A DECOMPOSITION THEOREM FOR C* ALGEBRAS

GERT KJÆRGÅRD PEDERSEN

As pointed out to us by T. Bai Andersen the proof of [1, theorem 1.4] is incomplete. We give here a correct proof (corollary 6) as a consequence of a decomposition theorem, which may have independent interest. The observation, as well as the proof, that the decomposition theorem implies the result of E. Størmer [2] is due to F. Combes.

Let A be a C^* algebra represented as operators on some Hilbert space. For any operator x let [x] denote the range projection of x.

Let x_1, x_2, \ldots, x_k be a finite set of positive operators from A, and set $x = \sum x_i$.

We denote by B^+ the smallest closed order ideal in A^+ containing x. Then [1, Lemma 1.1] B^+ is the uniform closure of the order ideal

$$\{y \in A^+ \mid \exists \alpha \in R^+: y \leq \alpha x\},$$

also B^+ is the positive part of an order-related C^* subalgebra B, where $B=L^*\cap L$, L being the closed left ideal generated by x. Clearly B is also the order-related C^* subalgebra generated by x_1, x_2, \ldots, x_k .

THEOREM 1. For any $y \in B^+$ there exist $y_i \in B$, $y_i = [x_i]y_i$, i = 1, 2, ..., k, such that $y = \sum y_i * y_i$.

PROOF. Define $u_n = (n^{-1} + x)^{-1}x$. Then $0 \le u_n \le u_m \le 1$ for $n \le m$. For any $z \in B$ there is a sequence $\{\alpha_m\}$ such that $z^*z \le \alpha_m x + m^{-1}$. Hence

$$\begin{split} \|z(1-u_n)\|^2 &= \|(1-u_n)z^*z(1-u_n)\| \leq m^{-1} + \alpha_m \sup_{\alpha} \frac{n^{-2}\alpha}{(n^{-1}+\alpha)^2} \\ &\leq m^{-1} + \alpha_m (4n)^{-1} \; . \end{split}$$

It follows that $\{u_n\}$ is an approximative unit for B. Now take any $y \in B^+$. Then

$$\begin{array}{ll} y = \lim y^{\frac{1}{2}} u_n^{\,2} y^{\frac{1}{2}} = \lim y^{\frac{1}{2}} (n^{-1} + x)^{-1} x^{\frac{1}{2}} (\sum x_i) x^{\frac{1}{2}} (n^{-1} + x)^{-1} y^{\frac{1}{2}} \\ &= \lim \sum (y^{\frac{1}{2}} (n^{-1} + x)^{-1} x^{\frac{1}{2}} x_i^{\frac{1}{2}}) (x_i^{\frac{1}{2}} x^{\frac{1}{2}} (n^{-1} + x)^{-1} y^{\frac{1}{2}}) \,. \end{array}$$

Received October 6, 1967; revised May 10, 1968.

But $y_{i,n} = x_i^{\frac{1}{2}} x^{\frac{1}{2}} (n^{-1} + x)^{-1} y^{\frac{1}{2}}$ converges to an element $y_i \in B$ since

$$\begin{array}{ll} \|y_{i,\,n}-y_{i,\,m}\|^2 \,=\, \|x_i^{\frac{1}{2}}x^{\frac{1}{2}}\big((n^{-1}+x)^{-1}-(m^{-1}+x)^{-1}\big)y^{\frac{1}{2}}\|^2 \\ &\,\, \leq \,\, \|y^{\frac{1}{2}}\big((n^{-1}+x)^{-1}-(m^{-1}+x)^{-1}\big)^2x^2y^{\frac{1}{2}}\| \,=\, \|(u_n-u_m)y^{\frac{1}{2}}\|^2 \;. \end{array}$$

Hence $y = \sum y_i * y_i$ with $y_i = [x_i]y_i$.

COROLLARY 2 (Riesz decomposition property). If $0 \le y \le \sum x_i$, then there exist $y_i \in B$ such that $y = \sum y_i * y_i$, $y_i y_i * \le x_i$.

PROOF. With y_i as in the proof of theorem 1, we observe that

$$y_{i,\,n}y_{i,\,n}^{\, *} = x_i^{\, \frac{1}{2}}x^{\frac{1}{2}}(n^{-1} + x)^{-1}y(n^{-1} + x)^{-1}x^{\frac{1}{2}}x_i^{\, \frac{1}{2}} \, \leqq \, x_i^{\, \frac{1}{2}}u_n^{\, 2}x_i^{\, \frac{1}{2}} \, \leqq \, x_i \, \, .$$

Proposition 3 (Størmer). If I and J are closed two-sided ideals in A, then $(I+J)^+=I^++J^+$.

PROOF. Suppose $x \in (I+J)^+$. Then there exist self-adjoint elements $y \in I$, $z \in J$ with x = y + z, hence $x \le |y| + |z|$. By corollary 2 there exist u, v such that

$$x = u^*u + v^*v, \quad uu^* \le y, \quad vv^* \le z.$$

We have $u^*u \in I^+$ and $v^*v \in J^+$, and proposition 3 follows.

Let K denote the intersection of all dense, order-related two-sided ideals in A (see [1, section 1] for a discussion). Then K^+ is the smallest order ideal containing all elements $x \in A^+$ such that there exist elements $y \in A^+$ with $[x] \leq y$. However the smallest order ideal J containing all elements $x \in A^+$, such that there exists $y \in K^+$ with $[x] \leq y$, is also an invariant order ideal, and is dense in A^+ by the same argument which proves the density of K^+ . Hence $J = K^+$.

With the above remarks in mind we may proceed with

PROPOSITION 4. If $\{x_i\}$ is a finite set of elements from K, then the order-related C^* algebra they generate is also in K.

PROOF. Each element x_i is a linear combination of elements from K^+ each of which is majorized by a finite sum of elements y_j for which $[y_j] \le z_j$ for some $z_j \in K^+$.

Hence the C^* algebra generated by the x_i 's is contained in the orderrelated C^* subalgebra generated by the y_j 's. But every element in this algebra is spanned by positive elements y for which, by theorem 1, we have a decomposition

$$y = \sum v_j^*[y_j]v_j \leq \sum v_j^*z_jv_j \in K^+.$$

Hence $y \in K^+$.

Proposition 5. If Φ is a *homomorphism from a C* algebra A onto a C* algebra B, and if $a \in A^+$, $b = \Phi(a)$, then

$$\Phi\{x \in A^+ \mid x \le a\} = \{y \in B^+ \mid y \le b\}.$$

PROOF. Suppose $y \in B^+$, $y \le b$. Since $\Phi(A^+) = B^+$, there exists a self-adjoint $z \in A$ such that $z \le a$, $\Phi(z) = y$. We have $\Phi(z_+) = y$, $\Phi(z_-) = 0$ and $z_+ \le a + z_-$, hence the sequence with elements

$$u_n \, = \, z_+^{\, \frac{1}{2}} (n^{-1} + z_- + a)^{-1} (z_- + a)^{\frac{1}{2}} a^{\frac{1}{2}}$$

is convergent (compare with the sequence $\{y_{in}\}$ in the proof of theorem 1). Set $x = \lim u_n * u_n \le a$, and observe that

$$\varPhi(x) \, = \, \lim \, b(n^{-1} + b)^{-1} y \, (n^{-1} + b)^{-1} b \, = \, [b] y [b] \, = \, y \; .$$

Corollary 6. $\Phi(K_A) = K_B$.

PROOF. Since Φ preserves spectral theory, $\Phi(K_A) \subset K_B$. On the other hand $\Phi(K_A)$ is clearly a dense, two-sided ideal in B. By proposition 5, $\Phi(K_A^+)$ is an order ideal, hence $\Phi(K_A)$ is order-related. Since K_B is minimal among all dense, order-related, two-sided ideals in B, we conclude $K_B \subset \Phi(K_A)$.

REFERENCES

- Gert Kjærgård Pedersen, Measure theory for C* algebras, Math. Scand. 19 (1966), 131-145.
- 2. E. Størmer, Two-sided ideals in C* algebras, Bull. Amer. Math. Soc. 73 (1967), 254-257.

UNIVERSITY OF COPENHAGEN, DENMARK