS

E. M. HORADAM

1. Introduction.

The arithmetical semi-group for this work was first defined by Arne
Beurling in [1]; here it is defined as follows. Suppose there is given a
finite or infinite sequence {p} of real numbers, called generalised primes,
such that 0<1<p; <p,<.... Form the set {1} of all p-products, that is,
products p,"'p,” ..., where v;,v,,..., are integers =0 of which all but
a finite number are 0. Call these numbers generalised integers and sup-
pose that the semi-group consisting of all these products is free. Then
assume that {1} may be arranged as an increasing sequence:

l=L<lh<li<...<l,<....

The aim of this paper is to define various functions of the generalised
integers having some of the properties of Ramanujan’s sum and Nagell’s
totient function and to develop their properties.

2. Definitions and Ramanujan’s sum.

Let 1,1, be two generalised integers. Then [, |1, if there exists I, I, € {1},
such that 1,l,=l,. Let (},,/,) denote the greatest common divisor of 1,
and [, and let (1,,,1,); denote the largest kth power, k an integer, which
divides both I, and I,.

Now define ¢,(l,,!,), Ramanujan’s sum for generalised integers, by
(2.1) ck(ln’lr) = z tu(lr/d)dk = Z :u(lr/d)dk .
dlly k|, b
dk|ly
The function u(l,) is the Mobius function for generalised integers defined
by u(l,)=0 if I, has a square factor; u(l,)=(—1)° where s denotes the
number of prime divisors of I, and !, has no square factor; u(1)=1. Its
properties are given in [6].
The following auxiliary functions will be required. Define

(2.2) willy) = (0,1,) = %#(lr/d) d,
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u5(d)
(2'3) s(lmlr) = )
P d%, ¥i*(d)
(dlp)=1
(d
(2.4) V)k,s(lr) = lrsz L : = 1ps,k(lr) .
ap, @°

As the Mobius function is multiplicative, all these functions are multi-
plicative in [,.
Let y(l,) denote the core of I, that is, if [, =p,"1p,”2...p%, then
y(l,)=p1D2 . .. ps- A generalised integer [, is called primitive if y(l,)=1,.
Most of the definitions and results in [5] will be needed for this paper.
In particular using the corollary to Theorem 6 in [5], it is easily shown
that if d|l, and é|l, then

(2’5) Wk(d) ck(ln(lr/d)k’é) = wk(é) ok(ln(lr/(s)k>d) .
A function f(1,,l,) is said to be k-primitive if
(2'6) f(ln’lr) = f([y(ln’lrk)k]kflr) >

where the square brackets are used for convenience only. It follows
therefore, from the definition of a k-even function given in [5, (1.9)] that
every k-primitive function is also k-even.

3. The Brauer-Rademacher identity for arithmetical semi-groups.

Recently Eckford Cohen [4], P. J. MacCarthy [7], and M. V. Subbarao
[10], have given new proofs of the Brauer-Rademacher identity for
natural numbers. In extending the Brauer-Rademacher identity to
arithmetical semi-groups the method of Cohen and McCarthy cannot be
applied. This is because an essential orthogonality property cannot be
extended to the semi-group as addition in it is not defined. However
the method of Subbarao is immediately applicable. The basis of his
method depends upon finding a multiplicative function f(r) with the
additional property that for every prime p,

f@ =f0») =f@*)=....

Then taking f(r)=r/p(r) the Brauer-Rademacher identity is obtained.
In following through this method for arithmetical semi-groups the Euler ¢-
function, ¢(l,), cannot be used for it can be seen from [6] to be not multi-
plicative. Instead the function y,(l,) defined in (2.2) is used with f(I,) =
1,%/yi(l,). The method of Subbarao together with result (2.5) then gives
the Brauer-Rademacher identity for arithmetical semi-groups as
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(3.1) i) %T d* (L, /d)[y,(d)
Uy dB)g=1
= M(l E dk u(lyfd) = p(l,) eilly,l,) -
(U rk)k
When [, is primitive (3.1) reduces to
(3.2) Ckllnrly) = d%r du(d) pi(l/d) .
(n, dop=1

A result more general than the Brauer-Rademacher identity but similar
to it is

9(6) u(d)
3.3 1, dy = 1,.d),
(5.3) 2 @ N = 2 =G el d)
(lmdk)k=1

where h(l,) is a given function and g(l,) = X4, h(d).

The proof is obtained by observing that for non-zero terms on the r.h.s.
of (3.3), d must be primitive. Substitution of the value for ¢,(l,,d) given
by (3.2) in the r.h.s. of (3.3) gives, after some manipulation, the Lh.s.
of (3.3).

4. Further properties of Ramanujan’s sum.

The first result is similar to Eckford Cohen’s Lemma 2.1 in [2]. It
should be noted that there is an error in the proof of this lemma, the
lemma being untrue if k1 r. However this does not invalidate the main
result of [2].

THEOREM 1. If 1,, I, and 1, are generalised integers, l, is a k-th power
but contains no (k+ 1)-th power and 1|1, and 1,|1,, then

0 if 1, contains any p?,
(4'1) z ”(d)ck(lr/d>ls) =30 @f 7 1’7’ s),
it PEQFu(Q) yi(Py) otkerw@se ,

where ;= P,P,Q2, Pytl; and Py, P,, @ are products of single primes. In
particular if k=1 the sum reduces to Ly, (l/l;).

Proor. From (2.1) we have
Z zlu(d)ck @./d1l,) = Z/"'(d z u(ls0)o% = Z % u(d) u(l/0) .
oku,./d 0"Ilrld

Now I, is a kth power but contains no (k+1)th power and so J must be
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a product of single primes. Hence if I, contains any p?, u(l,/6) =0 for all
d and the first part of Theorem 1 is proved.
Now put I,=P@Q? and then [, is of the form [, =P*Q*R* k> 2. Rewrite

> as
2 =2"ulfo) ¥ ud).
olls d|d, lpjok)

The second sum is zero unless d=1 [6, Theorem 6]. Hence for a non-zero
term (1;,1,/6*)=1. But [;]|l, and so for a non-zero term y(l;)|d that is
p(l) |y(l,). The sum is therefore zero if y(l;)1y(l;) and the second part
of the theorem is proved.

Now suppose y(I,)|v(l,) that is y(I,)|PQ and so put l,=P,P,Q,2Q,2
and l;=P,*Q,*. Then

S= 3 &ulfs) = > & u(PQ2JS) .
d|ls 9|PQ
Ui, lnfoky=1 (P1%Q1P, PkQkR¥/[6kym1

Since y(l;)|6 we may write d=P,Q, 6, and then

P1P2Q12Q22
2 = > Ple1k61k.“(——)
P1Q101|P1Q1P2Q2 P lQlal
= P/*Q,* E 0. (Py@22[01) u(@y) -
61| P2Q2

Again the only non-zero terms are those in which 6, =48,0,. Hence

E = Ple1’;'§I; 0k Q" .“(PzQz/‘sz) w(@y)
= P*Q*Q.* N(Qle)olZPazk w(Py[dg) = Pi*QF u(Q) vi(Py);

this proves the third part of the theorem and when k=1,
D> =Py > 0y u(Pyfdy) = 1 pi(LfL;)

82| Pg

since I,=P,P,, I, = P,P,R, l,=P,. This completes the proof of the
theorem.

THEOREM 2.
(4'2) ck(ln’lr) = 2 G(Zn’lrk/d) >
d|i, .k
(d) lrk)k"'l
where ¢(l,,1,)=c,(l,,1,)

Proor. From the definition (2.1) and the method of [10], it can be
seen that each side of (4.2) is multiplicative in both [, and I,. We need
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therefore only verify (4.2) for the case I, =p?, I, = p?, where p is a gener-
alised prime.
Now

(4.3) cx(p%pP) = dleu(p”/d)d" = p¥ — pO-vk,
e

where bk <a and (b—1)k<a. Also the r.h.s. of (4.2) equals
> u(p™[(dd))s

d|pb  8|pbkjd
d, pblyp=1 o|pa

Put déD = p¥%, then r.h.s. equals
(D)d.
dwgpbk u(D)

d|p
@, pPhyp=1

The only non-zero terms occur when D=1 or D=p. Hence r.h.s. equals

bk bk—1
z S — z o = z zp_pbk__pbk—k
dé=pbk ds=pbk—1 i=blo—k+1 t=bk—
é|pe 8|p® i=a i<a

d, pPhyp=1 d, poyp=1

where bk <a and bk—k=<a. This is just the L.h.s. of (4.2) from (4.3) and
so Theorem 2 is proved.

5. k-even functions.

As defined in [5, formula (1.9)] let f(,,l,) and g(l,,!,) be k-even func-
tions. Then from [5, Theorems 2 and 4] f(l,,,) may be written uniquely
in the form

. =3 a(d,l,) c(l,,d d,l,[d),
(5 1) r) dzll,-(x r) ck n ) d"l(lg:l-,")kw( / )
where
(5.2) ad,l,) = 1,7* %, F(@[0)%. L) e (/) 6)
= 1,753 w(l,fe,e)ek
ed|ly

(In later work the function «x(d,!,) will sometimes be written x(d)). Again
g9(1,,1,) may be written in the form

r) = Z ﬁ(d:lr) ck(lmd) .
d|ly

Math. Scand. 22 — 18
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We can now prove
THEOREM 3.
(5.3) 2 fek,L) gek,1,) wi(d) = L* 3 a(d,1,) B(d.1,) yi(d) .
de=ly dily

Proor. From (5.2) the r.h.s. of (5.3) may be written

= lr—k Zf((lr/é)k> lr) Z g((lr/A)k’lr) Z ck((lr/d)k’(s) ck((lr/d)k,A) Q/"k(d) .
olly ajly il

Now from (2.5) the third sum may be written
dlzlr Gk((lr/d)k’a) ok((lr/A)kﬁd) wk(A)

and from Theorem 1 of [5] this sum is zero unless § = A when its value is
1%y, (4). Hence the r.h.s. of (5.3) becomes

%'f((lr/d)k9 lr) g((lr/A )k’ 61‘) Q/)k(A)
4
and this is just the Lh.s. of (5.3) so Theorem 3 is proved.

THEOREM 4.
54 3 (11 et d = LA (1),

Proor. Let f(l,,l,) denote the r.h.s. of (5.4). Then
Loflal) = L S w@fde = S u(d)
a%|(n, 1rs a3|n, br)s
The results of (5.1) and (5.2) therefore apply with

a(d) = 1,723 u(l,fe) =3 es = 1,75 ¢,((l,[d)%,1,) .
ed|ly

Using (5.1) again, this proves Theorem 4. Putting I, =0 in Theorem 4

we obtain
(55) c%lfck((lr/d)k’lr) ws(d) = lrs wk—s(lr) .

6. k-primitive functions.
THEOREM 5. 4 function f(l,,1,) is k-primitive if and only if it can be
written in the form

(6~1) f(lfwlr) = Z “(d,lr) ck(lnyd) .
dlyin)
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Proor. Suppose first that f(l,,l,) is k-primitive and so k-even and
therefore the results of (5.1) and (5.2) apply. In this case

A*|(L, LF), <= @F|([y (L, 1,F)T%, LR <= AR [y (L, L) TE
Hence

f(ln’lr) = 2 LLL(d)] w(d,lr/d)

aE|(n, Loy

‘x(d) = lrﬂk z w(lr/e’e)ek [,u(lr/e)l .
el|lypld

and

But if d contains a square factor D2, then D?is also a factor of /e for all
divisors e of I/d. Therefore «(d)= 0 unless d is primitive and so the neces-
sity half of Theorem 5 is proved. Now suppose f(l,,l,) may be written
in the form (6.1). Then

f(['}’(lnslrk)k]k’lr) = z «(d) clc([y(ln’lrk)k]kad)
dlyty)

= Z (X(d) Ck((ln’lrk)k:d)
dvily)

= > «(d) cllyd) -
dlydp)

This completes the proof of Theorem 5.

THEOREM 6. f(l,,1,) is k-primitive if and only if it can be written in the
form

(6.2) Sl,) = z h(d77(lr)/d) .
dlyly)
(ny dOp=1

Proor. When d is primitive,
(s @%) = 1 <= ([y(n, 10" dF) = 1,
and so if f(l,,1,) can be written in the form (6.2),
Fuly) = F(ly G b0l ) s

and the function is k-primitive. Now suppose f(l,,l,) is k-primitive and
therefore may be written in the form (6.1). Then use of the result (3.2)
in the expression for ¢,({,,d) eventually yields (6.2) with

wd,y(,)]d) = d*u(d) 3 «(6d) pi(d) .
Sly(lp/d

This completes the proof of Theorem 6.
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7. Nagell’s totient function.

Eckford Cohen in [3] has defined the function ¢®(n,r), where s, » and
r are positive integers, as follows: ¢(9(n,r) is the number of solutions
z; (modr), (x;7)=1 of the congruence n=x,+x,+ ...+, (modr).
When s=2, the function becomes Nagell’s totient function. In [3],
Cohen has also shown that

¢(n,r) = rt 3 ¢*d,r) c(n,d),
dé=r

where ¢(n,r) is Ramanujan’s sum. We therefore now define

(7.1) Ok, olns 1) = 1, 7% 3 e,5((L,[d)%,1,) (1, @) .
ity
Applying [5, Theorem 6, Corollary] we have
yi(ly) p(d)
cx((,/d)E,1,) = ————.
Hence
s(l s(d
(7.2 albl) = "2 5 O ).

LE . vit(d) *
Because of the Mobius function this may be written
"pka(lr) ‘us(d)
(7.3) 01 o(s1,) = ci(l,,d) .
s Lk dlyz(lr) po(d) "

From Theorem 5 we can see therefore that 1,50, .(I,.1,)[v%(,) is a k-
primitive function. Here (7.3) gives us the value for «(d) and applying
Theorem 6, with the value for A(d,y(l,)/d) given by (6.3) gives

lE dk‘u‘”’l(d) 3(5)
: ok,s(ln’lr) = 2 YT E is__l_ .
Yk (<) dlydpy Yk (d) 3|vdnidy Vi (9)
(lmdk)k=1
But from the definition (2.3), the second sum equals v, (1,7(1,)/d) and so
1plcs(lr) dk/“'s+l(d) y(lr)

(7.4) O o(lsly) = Yud) ( _)

st LE apy wd) " d

Un, db)p=1

This general formula only becomes analogous to Cohen’s evaluation of
Nagell’s totient function in the special case s=2.

THEOREM 7.

ek,s(ln’lr) =L* > dk cks((lr/d)k’lr) 1»"lc,.9+1(d’lr) .
d*|(n, o0k
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Proor. Put
L ()
(7.5) F(l sl) = 6 s(ln’lr) = — 0 (ln’d) ’
T el R

the last equality being due to (7.2). From (5.1) we conclude that F(l,,l,)
is k-even with its «x(d) given by (7.5). Hence inversion of (5.2) in the
usual way gives the corresponding value for w(d,l,/d). Substitution of
this value for w(d,l,/d) back in (5.1) gives

wks(lr)
dk
L dkl(lnz,lrk)k ellzr/d vi®(lfe)
=wk“’(lr) s d* u(A) us(dAa)

LY gq,  wie’(dA)
ded=lp

Bk,s(ln’ lr) =

For non-zero terms A must be primitive and d4 primitive and so
(d,4)=1 and d is also primitive. Therefore

dk ‘sl 8 d s+1 A
0k,s(ln’lr) — lr—kz (1)) p(d) pus(4)

i, ¥E@) i vi(4)
dlly

= lr_k z dk cks((lr/d)k’ lr) Wk,s+1(1>lr/d)
A*| @ L0

from [5, Theorem 6, Corollary]. Now
©*1(0)
1/"k,erl(d’lr) = Z

st Vi'(0)
©,d)=1

and 4|1, also, and so (§,d)=1 only if 8|l,/d, and in this particular case

ka,s+1(d9lr) = wk,s+1(1’l7/d) .
This completes the proof.
Again, applying [5, Theorem 7 (the inversion formula)] to (7.1) gives

(7.6) el l) = ,z%, Ok, o((Le/A)E, 1) cx(lp,d) -
Putting 1, =0 in (7.6) we obtain

(1.7) visly) = %10;6, o{(L]A)E,1,) wi(d) -
Putting I, =1 in (7.6) we have ¢,(1,1,)=pu(l,) and
(7.8) pi(ly) = dlzlrok,s((lr/d)k7 L) w(d) .
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Another property of 0%, s(1y,1,) may be obtained by using Theorem 3.
Put f(l'mlr) =ck(ln’lr) and g(lmlr) = ok, s(lwlr)' Then ck(ln’lr) =zd|z,0‘(d, lr)
¢ (l,,d).

Hence. _in this case

0 if d<li,
Mbb) =11 i g1
Also from (7.2),
vi*(l,) pi(d)
Bd,l) = =
From Theorem 3 we therefore have
(7.9) lerck(e",lr) Or, s(€%,1,) pi(d)
e=
'lpks(lr) /"S(lr)
= l k l = s l l .
r lrk %cs(l,) wk( r) 14 ( r) ka( r)
Special case s=2. Putting s=2 in (7.4) we have
vi2(l,) d*u®(d) y(l,)
0, o(0,,1,) = ol (1—_)
ot LE iy vi*(d) ¥ d
Cn,dOp=1

Now y;, 5(1,1,) is multiplicative in I, and we need therefore only evaluate
it for the prime power p®:

1,p%) = ﬂz(d)= 1 1 1 1 = r* .
1/)k,2( p) d%a ’lpk(d) wk(l) 'l/)k(p) pk*—l 'I,Uk(p)

Hence

T d d* yi(v(Q,)

However it is easily verified from (2.2) that

Vel _ vi(r ()

. N
and so
d
0k,2(ln’lr) = wk(lr) 2 Iu,( ) .
dly(r) Yi(d)

Un, dB)p=1

Because of the Mobius function we therefore have
(d)
(7.11) Ol = will) 3 =

i wld)
(n,db)g=1
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This formula is analogous to Cohen’s evaluation of Nagell’s totient
function.

8. Another analogue of Nagell’s totient function.

P.J. McCarthy in [8] has defined the function N,*(n,r,t) to be the
number of solutions (modr*) of the congruence

n = x,4+%+ ...+ (modrk),
where (2,%,,. . .2,r%), =1, and quoted the result
Ny (m,r,t) = r7% 3 e (r[d)¥,7) ci(n,d) .
dlr

When {=2 we have another analogue of Nagell’s totient function. We
therefore define

(8’1) el:s(lmlr) = lr~kci|zl clcs((lr/d)ks’ lr) ck(ln’d) .
Applying Theorem 4 to this definition we therefore have
(8'2) elza(ln’lr) = lrk(s'—l) (lmlrk)kl-s 1»"Ics—k((ln’ lrk)kllk) *
Applying [5, Theorem 6, Corollary], we have
wks(lr) /"(d)
Crs (lr d)ks’lr = —
el = @

and so from (8.1)

(8.3) 0f o 1) = Yol 5 #D) ol d)

LA oan virsd)
_pull) 5w alnd)
LY apan vis(@)
From Theorem 5 it follows that
LY 0F L)
Vresllr) B

is k-primitive with «(d)=u(d)/y,(d). From Theorem 6 we may therefore
write

i, p(dd)
6F (U l,) = dud) T o)
b Lk d|§lr) sloaniay Prs(d)
An dbyp=1
Yrs(ly) d* p*(d) ©(9) vx(9)

L apdn  Yedd) sty Vas(d)
(Inrdk)k“’l
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However from Example 5 in [9] and [5] we have

w(@) ye(d)  LFE ()

8.4 = . t—k+0.
&4 2w T )
Thus
#O) w0 _ () vroi(r(ln)/d)
3l Vis(0) dk Wks(?’(lr)/d)
Hence
S lr) Yis—k (Y(Zr)) qu(d)
ox 0,1 = Pl g
bl 1) Lk 7Hi) Ves(Y(l) iy Vrs-i(d)
Undb)g=1
pA(d)
= Veesll, -
Pres-illr) d|yly) Yis—1(d)
(n,dop=1

from (7.10). We may therefore write

#A(d)
(8'5) O*Q(Zn’ lr) = s— (lr) N NG
b Vicok c%, Yis—1e(d)
(Un,dP)g=1

This general formula is analogous to McCarthy’s evaluation of Nagell’s
totient function.

From definition (8.1) it can be seen that 07 (,,l,) is k-even and so
the inversion formula, Theorem 7 of [5], may be applied. In (8.1) put
ks=t and

flnly) = X605 (1,1,) = d%r cf((L,/d),1,) o4 (ly, )

and then w(d,l,)=c((,/d),1,). Hence

k
wl,l,) = c((,/l,)01,) and I* = (lnf;rk)k.
Thus
Collm)t = (ol s LEVAEY = (L, L)
Hence

w(lm’lr) = ct((ln’lrk)k”k:lr) = cks((ln’lrk)ks’lr) = cks(lns’lr)
by the definition of ¢,,. Hence
(8'6) clcs(lns’ lr) = lr—k Z lrkolt,a((lr/d)k7 lr) ck(lnad)
dliy

= Y Op ((1,/d)%,1,) ¢, (L, ) .
diir
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In the special case [, =0 we have

(87) wks(lr) = (% Gl:s((lr/d)k’lr) y)k(d) .
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