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SOME REMARKS
ON GENERAL COHOMOLOGY THEORIES

A. DELEANU and P. J. HILTON

0. Introduction.

The starting point of this note is the observation that, in the Atiyah—
Hirzebruch spectral sequence passing from ordinary cohomology H to a
(generalized) cohomology theory &, defined on the category of CW-com-
plexes X, the limit term E  fails to capture precisely those classes in
h(X) which vanish on every skeleton X7 of X. The set of such classes
yields a subgroup A(X) of A(X) which we call the group of extraordinary
cohomology classes of X in the theory k. (This terminology seems to us
very natural; on the other hand we find it unnatural to refer to % as an
“extraordinary’’ cohomology theory, since it is very curious to stigma-
tize all theories with one single exception as extraordinary! We prefer,
and adopt, the terminology ‘‘generalized” (see [8]) or “‘general” to de-
scribe a cohomology theory which is not required to satisfy the dimen-
sion axiom.) Moreover A comes very close to being itself a cohomology
theory. It satisfies the axioms (as stated in § 1 for a single-space theory)
with the exception of the exactness axiom: given

A é X2 X/4
we can only guarantee that k(i) h(p) =0,
(0.1) MX/A) 22 5x) 29D 4 .

However, it turns out (0.1) almost always fails to be exact! Precisely we
prove that if & is an additive (i.e., representable) theory and if % is also
a cohomology theory, then £=0 (Corollary 1.8). If % is not additive, &
can be a cohomology theory without being trivial: we cite as an example
the James-Whitehead [5] zero-coefficient theory. Further we can have,
even where % is additive, 540 (so that % is not a cohomology theory).
For the computations of L. Hodgkin show that, if # is complex K-theory,
then A(K(Q,n))=h(K(Q,n))+0, where n is even and @ is the group of
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rationals. (We are grateful to Mr. D. Burghelea for drawing our atten-
tion to this example.)

In § 2 we consider first a construction which in some sense generalizes
that of A. The idea of this construction is certainly not new. We take
a full subcategory %, of the category € of CW-complexes and let €, %€,
stand for the categories obtained by collecting the morphisms of €,,%
into homotopy classes. For any cohomology theory % on € we set

ho(X) = LimA(Y), Ye%,,
J

where f: ¥ — X in €. There is then a natural transformation ry: & — h,
and it turns out that £ is the kernel of r, if %, is the category of finite-
dimensional complexes. Moreover 4, inherits all the ‘“cohomology’’ prop-
erties of A (including additivity) with the possible exception of the exact-
ness condition. Of course, Brown made very effective use of this con-
struction (with €, the category of finite complexes) in proving his repre-
sentability theorem (see [1], [1a]). It then follows immediately from
Brown’s theorem that if % is representable and %, contains all spheres,
then &, is a cohomology theory if and only if Ay=h. This result yields
an immediate generalization of Corollary 1.8.

The process of obtaining A, from % is dualizable in an obvious way:
we replace maps f: ¥ — X in %, with Y €%,, by maps f: X - Y in
€,, with Y € €,. We prove a theorem giving sufficient conditions on €,
for the resulting functor

oh(X) = limA(Y)
J

to be a cohomology theory. Essentially we require that we can pull
back in €, a diagram Y, > ¥ < ¥,

of fibrations in %,; and that mapping cones of maps in %, lie in €,.
This leads to several open questions as to whether given subcategories
of € satisfy these conditions: for example, we do not know whether the
category of complexes with finite homotopy groups does so. We can
however say that we do obtain examples by imposing a bound on the
cardinality of the set of cells of ¥ € %,. There is also the question of
elucidating the circumstances under which ¢k, whether or not it is a
cohomology theory, inherits additivity from A.

1. Extraordinary cohomology classes.

Let € be the category of CW-complexes with base-point and of base-
point-preserving continuous maps, and let /¢ be the category of abelian
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groups. We recall [8] that a (generalized or extraordinary) cohomology
theory & on % is a sequence of contravariant functors

hr: € - oAb, —oco<Nn< +o00,
together with a sequence of natural transformations
o": hn — pn1Y, —00<Nn< 400,

where X' is the suspension functor, satisfying the following conditions:
(1) If foxfy, then A%(fy) =h"(f)).
(2) For any X €%
oa(X): X) ~ h*H(ZX).

(3) If A is a subcomplex of X, i: 4 - X the inclusion map and
p: X - X/[A the identification map, then the sequence

(X[ A) 2D pn(x) 29 pn4)
is exact.
A cohomology theory % on % is said to be additive if it satisfies the
following general wedge axiom:
(4) If (X,), is a family of objects of € and j;: X, -~ V, X, is the in-
clusion map, then

ILA"j,): WV, X,) ~ [I,A~X,) foralln.

We shall sometimes drop the superscript n on A", when there is no
danger of confusion.

Let now X € € and let 4,(X): X2 - X be the inclusion of the g-skele-
ton. We define a sequence of contravariant functors

e € >, —oco<n<+oo,
as follows:
MX) = () Kerh®(iy(X)) .
q20
Let f: X — Y be a map in ¥. Select a cellular map g: X - Y such
that g~f. Then we have for each ¢=0 and for each » a commutative
diagram o
(X)) XD, o Xa)

h(f )I h™g| XD

which shows that A*(f) maps 2»(Y) into A»(X) and thus defines s» by
restriction as a functor. It also shows that the values of z» depend only
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on the topological structure (indeed, the homotopy structure) and not
on the cellular structure of X. Moreover we have a natural transforma-
tion s: k — h with s(X) monic.

We now define a sequence of natural transformations

o hn - Bntlo X, —o<n< +00,
as follows: For each ¢ =0 and each » we have a commutative diagram:

h"(X) hn(ig(X)) h"(Xq)

WX

a”(X)J’ ~ ~ |
L (EX) m_, k"+1((EX)‘1+1) = hn(XX9)

which enables us to set by definition

(X) = on(X) | [) Kerhn(i (X)) .
920

It is straightforward that s: % — & is compatible with ¢, and that
the functors A» together with the natural transformations " satisfy
conditions (1) and (2) in the definition of a generalized cohomology
theory. As to condition (3), we can only prove in general that A(i)o
hn(p)=0. Tt is also easy to check that, if A» satisfies the general wedge
axiom (4), then so does A™.

ProposrTion 1.1. Let b be an additive cohomology theory on €. Define
for any integer n and any X € € the homomorphism
ox: [ #"(X9) —T] (X9

g0 q20
by
Px(To, g, Ty, -+ ) = (X —h™(351) (%), 2 — A™(112)(25), Xy — B (25°)(25), . . . )
where x,€ (X% and 19+ =4 27(X): X9 > X9+ 45 the inclusion map,
q=0.

The necessary and sufficient condition for h*(X)=0 is that "1 be an
epimorphism.

Proor. Consider the natural homomorphism

r = limh*(i)): A"(X) — l(i_gh“(Xq) .
q q
According to a result of Milnor (Lemma 2 of [7]) whose proof —as he
himself observes —does not require the dimension axiom, we have
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Kerr = Ker(lim 2(i;)) = Cokerpx™!.
7

On the other hand, it is obvious that

Fn(X) = () Kerkn(i,) = Ker(liman(i,)) = Kerr .
=20 q
Remark 1.2. The result of Milnor mentioned above also states that r
is an epimorphism for any additive cohomology theory.

CororLARY 1.3. Let h be an additive cohomology theory on € and let n
be an integer and X € €. If the inverse system of abelian groups
{hn—1(X9), hn-Y(i,9+(X))} satisfies the Mittag—Leffler condition, i.e. if for
any tnteger q = 0 there exists m such that

Im[Ar-1(X2*+m) — pr-1(X9)] = Im[hn-1(X+E) — hr-1(X9)]
for any k=m, then hv(X)=0.

Proor. The assertion follows immediately from Proposition 1.1 in
view of the fact that Cokerpy™~! is isomorphic to im®A"-1(X9), where
Ez_n_(l) is the first derived functor of 1<1_n_1 [7], and the fact that this derived
functor is zero for any inverse system of abelian groups which satisfies
the Mittag—Leffler condition (see, for instance, [6, p. 17]).

REMARk 1.4. If the abelian groups A"-1(X9) are countable for all g,
the converse statement holds, namely that A*(X)=0 implies that the
inverse system {h"-1(X9),h"-1(3,2+1(X))} satisfies the Mittag—Leffler con-
dition. This follows at once from a result of B. I. Gray [4].

THEOREM 1.5. Let h be an additive cohomology theory on €, n an integer
and X € €. If there exists an integer N such that

kn—l(iqq-{-l): hn—l(Xq+1) - hn—l(Xq)
is an epimorphism for ¢= N, then hv(X)=0.

Proor. The hypothesis implies that the system {h"-1(X9),hn-1(z,2+1)}
satisfies the Mittag-Leffler condition. Apply Corollary 1.3.

REMARK 1.6. An easy consequence of Theorem 1.5 is the statement
that, if # is an additive cohomology theory on € such that there exists
an integer N with A%(8°)=0 for any n<N, then A*X)=0 for any n
and any X. Now this statement actually follows from the following
much stronger result, whose proof relies on E. H. Brown’s theorem [1]
to the effect that any additive cohomology theory on ¥ is representable
by an 2-spectrum and on simple considerations of obstruction theory:
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ProrosITION 1.7. Let b be an additive cohomology theory on € such that
there exists an integer N with h*(S°) =0 for any n < N. Then, for any n
and X,

h™(ig): (X)) — h"(X9)

18 an isomorphism for sufficiently large q.

COROLLARY 1.8. Let h be an additive cohomology theory on €. If h is
a cohomology theory, then kn(X)=0 for any n and any X.

Proor. It is straightforward that I:"(X )=k"(X) for any n and any X.
Now #*X)=0 for every finite-dimensional CW-complex X, so we may
apply Proposition 1.7 with any N.

ReMARK 1.9. The James—Whitehead theory with zero coefficients [5]
provides an example of a theory with 2*(8°) =0 for any integer =, but
such that A=h=+0. Of course, this theory is not representable.

2. Limits over subcategories.

It will be convenient in this section to enlarge the category of applica-
tion of our cohomology theories to include all spaces of the (based)
homotopy type of CW-complexes. Our reason for doing this is simply
to permit ourselves to apply path-space functors; any other device
achieving this effect (e.g. working in a category of simplicial sets satisfy-
ing the Kan condition) would have been equally acceptable.

Thus € will denote the category of based spaces of the based homotopy
type of CW-complexes and base-point-preserving continuous maps and
we consider cohomology theories on € to o/4. The arguments of the
previous section carry over in this more general context. If X € € then
we will consider, in formulating condition (3) for a cohomology theory,
those subspaces 4 £ X such that the pair (X, 4) is homotopically equiv-
alent to a OW-pair. Again let X = % and let u: X — X be a homotopy
equivalence of X with a CW-complex X ; we extend & to the whole of €
by setting

h(X) = h(u) i(X) .

v X~ X is another homotopy equivalence of X with a CW-complex
X, then there is a homotopy equivalence w: X — X with wu ~v; moreover
k(w) is an isomorphism so

h(v) A(X) = h(u) h(w) HX) = h(u) (X) .
Thus A(X) is well-defined ; similarly we define A(f) for any f: X - Y in ¢
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and thus define the functor h. Of course % is by definition homotopy
invariant; and A(f) is defined by restricting A(f).

We now extend the sequence g": An - hn+1X, of natural transforma-
tions, to the whole of €. Given X and u: X —~ X as above, we define
6™(X) by imposing commutativity on the diagram

X)) 0 jn(X)
GMX) 1 M)

R+l Zu)

I (EX) « (EX) .
Of course, all arrows in this diagram are isomorphisms. Again one
readily shows that ¢*(X) is independent of the choice of %, and " con-
stitutes a sequence of natural transformations.

The results of the previous section are now readily interpretable in
our enlarged category; where, in the enunciation of some result explicit
mention is made of the skeleton filtration of a complex X, it is now
necessary merely to replace the given hypothesis by the same hypothesis
with respect to any complex of the homotopy type of X. Thus we may
assume all results of the previous section, modified in this evident sense,
to be available.

Let €, be the homotopy category of €, i.e. the category whose objects
are those of ¥ and whose morphisms are the based homotopy classes of
maps in €.

Let €, be a full subcategory of €, and %, the corresponding full sub-
category of €,. We may then form, for any object X in €, the €,-
category over X, (%,,,X). An object of (%, X) is a map f: ¥ — X in
%, with Y € €,, and a morphism w: fy — f; is a map u: Yy - Y, in €,
such that

Yl/fl

commutes in €.

Now, if % is a cohomology theory on €, we may construct the inverse
limit ligf(h( Y),h(u)); call this hy(X). Clearly &, is a contravariant func-
tor and there is a natural transformation ry: A — ky, such that ry(Z) is
an isomorphism for all Z € €,.

We mention that, in the case when %, is the category of finite C'W-
complexes, this process of taking inverse limits has been used by E. H.
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Brown [1, p. 478] and by A. Dold for half-exact functors [3, p. 9.2]. We
also mention that &, satisfies condition (4) if A is additive.

REMARK 2.1. Assume %, contains all finite CW-complexes. Then, if %
and k, are both additive cohomology theories (we understand by this
that h, is provided with a sequence of natural equivalences o," satisfying
condition (2), and compatible with r,), it follows that r, is a natural
equivalence: ry: hah,. For, according to E. H. Brown’s representability
theorem [1], there exist CW-complexes Y, Y, and natural equivalences

h(X) = [X7 Y]’ hO(X) = [X’ YO]! XE%

Now the natural transformation r, is induced by a map f: ¥ - ¥, and
we clearly have for each sphere N

_f* [Sn’ 0] )

Thus, by J. H. C. Whitehead’s theorem, f is a homotopy equivalence, so
that r, is a natural equivalence.

TaEOREM 2.2. If €, is the category of finite-dimensional complexes, then
r factors as r=ryry, where

ry=r(X): ho(X)=1lim (2(Y),h(u)) — lim A(X?)
<—f— <~
18 an isomorphism.

The natural transformation r: A(X) — Eﬂh(Xq) was defined in the
proof of Proposition 1.1.

PROOF. An element of lim 7(M(Y), h(u)) is a family of elements «; € A(Y')
for each f, such that h(u)xs, =« for any w with fiu=f,. By restricting
f to be the homotopy class of an inclusion X*< X and » to be the homo-
topy class of an inclusion X'<X™, for any k, I, m, we define r,, and
plainly r=r;r,. We wish to show that r; is an isomorphism. (As ex-
plained at the beginning of this section we may confine attention to
CW-complexes X.)

Let Eeljﬂf(h( Y),h(w)) with r;(§)=0. Let «, be a component of &,
where f: Y — X. By cellular approximation f=i,f’ for some g, where
f'+Y - X¢. But the i,-component of £ is zero and is mapped by A(f’)
to the f-component of &, namely &;. Thus x,=0, so that £=0.

Now let 5 € lim 4(X?). For each f choose k= dlm Y +1 and a homotopy
class f': ¥ — X* with 4 f =f Then f’' is uniquely determined (by the
requirement that it contains a cellular map).

Let a;=h(f")n;, where 7, is the 7;-component of 7. We assert that the
«; determine an element & € lﬂf(h( Y),h(u)) such that r,(§)=». Plainly
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the i,-component of & is 7, for it is A(j)n,.,, where j: X?2< X7+, Thus
it remains to show that £ belongs to the limit. Consider the commutative
diagram in €,

X

%

where Y, Y, € ¥,. Choose m=max(dim Y,,dim Y;)+1,
fo't Yo Xm  fy'": ¥y Xm

being uniquely determined ‘“‘cellular classes” as above, with f,=1,f,",
Si=1,f,"". Then if oy =h(fy')n;, as above, we claim that «; =2(fy")n,,-
For if j: X< X™ then fy'' =jfy’, n=n(j)n,, so that

W) e = (fo') R(G) M = RGO e = PLS"") P -

Similarly oy =h(f;")7,-
It follows immediately that ay =h(u)a;,. For f,"u=f,", so that

Ko = k(f()”) Nm = h(w) h(flu) N = h(w) &fy -

Thus £ e li_nl 7(A(Y),h(u)) and r,(£) =, establishing the claim that r, is an
isomorphism.

CoROLLARY 2.3. If €, is the category of finite-dimensional complexes
and h 1s additive, then 1y ts an epimorphism. Indeed, there is then a short
exact sequence

hs2sh % hy.
If, moreover, hy or k is a cohomology theory, then h=0 and ry: hash,.

Proor. Now r(X): M(X) —»hmh(X‘l) if h is additive and hence repre-
sentable. Thus r, is an eplmorphlsm Moreover kerr,=kerr=Im# (see
the proof of Proposition 1.1) so we obtain the short exact sequence

Fslsh B hy.
We use this sequence to induce natural isomorphisms ¢,": k" ~h"t12.
Plainly then % and %, are both cohomology theories if either is; but we
have observed that % satisfies the wedge axiom (4) if & is additive.
Thus if kg or % is a cohomology theory then s—and hence also s,—is an
additive cohomology theory. We now complete the argument by apply-

ing Remark 2.1. Alternatively, we could have completed the argument
by appeal to Corollary 1.8.
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Naturally, in Theorem 2.2 and Corollary 2.3 we may throw into &,
any object of € homotopy equivalent to a finite-dimensional compiex.

We now consider the dual process. We again let €, be a full subcategory
of € and consider, for an object X of €, the €,,-category under X,
(X,€o1). An object of (X,%,) is a map f: X - Y in &, with Y € %,,
and a morphism u: fy — f, is a map w: ¥, — Y, in €, such that uf,=f;.
We may then construct the direct limit lim (A(Y),k()); call this oa(X).
Clearly & is a contravariant functor and there is a natural transforma-
tion ¢: b — h. We will be concerned to give reasonable conditions under
which & is a cohomology theory.

THEOREM 2.4. Assume that €y, contains the one-point space and, with
any space, all spaces equivalent to it. Assume also that €, contains pull-
backs of fibrations and mapping cones. Under these conditions, b is a
cohomology theory.

Proor. First of all, note that the conditions imposed on %, and €,
guarantee that %, and %, contain finite direct products and that %,
contains, with any space X, the loop space 22X and the suspension XX.
They also imply that €, has weak pull-backs with respect to €, that
is, given f;: X; —~ Y,4=1,2, in €, there exist g,: Z - X;, 1=1,2,in ¥,
such that f,g;,=f,9, and, for any I;: W — X, in €, with fjl, =f,l,, there
exists a (not necessarily unique) morphism ¢: W — Z in %, such that
l;=g;c, i=1,2. (To see this one can apply an argument similar to that
of [2, p. 298], where weak pull-backs are referred to as ‘“‘generators of
intersection ideals”.) It is just these conditions on %,,, together with
the existence of cones, that the hypotheses were designed to ensure.

We now go ahead with the actual proof. Under the given hypotheses,
we may represent lim #(A(Y),h(u)) as follows. We consider, for each
f: X —» Y, the group #(Y); an element of the set U;A(Y) will be denoted
by (x,f) or «f, x € ,(Y). We then set up an equivalence relation in
U;2(Y) by declaring «; ~ oy, if there is a commutative diagram in %,

(2.5) X—Y , Ug, Uy € Cop »

with Y, Y, Y in €, h(uo) a5, = h(%,) oy, . The proof that this is an equiv-
alence relation depends on the fact that %,, has weak pullbacks with
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respect to €),. We introduce a group structure into the set of equivalence
classes as follows: given «; € h(Y,), &7, € h(Y,), consider the commuta-
Y,

tive diagram
/ T Po
S

X—‘+Yo>< Yl, f= {fo’fl}’

1

where p, and p; are the canonical projections. Then the sum of the
equivalence classes represented by «; and «; is by definition the equiv-
alence class represented by h(p,) oy, +h(p;) oy, € R(Yox ¥,). Plainly the
resulting group is the direct limit lim  (2(Y),k(x))=¢h(X). Moreover
t: oh — h simply associates (f)x with the classe of «;. We now establish
the exactness axiom (3).

We observe from (2.5) that if «; represents the zero of (h(X), then
there is a commutative diagram in %,

Y
}/
X Y, Ye¥,,

\fku

Y,
such that A(u)x;=0. Consider now a cofibre sequence
A4 xX5x/4
in € and the resulting sequence
(X[A) ZE B(X) S5 (4)
in /6. Let &€ J(X) go to zero in 4h(A), and let & be represented by
a=0x;eh(Y), f: X - Y. Then a=npeh(Y), fi: A - Y, represents zero

in 4h(4); that is, there exists a commutative diagram in %,

x—f.y

(2.6) 4 %

AT YO

with hA(u)x=0. Then (2.6) induces a diagram
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XA,
(2.7) x-1.

4T ,

such that the top square is also (homotopy) commutative, where C, is
the mapping cone of u. Since A(u)x=0, we have a=h(v)§ for some
B eh(C,). Then p=pf, represents an element 7 of ,A(X/A4) such that
o”(p)7 is represented by f=f; ,=f,. But then jA(p)y is also represented
by «=u«, so that jh(p)n=4E.

It remains to verify the suspension axiom (2). We define

oS(X) > P HEX)

by mapping a representative u;=(«,f), f: X - ¥, a € #*(Y), to (ox,2f),
where we denote by ox the image of &« under the isomorphism
o™(Y): ®M(Y) - hn+t1{(2'Y). This clearly induces a map 40" That jo™ is a
homomorphism may be seen from the commutative diagram

2(Y,;xY,)
Z{f1,f2},
ZX {Zp1, Zp2}

{Zf1, Zfa}
SV, xZY,

together with the fact that h{Zp,,Zp,}(ox,,00,)=0(x;,x,), Where
(o¢q,000) € B(Yy %X Y ,) stands for A(p;)x; + A(pg)xs, with a similar convention
for (ox;,00,). It is also clear that ¢: (b — A is compatible with (o, 0.

We next show that ;0" is onto. Recall that we may take loopspaces
and suspensions in %,. Let d: ¥ - QXY, ¢: QY — Y be the natural
maps. Given f: 2X — Y and « e h*t(Y) consider the commutative

diagram
z>\ e

where f': X - QY is adjoint to f. Then (x,f)~(k(e)x,2f’). Thus if
B eh™(2Y) is such that of =h(e)x, then (8,f') represents an element of
o#™(X) which suspends to the class represented by («,f).



SOME REMARKS ON GENERAL COHOMOLOGY THEORIES 239

Finally we show that oo™ is one-to-one. Suppose given (x,f), where
[: X —>Y, xehy(Y) and a commutative diagram

>x . xy
0

(2.8) N

with A(uy)(ox)=0. Now eXg'=g, where ¢': X -~ QY, is adjoint to g¢.
Thus, by setting

‘u
Y,

Y, =Q0Y, fi=4g, u=uwye,
we may replace (2.8) by the commutative diagram
sx- 2 xy
(2.9) PNEL

XY,

with h(u)(ox)=0. Consider further the diagrams, where (2f)’ is the ad-
joint of Xf and «’ the adjoint of u:

/ Va

(2.10) X ory
h T
Yl

(2.11) IOy

Then (2.10) commutes, and in (2.11) we have
e2d =1, eXu' =u.
Let e h®(QXY) be such that of=h(e)ox. Then h(Xd)(of)=0x, so
hd)f = & .
Thus (x,f)~(B,(Zf)') ~ (k(w").f1). But
WEw') (oB) = h(Zu)h(e)(on) = h(w)(ox) = 0,

S0

h(w')(B) = 0.
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Thus («,f) ~(0,f,), so («,f) represents zero. This completes the proof of
the theorem.

We remark that a suitable choice for the category €, is that of count-
able CW-complexes. Plainly o4 +#% in general with this choice of €.

We close this section with the following observation. We might be
tempted to adopt the simple-minded device of seeking to construct a
cohomology theory out of a given theory by restricting attention to
those classes which are “represented’” by complexes in €,. That is, we
consider the subgroup of 4(X) consisting of those classes « such that
there exists f: X — Y, Y € €,, with « € (f)2(Y). This is a subgroup
provided €, admits finite products and we again have a functor. How-
ever, exactness will, in general, fail to hold. Consider, for example,
the case when %, is the category of finite-dimensional complexes, and
let & be ordinary cohomology. Consider the sequence

82— K(2,2) 2> K(Z,2))8 .

Then the admissible subgroup of #*K(Z,2)) is obviously zero since ele-
ments in the subgroup must have finite multiplicative order, so we cer-
tainly do not get exactness.
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