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THE ALGEBRA OF
POLYHEDRA AND THE DEHN-SYDLER THEOREM

BORGE JESSEN

The algebra of polyhedra has its origin in Euclid’s treatment of the
volume of polyhedra. Through the recent result of J.-P. Sydler [8], that
the necessary conditions for the equivalence of polyhedra due to M. Dehn
[1] are also sufficient, this subject has reached a certain completion. In
the present paper we shall give a simplified proof of Sydler’s theorem.
The proof is closely related to the simple proof of Dehn’s theorem due
to H. Hadwiger [2]. It depends on certain algebraical theorems; the
proofs of these theorems have been obtained in collaboration with
J. Karpf and A. Thorup and will appear in a separate paper [4]. We also
find certain additional results. In order to make the exposition self-
contained we have included brief proofs of the known results which we
need. For a detailed treatment of the basic results we refer to the book
of Hadwiger [3].

2.

By the polyhedron group P in three-dimensional euclidean space we
mean the free abelian group generated by the (closed, non-degenerate)
polyhedra.

A polyhedron P is said to be composed of the polyhedra P,,...,P,,
or to be decomposed into P,,...,P,,if P=P,u...UP, and the interiors
of P,,...,P, are disjoint. A polyhedron @ is said to be congruent to the
polyhedron P if there exists a motion ¢ in the space such that tP=@.

By £ we denote the subgroup of P generated by all elements
P—P,—...—P,, where P is composed of P,,...,P,, and all elements
P —@Q, where @ is congruent to P. If X and Y are elements of D, we
say that X is equivalent to Y if X — Y belongs to £ Thus the equiva-
lence classes are the elements of the factor group P/E.

A polyhedron @ is said to be symmetric to the polyhedron P if there
exists a symmetry ¢ in the space (i.e. a transformation composed of a
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motion and a reflexion in a plane) such that {P=¢@. A classical result
states:

If P and Q are symmetric polyhedra, then P and Q are equivalent.

Let us first consider the case where P is a tetrahedron 4,4,4;4,.
Let O denote the centre of the inscribed sphere and O, its projection
on the face 4;4,4, (where 1, j, k, [ are distinct). Then P is composed
of the six polyhedra 00;0;A,A; (where again 1, j, k, [ are distinct).
Since these polyhedra are self-symmetric, they are congruent to the
corresponding polyhedra into which ¢ can be decomposed. Hence P
and @ are equivalent.

In case of an arbitrary polyhedron P the theorem follows by decom-
posing P into tetrahedra.

3.

By Vol: P - R we denote the homomorphism of P into the additive
group of real numbers R, whose value for a polyhedron P is its volume.
Clearly, Vol is surjective, and it vanishes on £ Hence Vol is constant
on each equivalence class, and therefore defines a surjective homomor-
phism vol: P/E — R whose value for each equivalence class is the value
of Vol for its elements. Thus the condition Vol X = Vol Y is necessary
for the equivalence of X and Y. A classical result states that for prisms
this condition is also sufficient:

If P and Q are prisms and VolP=VolQ, then P and Q) are equivalent.

Let R(a,b,c) denote any rectangular parallelepipedon with edges a, b, c.
In order to prove that prisms with the same volume are equivalent, it
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is sufficient to prove that every prism P is equivalent to a rectangular
parallelepipedon R(1,1,v). For then we must have Vol P=v, and con-
sequently, if P and @ are prisms with the same volume, they are equiv-
alent to the same rectangular parallelepipedon. Since every prism can
be decomposed into triangular prisms, it is sufficient to prove the state-
ment for triangular prisms.

From fig. 1 it is seen that any skew triangular prism P is equivalent
to a right triangular prism P,, and from fig. 2 it is seen that any right
triangular prism is equivalent to a rectangular parallelepipedon. From
fig. 3 it is seen that two rectangular parallelepipeda R(a,b,c) and
R(a,,bq,¢) with ab=a,b, are equivalent. Hence any rectangular parallele-
pipedon R(a,b,c) is equivalent to a rectangular parallelepipedon
R(1,ab,c), and hence to a rectangular parallelepipedon R(1,1,abc).

4

By F we denote the subgroup of P generated by £ and the prisms. If X
and Y are elements of P, we say that X is equivalent to Y modulo prisms
if X—Y belongs to F. Thus the equivalence classes modulo prisms
are the elements of the factor group p/F.

By G we denote the kernel of Vol, i.e., the subgroup consisting of
those elements X of P for which Vol X =0.

From the theorem proved above, that prisms with the same volume
are equivalent, it follows easily that FnG=E&. Thus the group /€ is
the direct sum of the subgroups F/E and G/E, the restriction of vol:
D/E — R to F/E is an isomorphism, and the map of P/F into G/€ which
takes every element of P/F into its intersection with G is an isomor-
phism. In particular we have:

TaEOREM 1. Two elements X and Y of the polyhedron group P are
equivalent if and only if VolX =VolY and X and Y are equivalent modulo
Prisms.

5.
A polyhedron @ is said to be similar to the polyhedron P in the ratio
AeR, if there exists a similarity ¢ with ratio 2 in the space (i.e. a
transformation composed of a motion and a dilation with ratio 1) such
that tP=Q.
If P is a polyhedron and A,ueR,, and if @, R, S are polyhedra
similar to P in the ratios 4, u, A+ u, then § is equivalent modulo prisms
to Q+R. If P is a tetrahedron T, this follows from fig. 4, which shows
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that a tetrahedron similar to 7' in the ratio 1+u can be decomposed
into two tetrahedra similar to 7 in the ratios 4 and u, and two prisms.
In the general case it follows by decomposing P into tetrahedra.

Fig. 4

Using this remark one easily proves that there exists in P/F a unique
multiplication with scalars 1€ R which makes the group P/F into a
vector space over R, such that if x is the class containing a polyhedron
P, and A€ R,, then Az is the class containing the polyhedra similar to
P in the ratio A.

6

Let U denote the free abelian group generated by all pairs (I,«)
of real numbers and let § denote the subgroup of U generated by
all elements (I4+m,a)—(l,0)—(m,x), (La+p)—(1,«)—(,B), (I,n). The
factor group U/S is then the tensor product R® R, of R and R, =R
modn. The equivalence class containing the pair (I,«) is denoted by
l® «. In R® R, there exists a unique multiplication with scalars 1€ R
which makes the group R® R into a vector space over R, such that
MR x)=A) R o.

The classical argument of M. Dehn [1] can now be presented as follows.
By A we denote the group homomorphism of P into R ® R, whose value
for a polyhedron P is n
AP)=2L®«x,,

v=1
where ,,. . .,l, are the edges and «,,. . .,«, the corresponding (interior)
dihedral angles of P. One easily proves that 4 vanishes on J. Hence
A is constant on each equivalence class modulo prisms, and therefore
defines a group homomorphism é : P/F - R® R, whose value for each
equivalence class modulo prisms is the value of 4 for its elements. One
immediately sees that é is actually a vector space homomorphism,
i.e. 8 is a linear map. Denoting by » : P — P/F the canonical map which
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takes every element of D into the equivalence class modulo prisms to
which it belongs, we have 4=dox. Thus the condition A(X)=A(Y)
is necessary for the equivalence modulo prisms of X and Y.

Recently it was proved by J.-P.Sydler [8] that this condition is
also sufficient. Thus we have the Dehn-Sydler theorem:

THEOREM 2. Two elements X and Y of the polyhedron group P are
equivalent modulo prisms if and only if A(X)=A(Y).

7

Let X and Y belong to the subgroup of P generated by the polyhedra
P,,...,P, and let {n,f;,...,5,} be a finite set of real numbers which is
linearly independent over Q, such that all dihedral angles £ of P,,...,P,
are expressible in the form &=gm+g,6,+ ... +0,8, with rational co-
efficients. Then we find for A(X) and A(Y) expressions of the form
3oe1Pe® B, and 35_,q, ® B, in which the numbers p, and ¢, are linear
combinations with rational coefficients of the edges of P,,...,P,.
Since 1 ® f;,...,1® B, are linearly independent elements of the vector
space R® R_, the condition A(X)=A4(Y) is equivalent to the s conditions
P1=G1,...,Ps=¢qs. For other ways of expressing Dehn’s condition see
M. Dehn [1], O. Nicoletti [6], H. Lebesgue [5], and H. Hadwiger [2].

Classical examples are provided by the regular polyedra. Let 7',0,D, I
denote a regular tetrahedron, octahedron, dodecahedron, icosahedron
with edge 1, and let «g, og, xp, &7 denote their dihedral angles. We
have cosap=1, cosag= —1%, cos2u,= —3%, cos2x;=%. From the well-
known result, that the only angles « for which both cosx and «fn are
rational are those for which 2cosx is an integer, it follows that
AT)=6Q ap, 4(0)=12Q &y, A(D)=30Q «p, A([)=30® «; are =0,
so that Dehn’s result shows that 7',0, D, I are not equivalent to prisms.
Since ap+oxy=mn, we have A(27+0)=0. Hence, by Sydler’s result,
2T + O is equivalent to a prism. This is also evident from the fact that
by placing regular tetrahedra on two opposite faces of a regular octa-
hedron one obtains a prism. It was noticed by Lebesgue [5] that
the set {m,ap,ap,a;} is linearly independent over Q. Consequently,
A(T),A(D),A(I) are linearly independent elements of R ® R,. By Dehn’s
result, the elements of P/F containing 7',D, I are therefore linearly
independent. The dimension of the vector space D/F is therefore = 3.

8.
Sydler’s result means that the map & is injective, and is therefore
equivalent to the following theorem:
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THEOREM 3. For every linear map 7 : P/F — VY of P/F into an arbitrary
vector space U over R there exists a linear map @ : R® R, — U such that
T=Dod, or, equivalently, such that tox=®@oA.

The situation is illustrated by the diagram
x P4

)
D/J —_— R®R:z'
T vA/Q

Actually, Sydler’s result is equivalent to the existence of @ in the
special case where U¥=D/F and 7 is the identical map; however, for the
further discussion it will be convenient to work with an arbitrary V.

9.

In the proof of Theorem 3 we shall need three geometrical lemmas;
the remainder of the proof will be algebraical. The first lemma is the
fundamental lemma of Sydler [7]; the two other lemmas were also used
by Sydler.

Let a,b be two numbers in the interval ]0,1[, and let x,8 be the angles
in the interval 0, n[ determined by sin?x =a, sin?f=>b. We denote by
oo * 8 the angle in the interval ]0, n[ determined by sin2(x*8)=ab. The
composition * is clearly commutative and associative. We denote by
T(a,b) any tetrahedron ABCD in which the edges AB=cotx, BC=
cotx cotf, CD=cotp are orthogonal. Thus two tetrahedra 7'(a,b) are
either congruent or symmetric and are therefore equivalent. The di-
hedral angles corresponding to 4B and CD are « and B. A simple cal-
culation shows that the dihedral angle corresponding to AD is 37—« * 8,
and that AD=cot(x*p). The three remaining dihedral angles are right
angles. Hence

A(T(a,b)) = cotx @ x+cotf Q@ f—cot(x*f) @ (xxp) .
For the volume of 7'(a,b) we find the expression
VolT(a,b) = v(a)+v(b)—v(abd) ,

where v is the function defined by v(u) = (v —1)/6u.
Now, let a,b,c be numbers in ]0,1[, and let «,8,y be the angles in
10, 3n[ determined by sin?x=a, sin?f=», sin®y =c, and put

X = T(a,b)+T(ab,c) and Y = T(a,c)+T(ac,b).
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We then find
Vol X = v(a)+v(b)+v(c)—v(abc) = VolY ,
A(X) =cotx @ x+cotf @ f+coty @ y—cot(x*f*y) ® (axf*y)=A(Y).
Thus X and Y satisfy the conditions of Theorems 1 and 2. The funda-
mental lemma states that they are equivalent:
LemMA 1. For arbitrary a,b,c € 10,1] the elements
T(a,b)+T(ab,c) and T(a,c)+T(ac,b)
of P are equivalent.

Since the volumes are equal, it is enough to prove that the elements
are equivalent modulo prisms.

From fig. 5 it is seen that a polyhedron OPQRS, where OP =PQ,
QS=2PR, and PR and @S are orthogonal to the face OP@, is equivalent
to a prism (the point U is the mid-point of OS).

S
U
= T
\\\\\\\ B
P Q
Fig. 5

cot a

&
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On fig. 6 the tetrahedron A BC D is T(a,b) and the tetrahedron A BE F
is T'(a,c). In the quadrangle CDEF the angles at C and E are right
angles. Hence it is inscribable. The centre of its circumscribed circle
is the mid-point G of the diagonal DF. The points ACDEF therefore
lie on a sphere, whose centre H lies on the normal to the plane
BCDEF in G. The points I and J are the projections of H on the planes
ABCF and ABDE. Since G and H have the same distances from these
planes, we have HI=%4cotfi, HJ =14 coty. The point I is the centre
of the circumscribed circle for the triangle A CF, and the point J is the
centre of the circumscribed circle for the triangle ADE. Hence the
angle AIF is 28 and the angle A JD is 2y. We consider the polyhedron
ABDFHIJ.

M
//
27
4
J , yd \:\
| v &
/ 4
y H/] Z
d
cot(a *,ﬂ*'y) L
/ 4
(J / ’
o 4
( / 4
1~ /Q / //
B * / s
o 7
D] / /’I ,’/’ A
/ ,I
fi %
i
B : 8
&' N
c 3
B
Fig. 7

On fig. 7 the points A BCDHJ are as in fig. 6, so that the tetrahe-
dron ABCD is T(a,b). We have AD=cot(x*f). The points H and J
are the mid-points of AK and AM. We see that AD, DM, MK are
orthogonal, that MK =coty, and that the angle AMD is y. Thus the
tetrahedron A DM K is T'(ab,c).

Similarly, on fig. 8 the points ABEFH1I are as in fig. 6, so that the
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tetrahedron ABEF is T(a,c). We have AF =cot(x*y). The points H
and I are the mid-points of AK and AL. We see that AF, FL, LK are
orthogonal, that LK =cotf, and that the angle ALF is 8. Thus the
tetrahedron A FLK is T(ac,b).

The edge AK, which appears in 7'(ab,c) and T'(ac,b), is cot (a*B*7).

Since the polyhedra AICHD, FICHD on fig. 6 and the polyhedron
DJMHK on fig. 7 are the same type as the polyhedron OPQRS on
fig. 5, we see that the polyhedron A BDFHIJ on fig. 6 is equivalent
modulo prisms to 7'(a,b)+ T(ab,c).

Similarly, since the polyhedra AJEHF, DJEHF on fig. 6 and the
polyhedron FILHK on fig. 8 are the same type as the polyhedron
OPQRS on fig. 5, we see that the polyhedron ABDFHIJ on fig. 6 is
equivalent modulo prisms to 7'(a,c)+ T'(ac,b).

Hence T'(a,b)+T(ab,c) and T(a,c)+ T(ac,b) are equivalent modulo
prisms.

By A7'(a,b) we denote any tetrahedron similar to a tetrahedron 7'(a,b)
in the ratio A R,.

LeMMA 2. For arbitrary a,b,c € R the elements
a+b a a+b b
T —, — bT y —
¢ (a+b+c a-i-b) * (a+b+c a+b)

a+tc a a+c c
1 rreare) * M atreoare)
a+b+c a+c a+b+c a+c

of P are equivalent.

and

Let OABC be a tetrahedron in which the edges 04 =(bc)}, OB=
(ca)t, OC = (ab)} are orthogonal. By the plane through OC orthogonal
to AB the tetrahedron is decomposed into two tetrahedra. A simple
calculation shows that these are the tetrahedra appearing in the first
sum. Similarly, by the plane through OB orthogonal to AC the tetra-
hedron is decomposed into two tetrahedra, which are the tetrahedra
appearing in the second sum.

LEMMA 3. For three angles £,7m,C €10,4n[ with sum n there exists a
rectangular parallelepipedon R with diagonals AB,CD,EF,GH such that
the dihedral angles at the edge AB of the six pairwise symmetric tetrahedra
of the type AT(a,b) into which R i3 decomposed by the planes ABCD,
ABEF, ABGH are &,7,C.
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The hexagon on fig. 9 with pairwise parallel sides, whose diagonals
intersect each other at angles &,9,{, is, by a well-known theorem of
axonometry, the orthogonal projection of a rectangular parallelepipedon
R in the direction of a diagonal 4B, whose image is the centre of the

Fig.9

hexagon; the images of the three other diagonals CD,EF,GH are the
diagonals of the hexagon. The images of the six tetrahedra into which
R is decomposed by the planes ABCD, ABEF, ABGH are therefore
the six triangles into which the hexagon is decomposed by its diagonals,
which shows that the dihedral angles at the edge AB are £,7,¢.

10.

‘We now turn to the proof of Theorem 3.

Let ¥ be an arbitrary vector space over R, and let 7: pD/F - U be
a linear map. We must prove the existence of a linear map @: RQ R, -~ ¥
such that tox=®Po 4.

If @ is a linear map of R® R, into VY, the function ¢ : R - Y defined
by ¢(&)=D(1 ® &) satisfies the conditions ¢(&+n)=@(&)+@(n), ¢(z)=0.
Conversely, if ¢ : R - ¥ is a function satisfying these conditions, there
exists a unique linear map @ :R® R, > ¥ such that &(1 Q® &)=¢(&)
for all £e R. Thus, in order to prove Theorem 3 we must prove:

There exists a function ¢:R —> U satisfying the conditions
@(&+n)=@(&) +¢(n), p(n) =0, such that for every polyhedron P we have

n
(1) tox(P) = 3 Lo(x,),
y=1
where [,,...,l, are the edges and «,,...,«, the corresponding dihedral
angles of P.
(i) Let F: ]0,1[2— U be the function defined by F(a,b)=vox(T(a,b)).
The function F satisfies the equations
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F(a,b) = F(b,a),
F(a,b) + F(ab,c) = F(a,c) + F(ac,b) .

The first is obvious and the other follows from Lemma 1. The functions
F:10,1[2 > ¥ which satisfy these equations, are by [4] precisely the
functions which can be represented by means of a function f:10,1[ - Y
through the formula

(2) F(a,b) = f(a) + f(b) —f(ad) .

In the sequel, f denotes such a function.
(ii) From Lemma 2 it follows that for arbitrary a,b,c € R, we have

{ a+b a a+b b
F — — bF —y e
¢ (a+b+c’a+b) " (a+b+c’a+b)
Cap(EE ) op(tre o),
a+b+c a+c a+b+c a+te
Using the formula (2) one obtains the relation
b a+b c
— b —
[af( )+ f<a+b)] * [(a+ )f(a+b+c)+cf(a+b+c)]
a c a+c b
= — E— b - .
[ (G50) - (] + Lo = ()]
Let G: R,2 — ¥ be the function defined by

Gla,b) = af(ﬁ) + bf(&%z).

The function @ satisfies the equations
G(a,b) = G(b,a),
@(a,b) + G(a+b,c) = G(a,c) + Ga+c,b),
G(Aa,Ab) = AG(a,b) .

The first and last are obvious and the second is precisely the relation
above. The functions G:R,2—> U which satisfy these equations, are
by [4] precisely the functions which can be represented through the
formula

G(a,b) = ag(a) + bg(b) — (a+b)g(a+b)
by means of a function g: R, — U satisfying the eqﬁation

g(a) + g(b) —g(ab) = 0.
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In the sequel, g denotes such a function. From the last equation
we see that g(1)=0. For numbers a,b €]0,1[, such that a+b=1, we
therefore have

af(a) + bf(b) = ag(a)+ bg(b) .

Introducing the function A:]0,1[ - ¥ defined by A(a)=f(a)—g(a) we
obtain for F the representation

(3) F(a,b) = h(a) + h(b) — h(abd) ,
where h satisfies the equation

ah(a)+bh(b) = 0
when a+b=1.
We now introduce the function ¢: R — U defined by

_ |tan&h(sin?¢) when & = 0 modjn,
(4) ?E€) =10 when & = 0 moddzx .

We then have ¢(£)+ ¢() =0 when & +7=0 mod {=, and the formula (3)
takes the form

rox(T(a,b)) = cotop(x)+cot B @(B)+ cot (x*fB) p(3m— o %) .

The formula (1) is therefore valid for every tetrahedron 7'(e,b) and hence
for every tetrahedron A7'(a,b).

(ili) We know already that ¢(n)=0, and that @(&+n)=¢(&)+e(n)
when £+%=0 mod }x.

For three angles &,7,( € 10, 3n[ with sum = we now apply Lemma 3.
Using formula (1) for the six tetrahedra, and the fact that the value of »
for the rectangular parallelepipedon is 0, we find the relation ¢(&)+
o(n)+@()=0. (The contributions from all other angles cancel out.)
Thus we have p(£+n)=@(£)+ @(n), when &,% € 10,4n[ and &+9 € }iz, 7|,
and hence also when &,7 € [0, ] and &+ € [{m,7].

If £,9€[0,4n] and &+ €[0,4n], we have dn—&,dn—n€[0,4n] and
n—(E+7n) € [3n,n]. Hence

PE+n) = —gr—(E+n) = —p(3n—&) —p(In—n) = @(&) + @(7) .

For arbitrary &,nm7€R we have E=min—&), n=nin—n,, where &, €
[0,%=] and m,n € Z. Hence

PE+n) = —@(&o+m0) = — @(&) — P(n0) = @(§) + @(n) .

Thus ¢ satisfies the conditions @(&+n)=¢@(£)+@(n), ¢(x)=0. Since
the formula (1) holds for every tetrahedron A7(a,b), and since every
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polyhedron can be decomposed into tetrahedra AT(a,b), we conclude
that the formula (1) holds for all polyhedra.

11.

Since the vector space P/F is generated by the elements »(7'(a,b)),
its dimension is <X,

Let a,,...,a, be numbers in the interval ]0,1[ which are algebraically
independent over Q, and let «,,...,«, and d,,...,d, be the angles in the
interval ]0,4n[ determined by sin%x,=a,, sin?d,=a,? [so that §,=o, *«,)].
Then the set {m,x;,...,%,,0,,...,8,} is linearly independent over Q.
Indeed, for arbitrary p,,q,,...,P,,9, € Z we have

n n
expi 2 (p,x,+4,9,) = TI (1-a)t +ia})P((1—-a,2)} +ia,)®,
y=1 v=1

and one easily sees that the right hand side is 1 only when all the numbers
P,.q, are 0. Since

A(T(a,,a,) = 2 cotx, ® x,—cotd, ® 9, ,

vy

we see that A(T(a,,a,)),. . .,4(T(a,,a,)) are linearly independent elements
of R® R,. Hence, by Dehn’s result, if £2<10,1[ is a transcendence basis
of R over Q, the elements »(T'(a,a)), a € 2, are linearly independent
elements of P/F. Since a transcendence basis of R over Q has the cardinal
number X, we conclude that the dimension of the vector space P/F
is =R,

Thus we have proved:

THEOREM 4. The dimension of the vector space D[F is X.

12,

The image A(P)=04(P/F) is a linear subspace of R®@ R,. For every
vector space ¥ over R, the linear maps @ :R® R, - ¥, which take
A(D) into 0, are the maps satisfying the condition of Theorem 3 when
7=0. From the proof of Theorem 3 it is clear that these maps @ are
the maps for which ¢(&)=®(1 ® &) has the form (4), where 2 :]0,1[ - U
is a function such that

h(a) + h(b) — h(ab) = 0
for all a,b € ]0,1[, and
ah(a) +bh(b) =0
when a+b=1.
A function d: R — ‘¥ is called a derivation if it satisfies the equations
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(5a) d(a+b) = d(a) + d(b) ,
(5b) d(ab) = bd(a) + ad(d) .

For a derivation d: R - ¥ we have by (5b) the relation d(1)=0, and
(5a) therefore shows that d has the period 1. The function A: ]0,1[ - ¥
defined by h(a)=d(a)/a evidently satisfies the conditions mentioned
above.

Conversely, if A:]0,1[ — U satisfies these conditions, the function
d: R - Y with period 1 for which d(a) =ah(a) when a € 10, 1[, and d(1) =0,
will be a derivation.

To see this, we first observe that (5a) holds for a,be[0,1] and
a+b=1, and that (5b) holds for a,be[0,1]. Suppose now that
a,be[0,1] and a+b€]0,1]. We then find

dia) = d((@+b) 25) = - dla+b) + @+v)a( ),

d(b) = d((a+b)&%) - %d(%b) + (a+b)d(£—5).

Adding these relations we see that (5a) holds for a,b € [0,1], a+b €]0,1].
Hence (5a) holds for a,b,a+be[0,1]. If a,b€[0,1] and a+be[1,2],
we have 1—a, 1-b€[0,1] and (1—a)+(1—5)€[0,1]. Hence

d(@)+d(b) = —d(1—a)—d(1-b) = —d(2—a—b)
=d(a+b—1) = d(a+b).
Thus (5a) holds for a,b € [0,1].

For arbitrary a,b € R we have a=a,+m, b=b,+n, where a,,b, € [0,1]
and m,n € Z. Hence

d(a+b) = d(ay+by) = d(ay) +d(by) = d(a) +d(b).
Having thus established (5a), we find that

d(ab) = d(agby+nay+mby) = d(ayby) + d(na,) + d(mby)
= bod(ao) + a/od(bo) + nd(afo) + Md(bo) = bd(a) + ad(b) N
so that (5b) is established.
When h:]0,1[ - U is defined by h(a)=d(a)/a, where d: R -~ ¥ is a

derivation, the expression tan £ h(sin%£) in (4) takes the form 2d(sin&)/cosé.
Thus, defining 0/0 as 0, we have the following theorem:

THEOREM 5. For every vector space W over R, the linear maps @®: RQR, — U
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which take the subspace A(P)=08(D|F) into 0 are determined by means of
the dertvations d : R — U through the formula

D(1Q &) = d(sin&)/cosé .

13.

A derivation d : R — ¥ vanishes on the set of real algebraic numbers.
If Q is a transcendence basis of R over Q, every function from Q into ¥
is the restriction of a unique derivation d:R — Y. Proofs of these
known results are contained in [4].

Considering now the special case of Theorem 3 where ¥=pD/F and v
is the identical map, we see that all linear maps @ :RQ R, - D/3F,
for which x=®o0 4, coincide on the set of elements 1 ® & for which siné
is algebraic, and that if £2<]0,1[ is a transcendence basis of R over Q,
and I' is the set of those angles y €10, 4n[ for which siny € 2, there
exists just one linear map @:R® R, - D/F for which x=®o4 and
D(1® &)=0 for all £eI'. The set {=,['} is linearly independent over Q.
Let {n,Z} be an extension of {n,I'} to a basis of R over Q. Then the set
{1® £|&eE} is a basis of R® R, and it is easily seen that the set
{P(1® &) | e EN\T'} is a basis of P/F.

14.

In Theorem 5 we take ¥=R. The subspace 4(P) of R® R, is the
intersection of the kernels of the linear maps @ : R® R, - R which take
A(P) into 0. Thus we have the following theorem:

THEOREM 6. The subspace A(P)=0(P/F) of R R, consists of those
elements 30 1k, Q &, for which

y=1

z”k,d(sinE,)/cosf, =0

y=1

for all dertvations d : R — R.

In particular, an element of the form k® & with k40 will belong
to A(D) if and only if siné is algebraic.

For arbitrary angles &,...,&,, let t;,...,t; be real numbers which
are algebraically independent over Q, such that the numbers sing,
are algebraic over the field Q(¢,. . .,f,). Assuming that the characteristic
polynomials of the numbers sin&, over the field Q(¢y,. . .,¢,) are known,
we find for the numbers d(siné&,)/cos&,, where d : R — R is a derivation,
expressions of the form 3*_,c,.d(t,), in which the numbers c,, are in-
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dependent of d. Since the values d(t,) can be chosen arbitrarily, we find
that the sets k,,. .., %, for which 3} &, ® &, belongs to A(D), are deter-
mined as the solutions of the s linear equations 3" ,%,c,,=0, 6=1,...,s.

Let D denote the set of all derivations d : R -~ R, and consider the
vector space RD of all real functions on D. Let ¢: R® R, -~ R? denote
the linear map which takes 1 ® & into the function d > d(sin&)/cosé.
Then Theorem 6 states that A(P) is the kernel of .

Theorems 2 and 6 are illustrated by the diagram

xDA

0 p/F 2 Rer, °. RD

The polyhedron group P is mapped canonically by = onto the factor
group D/F and by A into the group R® R,. Dehn’s result states the
existence of the map é: PD/F > R® R, such that 4=d40%. This map
is linear. Sydler’s result means that the first part of the horizontal
sequence is exact, and our characterization of the image A(P)=4d(D/F)
means that the second part of the horizontal sequence is exact.
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