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SOME FUNCTIONAL EQUATIONS
IN GROUPS AND RINGS

BORGE JESSEN, JORGEN KARPF, ANDERS THORUP

In this paper we shall prove some algebraical theorems, which were
used in a simplified proof of Sydler’s theorem on polyhedra, see B. Jessen
[2].

These theorems are special cases of theorems on ordered groups and
rings, which are closely related to known results of homological algebra.
In order to make the exposition self-contained we have included proofs
of these known results.

The authors are indebted to Mrs. Kéthe Fenchel and Mr. Chr. U.
Jensen for valuable advice.

TrEOREM 1. Let A and X be commutative groups, and let f: A — X be
an arbitrary function. Then the function F: A% — X defined by the equa-
tion

(1) F(a,b) = f(a+b) —f(a) - f(b)
satisfies the equations

(x) F(a,b) = F(b,a),

B3 F(a,b) + F(a+b,c) = F(b,c) + F(a,b+c).

If A is free or X is divisible, the functions F determined by means of a func-
tion f through the equation (1) are the only functions which satisfy the equa-

tions (x) (B).

The equation F =0 expresses that f is a homomorphism. Thus, for an
arbitrary f, the function F may be said to measure how much f deviates
from being a homomorphism.

The first part of Theorem 1 is trivial.

The second part of Theorem 1 is known from the theory of factor
systems and group extensions; in homological algebra it is expressed by
the formula Ext,}(4,X)=0. It may be proved as follows.

Let 4 and X be commutative groups and F: 42 - X a function satis-
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fying the equations (x) (8). The further assumption that 4 is free or X
is divisible will be introduced later in the proof.

From (B) we deduce, by putting b=0, that F(a,0)=F(0,c)=F(0,0)
for all @ and c.

In the product set W =4 x X we define an addition by

(*) (@,2) + (b,y) = (a+b,x+y+F(a,b)) .

It is easily verified that W with this composition is a commutative group
with the zero element 0y = (0, — F(0,0)).
The projection ¢: (a,2) > a of W onto A4 is clearly a homomorphism.
It is easily verified that a function f: 4 — X will satisfy the equation
(1) if and only if its graph {(a,f(a)) | @ € A} is a subgroup of W. Thus
the existence of a function f: 4 - X satisfying (1) is equivalent to the
existence of a subgroup S of W which by ¢ is mapped bijectively onto 4.

Cask 1. If 4 is free with a basis {a; | 7 € I}, and #;, 1 € I, are arbitrary
elements of X, the subgroup S generated by the elements (a,,z;), ¢ € 1,
has the desired property, and accordingly f is determined by its values
fla,)=z;, i €I, and these values can be arbitrarily chosen.

Case 2. If X is divisible, we first notice that ¢ maps the subgroup
Sp={0,} of W bijectively onto the subgroup 4,={0} of 4. The exist-
ence of S will therefore follow by transfinite induction if we prove the
following statement:

Let S; be a subgroup of W which is mapped bijectively by ¢ onto a
proper subgroup A4, of A, and let a € A\ 4,;. Then there exists an ele-
ment 2 € X such that ¢ maps the subgroup S,=8;+ Z(a,z) of W bi-
jectively onto the subgroup 4,=4,+ Za of A4.

Clearly, ¢ maps S, onto 4,. We must prove that it is possible to choose
x such that, whenever for an element (a,,z;) € 8; and a number ne Z
we have a,+na=0, we also have (a,,z,) +n(a,x) =0y, or, equivalently,
such that, whenever for a number n € Z we have na € 4,, we also have
n(a,z) € S;. The numbers n for which na € 4, are the multiples of a
certain number ¢ >0, and if g(a,x) € §;, we also have n(a,z) € S; when-
ever n is a multiple of g. Thus the problem is merely to choose x such
that ¢(a,x) € S;.

If ¢=0, we can use any x € X. If ¢>0, we have

q9(a,x) = (qa, gz +ZE1F (a,ia)) .

Hence, if we denote By (ga,y) the element of S, corresponding to ga,
the condition ¢(a,x) € S; takes the form
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qr + qu,’;llF(a’:ia’) =Y,
and this equation has a solution z, since X is divisible.
THEOREM 2. Let 4 be a commutative ring and X a module over A, and

let f: A — X be an arbitrary function. Then the functions F: A2 - X and
G: A% > X defined by the equations

(1) F(a,b) = f(a+b) —f(a) - f(b),

(2) G(a,b) = f(ab) — bf(a) — af(b)

satisfy the equations

() F(a,b) = F(b,a),

®) F(a,b) + F(a+b,c) = F(b,c) + F(a,b+c),

») G(a,b) = G(b,a),

(8) cG(a,b) + G(ab,c) = aG(b,c) + G(a,bc)

(¢) F(ac,bc) — cF(a,b) = G(a+b,c) ~ Q(a,c) — G(b,c) .

Furthermore, if A has a unity 1 and X is unitary, the function F satisfies
the equation
) 3P F(1,i1) = 0, p=chard.

If A is an integral domain and X is a unitary module over A which is
uniquely A-divisible, then the pairs of functions F,G determined by means
of a function f through the equations (1) (2) are the only pairs of functions
which satisfy the equations («) (B) (y) (8) (¢) ().

Notice that the equation ({) is void if p=0.

The equations F =0, G =0 express that f is a derivation. Thus, for an
arbitrary f, the pair of functions F',G may be said to measure how much
J deviates from being a derivation.

The first part of Theorem 2 is trivial.

The second part of Theorem 2 was proved by D. K. Harrison [1] in
the case where 4 is a field and F=0. It may be proved as follows.

Let A be an integral domain and X a unitary module over 4 which
is uniquely A-divisible, and let F,G: A% - X be functions satisfying the
equations («) (8) () (9) (¢) (2)-

From (B) we deduce, by putting =0, that F(a,0)=F(0,c)=F(0,0)
for all @ and ¢. From () we deduce, by putting b=1 and c¢=1, that
Q(a,1)=aG(1,1) for all a. From (¢) we deduce, by putting a=0 and 6=0,
that G(0,c)=cF(0,0)—F(0,0) for all c; in particular, G(0,0)= —F(0,0).
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In the product set W =4 x X we define an addition and a multiplica-
tion by
*) (@,2) + (b,y) = (a+b,x+y+F(a,b))

(**) (@,2)(b,y) = (ab,bz +ay+G(a,b)) .

It is easily verified that W with these compositions is a commutative
ring with the zero element 0, =(0, —F(0,0)) and with a unity, viz.
1,=(1,—G(1,1)). For an arbitrary » € N we find

nly = (nl, —nG(1,1) + I71F(1,11)).

Hence, if p=char4 =0, we also have char W =0, and if p> 0, we have
nly + 0y, when n=1,...,p—1, whereas pl;; =0, , so that char W=np.
Thus, char W =char4 in all cases.

The projection ¢: (a,z) — a of W onto A4 is clearly a ring-homomor-
phism.

For arbitrary elements (0,z) and (0,y) we find (0,2)(0,y)=(0,G(0,0))=
0y,. For an arbitrary element (0,z) and an arbitrary element (b,y) we
find (b,y)(0,x)=(0,bx+ G(b,0)). Since X is uniquely A-divisible, we con-
clude that, for every element (b,y) with b+0 and every element (0,z),
the equation (b,y)(0,x)=(0,2) has a unique solution (0,z). In particular,
for every (b,y) with b+ 0 the equation (b,y)(0,2)=0,, has only the one
solution (0,2)=0y.

It is easily verified that a function f: A — X will satisfy the equations
(1) (2) if and only if its graph {(a,f(a)) | @ € A} is a subring of W. Thus,
the existence of a function f: 4 — X satisfying (1) (2) is equivalent to
the existence of a subring S of W which is mapped bijectively by ¢
onto 4.

We define 4, as Z1 if p=0, and as {a? | a € 4} if p> 0, and we define
S, as Z1y, if p=0, and as {(a,2)? | (a,z) € W} if p>0. Clearly, 4, is a
subring of 4, and 8, is a subring of W, and S, is mapped onto 4, by ¢.
This map is bijective. This is clear if p=0; and if p>0, it follows by
observing that, if ¢((a,2)?)=0, we must have a?=0, and hence a=0 so
that (a,z)? =(0,2)? = (0,2)3(0,z)?~2= 0.

The existence of S will therefore follow by transfinite induction if we
prove the following statement:

Let S; 28, be a subring of W which is mapped bijectively by ¢ onto a
proper subring 4, of 4, and let @ € AN\ 4,. Then there exists an element
z € X such that ¢ maps the subring S,=.S;[(a,z)] of W bijectively onto
the subring 4,=A4,[a] of 4.

The restriction of ¢ to S, is an isomorphism of 8, onto 4,. This iso-
morphism extends to an isomorphism of the polynomial ring S§,[7']
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onto the polynomial ring 4,[7']. For an arbitrary element P of 4,[T],
let P denote the element of S,[7] which is carried into P by the iso-
morphism. Now, 4, consists of all P(a), and S, consists of all P((a,z)),
and the image by ¢ of an element P((a,z)) is P(a). Thus we must prove
that it is possible to choose x such that, whenever P(a)=0 for an element
P of A,[T], we also have P((a,z))=0y.

Cast 1. p=0. If a is transcendental over 4,, we can obviously use
any z.

If a is algebraic over 4,, let @0 be an element of A,[7'] of the lowest
possible degree such that Q(a)=0. For an arbitrary xz we have (a,z)=
(@,x5)+ (0,z), where zy= —F(0,0). Hence, by Taylor’s formula, since
(0,2)= Oy,

Q(@.2) = Q((@,20)+ §'((a,20))(0,2) .

Since Q(a)=0, we have Q((a,xo)) = —(0,2) for some z. Furthermore, since
Q' is of lower degree than @, and @' +0, we have Q’((a,x,))=(b,y) for
some y, where b=Q’(a)+0. The equation Q((a,z))=0y therefore takes
the form (b,y)(0,%) = (0,z). Thus the equation @((a,z)) =0y has a unique
solution .

For this # we must now have P((a,2))=0y for every element P of
A,[T] for which P(a)=0. In fact, when P(a)=0, we have dP=QR for
some d € A;\ {0} and some element R of 4,[T]. Hence, denoting by
(d,u) the element of S; corresponding to d, we have (d,4)P=QR, and
hence (d,u)P((a,x))=0y. Since d+0, this equation implies that
P((a,x))=0p.

Cask 2. p>0. In this case, since a? € 4,, we have P(a)=0 for the
polynomial P=7?—qa? e A,[T], and, more generally, for every poly-
nomial P =(T?—a?)R, where R is any element of A4,[7']. For these P
we evidently also have P((a,z))= 0y, for every . Thus, if these are the
only P for which P(a)=0, we can use any x.

Otherwise, let @ & 0 be an element of A,[7"] of the lowest possible degree
such that Q(a)=0. Then, since 7P —a?=(T'—a)?, we must have =
b(T — a)? for some b € 4,\ {0} and some g € {1,...,p—1}. Thus b(—a)?=
Q(0) € A,. The numbers n € N for which ka” € 4, for some k € 4, \ {0}
are clearly the multiples of a certain number; since p is a prime, we con-
clude that g=1. Hence @'(a)=b+0 and we find, just as in the previous
case, that the equation Q((a,z))= 0y, has a unique solution x. We also
find, just as in the previous case, that for this x we must have P((a,x)) =
0y for every element P of A,[T] for which P(a)=0.

REMARK. In the case p=0 it follows from the proof that, if
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{a;| © €1} is a transcendence basis of 4 over Z, and x;, 7 € I, are arbi-
trarily chosen elements of X, there exists one and only one function
f: A - X satisfying (1) (2), such that f(a;,)==,;, ¢€l. It also follows
that all functions f: A — X satisfying (1) (2) must coincide on the set of
elements of A which are algebraic over Z.

In particular we find the known results that a derivation f: 4 — X
from a field A with char4 =0 into a vector space X over 4 vanishes on
the set of elements of 4 which are algebraic over Z, and that every func-
tion from a transcendence basis of 4 over Z into X is the restriction of a
unique derivation.

Lemma 1. Let A be an ordered commutative group and X a commutative
group, and let A,={ac€Ad| a>0}. Let F: A2~ X be a function which
satisfies the equations («) (B) for all a,b,c € A,. Then the function can be
extended to a function F: A% -~ X which satisfies («) (B) for all a,b,c € A.

We define F(a,b) as 0 when (at least) one of the elements a,b,a+b
is 0. When a,b,a+b are +0, we define F(a,b) by table 1, where ‘+’
and ‘-’ stand for ‘>0’ and ‘<0’.

a b a+b  F(a,b)
+ o+ o+ F(a,b)
+ — 4+ —F(a+b,-0)
+ - - F(—a—-b,a)
- + + —F(a+bd,—a)
-+ - F(—a—0b,b)
- - — —F(—a,-b)
Table 1.

One easily verifies that the function F: A2 - X thus defined satisfies the
conditions.

The verification requires the consideration of a number of cases. We
therefore also give a second proof, in which we do not have to distinguish
between cases, and which moreover has the advantage that it leads to
all extensions with the desired properties.

In the product set W, =4, x X we define an addition by (*). It is
easily verified that W, with this composition is a commutative semi-
group in which the cancellation law holds. Let W be the (unique) com-
mutative group containing W, in which every element is a difference of
elements of W,. The projection ¢,: (a,z) = a of W, onto 4, extends
uniquely to a homomorphism ¢ of W onto A. An arbitrary element
(a,z)— (b,y) of W is mapped by ¢ onto a—b. Thus the subgroup W,=
@~1(0) consists of all elements of the form wy,= (a,z)— (a,y). It is easily
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seen that the difference x—y is independent of the representation of w,

and that 7: w, - 2 —y is an isomorphism of W, onto X. Let s, for every

a € A be an element of W such that @(s,)=a. Then for arbitrary a,b € A

we have —

Sa+8b'—-8a+b € ‘VO’

and it is easily verified that the function F: A2 —~ X defined by
F(a’,b) = ﬂ(Sa +8p— 8a+b)

satisfies the equations («) (8), and also that, if for a >0 we choose s,=
(a,0), the function F is an extension of F.

In particular, we find F(0,0)=xn(s,) and F(a, —a)=m(s,+5_,—S,)-
These equations show that, for an arbitrary function 4: 4 — X satisfying
the equation k(a)=k(—a), we can choose s, for @ <0 such that for the
corresponding extension F we have F(a, —a)=Zk(a). On the other hand,
one easily shows that an extension of F' which satisfies («) (8) is uniquely
determined by its values on the set {(a, —a)| a € A}. Thus we have
actually obtained all extensions with the desired properties.

The extension given in the first proof corresponds to the choice k=0.

Professor Calvin C. Moore has shown us another way, to appear in [3],
of extending functions satisfying the equations («) (8) on a subset of 42
to functions satisfying these equations on the whole of 42, in which the
group A is not supposed to be ordered. The subsets to which his method
applies contain in case of an ordered group the sets 4.2

LeMMA 2. Let A be an ordered commutative ring and X a module over A,
andlet A, ={ac A | a>0}. Let F,G: A2~ X be functions which satisfy
the equations («) (B) (y) (9) (¢) for all a,b,c € A,. Then the functions can
be extended to functions F,G: A2 — X which satisfy (x) (B) (y) (6) (e) for
all a,b,ce A.

We define F: A2 - X as in the first proof above. We define G(a,b)
as 0 when (at least) one of the elements a,b is 0. When a,b are *0,
we define G(a,b) by table 2.

b @(a,b)

+ G(a,b)

- —G(a,—b)

+ —-G(—a,b)
- G(—a,—b)
Table 2.

|+ + =

One easily verifies that the functions F,&: 42 - X thus defined satisfy
the conditions.
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The second proof above can also be extended to this case and leads to
all extensions with the desired properties.

In the product set W, =4 _ x X we now define an addition and a multi-
plication by (*) and (**). As in the previous case, W, as additive semi-
group is imbedded in the group W, and one easily sees that the multi-
plication can be uniquely extended so that W becomes a commutative
ring. The extension ¢ of the projection ¢.: (a,z) ~ a will now be a
ring-homomorphism of W onto 4. We define W, and z as in the previous
case. Then W, is an ideal, n is an additive isomorphism of W, onto X,
and for every w, € W, and every w e W we have the relation z(ww,)=
@(w)m(w,) connecting ring-multiplication with scalar multiplication.
Let again s, for every a € A be an element of W such that ¢(s,)=a.
Then for arbitrary a,b € A we have both

Sat+8,—844p € Wy and s,8,—8, € W,,
and it is easily verified that the functions F,G: 42 - X defined by
F(a':b) = 71(85+ 8 —8a+b) s

@(a,b) = 75(S,S8p —Sap)

satisfy the equations («x) (8) (y) (8) (¢), and also that, if for a >0 we
choose s,=(a,0), the functions F,G are extensions of F,G.

One easily shows that in this way we have obtained all extensions
with the desired properties. We can prescribe the values of F on the
set {(@,—a)| ae A} subject to the condition F(a,—a)=F(—a,a);
then F and G are uniquely determined.

By combining Theorems 1 and 2 with Lemmas 1 and 2 we obtain the
following theorems.

THEOREM 3. Let A be an ordered commutative group and X a commuia-
tive group, and let A, ={a € A | a>0}. Then, if A is free or X is divi-
sible, the class of functions F: A,% — X determined by means of a function
[+ 4, — X through the equation (1) s identical with the class of functions
F: A.2— X which satisfy the equations («) (§).

THEOREM 4. Let A be an ordered integral domain and X a unitary
module over A which is uniquely A-divisible, and let A, ={ac A | a>0}.
Then the class of pairs of functions F,G: A 2 - X determined by means of
a function f: A, — X through the equations (1) (2) is identical with the
class of pairs of functions F,G: A% X which satisfy the equations

() (B) () (9) (e).
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[For an ordered integral domain A we have chard =0, so that the
equation (£) falls out.]

The special cases used in [2] in the proof of Sydler’s theorem are the
following.

THEOREM 5. Let V be a vector space over R. Then the class of functions
F:10,1[2 - V determined by means of a function f:10,1[ - V through
the equation

F(a,b) = f(ab) — f(a) — f(b)
18 tdentical with the class of functions F:10,1[2 - V which satisfy the equa-
tions
F(a,b) = F(b,a),
F(a,b) + F(ab,c) = F(b,c) + F(a,bc) .

We obtain this theorem from Theorem 3 by taking 4 =10, + oo[ with
multiplication as composition and ‘>’ as order relation, and X=7V.

THEOREM 6. Let V be a vector space over R. Then the class of functions
F:100, + <[22 -~ V determined through the equation

F(a,b) = f(a+b) —f(a) — f(b)
by means of a function f: 10, + o[ — V satisfying the equation

f(ab) = bf(a)+af(b)
is identical with the class of functions F: 10, +oo[2 — V which satisfy the
equations
F(a,b) = F(b,a),
F(a,b) + F(a+b,c) = F(b,c) + Fla,b+c),
F(ac,bc) = cF(a,b) .

We obtain this theorem from Theorem 4 by taking 4 =R, X=V, and
G=0.

REFERENCES

1. D. K. Harrison, Commutative algebra and cohomology, Trans. Amer. Math. Soc. 104
(1962), 191-204.

2. B. Jessen, The algebra of polyhedra and the Dehn—Sydler theorem, Math. Scand. 22 (1968),
241-256.

3. C. C. Moore, Group extensions of p-adic and adélic linear algebraic groups, in preparation.

UNIVERSITY OF COPENHAGEN, DENMARK



