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SUFFICIENT DATA REDUCTION AND
EXPONENTIAL FAMILIES

OLE BARNDORFF-NIELSEN and KARL PEDERSEN

Let Z denote a region (an open connected set) in R*, the r-dimensional
Euclidean space, let # be the g-algebra of Borel subsets of Z and let 2
be a family of probability measures on &. The elements of £ are assumed
absolutely continuous with respect to Lebesgue measure 1 on &% and fp
denotes the density of P(c £).

Take X as the random variable which is the identity map on & and
let X,,...,X, be n independent observations of X.

In the present work we discuss two propositions of the Fisher-Darmois—
Koopman-Pitman type. Propositions of this type state that, under cer-
tain regularity conditions on the densities fp, if there exists a sufficient
statistic T'=¢(X,,. . .,X,) which yields a reduction of the data X,,..., X,
then the family £ is exponential. The statistical interest of such results
depends on what regularity conditions are imposed on fp, and on how
the concept of reduction is formalized. The two propositions treated
below seem to us particularly interesting in this respect. They represent
generalizations to arbitrary dimensions r of results due to Brown (1964)
and Dynkin (1951) for the case r=1.

For related work we refer to the papers in the bibliography, in par-
ticular to the excellent survey in the introductory section of Barankin
and Maitra (1963).

Throughout the sequel it is assumed that fp is strictly positive and
continuous. Furthermore, k¥ and n denote positive integers with k<n
and 7, an arbitrary but fixed statistic, is assumed to be a continuous
mapping of ™ into R*. Let C be the space of real continuous functions
on & and let ¢’ be the space of real functions on 2 having first order
continuous partial derivatives. Finally, let P, be an arbitrary but fixed
element of Z. By the Fisher—Neyman factorization criterion 7' is suffi-
cient provided that to each P € & there exists a function %, such that
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(1) hp(T@™),  (T,...,%,) =™ e Z".
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Introducing the notations

f
¢p = log £ yp = loghp,
fPo

(1) is equivalent to
(2) ‘Pp(xﬂ + ...+ (PP(xn) = "PP(T(%(")))’ x(n) € %‘n .

Thus sufficiency of 7' may be described as follows.

Let S be the set of those ¢ € C for which there exists a function ¢ such
that
(3) e(z1) + ... +@(z,) = Y(T(@™), «WeZn.

T is sufficient if ppe 8, Pe 2.
A family & is said to be exponential provided there exists a positive

integer s, real functions a|#, «,|P,...,x,|? and real (measurable)
functions 7, |Z,...,7,|Z and b|%, b= 0, such that (a.e.)
(4) fo(@) = a(P) D" ®b(z), PeP,

where &= (oy,. . .,%,), T=(73,-...,T,), and 7* denotes the transpose of 7.
The smallest s which admits a representation of fp of the form (4) is the
order of 2. It is simple to see that £ is exponential of order s if and only if
dim V' =s+1 where dim denotes dimension and ¥V stands for the linear
subspace of C' spanned by the constant functions and the functions
¢p, Pe 2.

We shall prove:

Suppose the probability densities fp are strictly positive and continuous
on the sample space &, a region in R". Let k and n denote positive integers
with k<n and let T be a continuous, k-dimensional, sufficient statistic
on I,

(i) If k=1 then P is exponential of order 1.

(i) If the densities fp have continuous partial derivatives then P s

exponential of order k.

REMARES. For r=1 proposition (i) is due to Brown (1964) (cf. section 4
of that paper) while (ii) is a modified version of Theorem A, Brown (1964)
which in turn was obtained by modification of results in Dynkin’s
(1951) paper.

Note that (ii) is subsumed under (i) when k=1. -

The assumption that 7 is sufficient in the strict sense that (3) holds
for every 2™ e Z™ and not just almost everywhere is indispensable. In
fact, it imposes no restriction on the family £ to require almost every-
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where validity of (3) since to any n>1 there exists a continuous, real-
valued function on Z™ almost everywhere 1 -1 (see Denny (1964)).

Proor. Let 8'=8nC". The first step in the proof of propositions (i)
and (ii) is to show that they will follow from inequalities, subsequently
proved, concerning the dimensions of the sets § and 8’ of solutions to
the functional equation (3) with n=F%+ 1.

S and S’ are both linear spaces containing all constant functions on Z'.
The assumptions of (i) imply ¥V <8 while those of (ii) imply V<48'.
Thus, according to a previous remark, to verify (i) and (ii) it suffices to
show

(1) dimS=<k+1 when k=1
respectively,

(i)’ dim8’ =k +1.

Moreover, in verifying these inequalities it causes no loss of generality

to assume n=k+1 as may be seen by fixing arbitrarily z;.,,...,7,,
letting T be the section of 7' at . . .,, and rewriting (3) in the form
Q1)+ - o+ P(r41) = (T (@) = @(Ths0) = . - — ()

—_ W_(T(x("'ﬂ))), x(k+l) = %’k*f—l .

(i)’ and (ii)’ will first be derived for r=1 by the methods of Brown and
Dynkin and then extended to general r.

Proor oF (i)' FOR r=1.
Here (3) with n=Fk+1=2 takes the form

@(a;) + () = w(T'(2y,2,))

and we show dim S 2.

LemMa 1. Let o€ S and let x,, y,, Y be points in Z. If o(y,)=@(ys)
and T(xy,y,) < T(%g,Ys) then @ is constant in a neighborhood of xy.

Proor. Without loss of generality it can be assumed that y, <y, and
that
(5) ty = T(p,y1) < T(0,y) < T(wo,Y2) = ta, Y1<Y<Ys.

(If y, < y, but (5) is not fulfilled, then let y," =sup {y: y < y,and T'(x,,y) =t,}
and y,’ =inf{y: y2y,’ and T(zg,y)=t,}. Now y," and y,’ satisfy y," <y’
and (5), as well as the conditions of the Lemma.)

Since @(y;)=@(y,) there exists a y, in the open interval (y,y,) such
that g(y,) is either an absolute minimum or an absolute maximum for ¢
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on [y;,9,]. Suppose ¢(y,) is an absolute minimum; the maximum case
can be treated similarly. Then, for t,=T(z,,v,),

Y(t) = min{y(t): t € [£1,8,]} .
By (5)
= T (@, y1) < by = T(%0,Y0) <ty = T(20,95);

therefore, a neighborhood U of z, exists such that

(6) T(x9yl) < tO < T(x,?lz), xe U )
and
(7) b < T(z,y,) < ty, zelU.

From (6) and the continuity of 7' it follows that to every x € U there is
an «(x) with 7'(z,«(z))=¢, and y, < x(x) <y,. Hence, for zxe U

p(to) = @(z)+(x(z)) 2 (@) +9(y,) = w(T(x,9,))
w(te) = Y(T(%e,%0)) = (o) +@(Yo) -

None of the inequalities can be proper, and consequently @(z)=p(z,),
zeU.

Let ¢, and @, be arbitrary elements of S and suppose that ¢, is not
constant, i.e., there exist y,,y, €  with ¢,(y;) +¢,(y,). Then T(zy,y,)+
T(xy,y,) for every z, € £ and for some a € R,

v v

Po(V1) —a @i (¥1) = @a(¥a) —api(¥,) -

The function p=¢,—a@, is in § and Lemma 1 is applicable to ¢ for all
z,€ Z&. Hence, on account of the continuity of ¢, there is a constant b
such that ¢ =5, that is, p,=a¢,+b. In other words, § is at most two-
dimensional.

Proor orF (i7)" ¥or r=1.

Lemma 2. Let ¢y,. . .,qp, be elements of C' and consider the mapping

¢: x('n) - (‘pl(ml)'l‘ M +‘P1(xn)’ e (pn(xl) +... +‘Pn(xn)): x(n) € g‘n,
with Jacobian J: ™ — {p/(x,)}. If 1,94,...,p, are linearly independent,
then for some x(™ € Z™, detJ (zy™)=*0.

Proor. The proof is by induction. The Lemma is clearly true for
n=1. Suppose it holds for n—1 but detJ =0 for some ¢y,...,p, With
1,¢y. . .,¢, linearly independent. Expansion of the determinant by its
last column yields

(8) 0 =ay(®y,.. ;20 )@ (@) F ...+ (Xyse o 1 Tp)@(2,), @ eEZ™.
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Note that a,(x,,...,z,_,;) is the determinant corresponding to ¢,,...,
®n-1- Thus, according to the induction assumption there exists an z,®-D ¢
Zr-1 with a,(%g,...,Ton—y)+0. Insertion of zy,...,2y,—; in (8) and
integration with respect to z,, from z, to z yields

0 = a;(Zo1s- - -3 Top-1) P1(X) + ... + @y (Top,. o, Xop—1) Pu(®) —
n
- .zlai(xMw « +>%on-1) (o) -
fe=

Since a,(®gy;. - - %o,—1) + 0, this relation contradicts the linear indepen-
dence of 1,¢;,...,9,.

Suppose now that dimS’>%+1. Then there exist functions ¢,...,
@, €8’ such that 1,¢,,...,¢, are linearly independent (n=%k+1). By
Lemma 2 there is a point 2™ with det J(xy™)=+ 0 and hence a neighbor-
hood of z,™ on which @ is 1—1. On the other hand @ = ¥(T') where

W (b ot) = (Wt orti)se e s Wnlnse - ote))s

whence follows that 7' must be 1-1 in that neighborhood. But this is
impossible since 7' is a continuous function on Z%+! into R¥.

Generalizations to arbitrary r.

It will be convenient to stress the dependence of &, S and 8’ on r by
writing &, S, and S,’. Let 8, stand for either S, or 8,’. The statement
that dimS,,<k+1 is equivalent to the statement that for any set
{p1- - -»Pr41} = 8,, the range space of the mapping

z—> ((pl(w)9' .. 9q7k+1(x)), X e '%‘1'3

is contained in a hyperplane of R¥+l,
Thus, if dimS,>k+1 for some r>1, then there exist sets
{15+ - o Prs1} 8o, and {&y,. . ., 25,5} <&, such that the k+2 points

((pl(xi)""!(pk+1(xi))’ 1:=11""k+2’

do not lie in a hyperplane of R¥+1, Let y be a continuously differentiable
mapping on %, into &, whose range contains the points &;,..., %2
(such a mapping clearly exists). Then the mapping

7. (51,. .. ’£k+l) - T(‘y(fl),. .. ,)/(fk.ﬂ)), &, yEr1 € -%‘1’
is continuous and, letting @,(*)=g(¥(*)),
&)+ .. +Pilbrn) = ’P(T('fp- ) fpe-oben €2y,
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Moreover, ¢ has been chosen so that ¢, S, if ¢, €8, and ¢, e 8, if
p; € 8," and since the range of the map

5 - (@1(‘5)’ e ’¢k+1(§)): E € %.1:

is not contained in a hyperplane, a contradiction to the established
validity of (i)’ and (ii)’ for »=1 has been arrived at.
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