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EQUATIONAL CLASSES OF LATTICES

BJARNI JONSSON

Introduction.
The principal result proved in this note is

THEOREM 1. For any equational class V of modular lattices the following
conditions are equivalent:

(i) My & V.
(ii) Every member of V is a subdirect product of lattices of dimension
two or less.
(iii) The tnclusion a(b+cd)(c+d) <b-+ac+ad holds in V.

The lattice M; ; referred to in this theorem is the eight-element lat-
tice pictured in Fig. 2. It is easy to determine all the equational classes
V that satisfy (ii); we actually give axiom systems for all of these classes,
and determine all the equational classes which cover them. Thus we ob-
tain as a special case a solution to Problem 45 in Birkhoff [1, p. 157].
Our methods are in part borrowed from Gritzer [2], where a related
but more special problem is considered.

M, M 3,3
Fig. 1 Fig. 2

1. Preliminaries.

Consider a modular lattice L. By a diamond in L we mean a five-
termed sequence (v,,%,2,u) of elements of L, whose terms are either all
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equal (in which case the diamond is said to be degenerate), or else form
a non-distributive sublattice M; (Fig. 1), with u the largest element and
v the smallest. The intervals [z,u], [y,%], [2,4] are called the upper
edges of the diamond, and [v,2], [v,9], [v,2] the lower edges.

Two intervals [a,b] and [c,d] in L with a+d=»5 and ad=c are said to
be transposes of each other. More specifically, we say that [a,d] transposes
down onto [c,d], and that [c,d] transposes up onto [a,b], and we write

[a,b]\[e.d],  [c,d]7[a,b].

Two intervals [a,b] and [c,d] that are projective to each other are said
to be connected by the sequence of tramsposes [a,,b.], k=0,1,...,n if
[ag,b0] =[a,b] and [a,,b,]=[c,d], and for =0,1,...,n—1 the ¢-th term
transposes alternately up and down onto the next one. Two intervals are
said to be projective in n steps if they are connected by an n+ 1-termed
sequence of transposes. A sequence of transposes is said to be normal if,
for 0<k<m,

(1) either [a; 3,011/ [ bl \[@g11,b541] a0d by = by +bys

(2) or  [@y,b 1IN\, 0] 7 [0 1,b541] aNd @ = @1 Oy -

If in addition, for each such &, b,_;b;,, <a; in the first case, but a,_, +
@41 > b, in the second, then the sequence is said to be strongly normal.
It is shown in Gritzer [2] that two intervals that are projective in n
steps are connected by a normal n+ 1-termed sequence of transposes.

by

blc +1

Apyy +bp 1 bpiy

41
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On the other hand it is not always possible to take the sequence to be
strongly normal.

In a normal sequence of transposes [a,,b,], 1=0,1,...,n, the lattice
generated by the six endpoints of three successive intervals, say by
a;,b; withe=k—1,k, k+1, is in fact generated by three of these endpoints,

by,
@
b1 brs1
Oy g1
Fig. 4

and is therefore finite. If (1) holds, then this lattice is generated by
by—1> g, bp4q, and it is & homomorphic image of the lattice in Fig. 3. If
(2) holds, then this lattice is of course a homomorphic image of the dual
of the lattice in Fig. 3. If the sequence is strongly normal, then the lattice
generated by the six endpoints is a homomorphic image of the lattice in
Fig. 4, or of its dual. Each of these lattices contains a diamond, and we
shall later have to investigate how two such diamonds fit together.
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Observe in this connection that if (v,x,y,z,4) and (v",2",y’,2’,4’) are two
diamonds, and if a lower edge in one transposes down onto an upper edge
of the other, say [v,z]\[z',%'], then the ten elements form a lattice
which is a homomorphic image of the lattice in Fig. 5. Unless the two
diamonds are degenerate, this lattice has M; ; as a homomorphic image.

Given a diamond (v,z,y,2,u4) and an element w that belongs to one of
its edges, these six elements generate a finite lattice whose isomorhism
type is completely determined. In fact, if say z <w <wu, then this lattice
is given in Fig. 6. Observe that the adjunction of the new element yields
two new diamonds.

Fig. 6

2. Connecting sequences.

It is easy to see that in a subdirectly irreducible modular lattice any
two non-trivial intervals have non-trivial sub-intervals that are projec-
tive to each other. Assuming that these subintervals have been so chosen
that they are projective in as few steps as possible, we examine the
sequences of transposes that connect them.

LevMma 2. Suppose L is a modular lattice and [a,b] and [c,d] are non-
trivial intervals in L that are projective in n steps. If no non-trivial subinter-
vals of [a,b] and [c,d] are projective in fewer than n steps, then either n <2,
or else [a,b] and [c,d] are connected by a strongly normal (n+ 1)-termed
sequence of transposes.

Proor. Consider a normal sequence of transposes [a;,b,], ¢=0,1,...,n,
that connects [a,b] and [c,d]). If the sequence is not strongly normal,
then for some % with 0 <k <n we have
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[@-1508-1] 7 [@1: 0]\ Qg 11503 41] @A by byyy £ @y,

or else we have the dual situation. Let ¢;_;=a;_;+bs_1bs.,, and for
1<n with 1+k—1 let ¢; be the element of [a;,b;] that corresponds to
¢, under the given transpositions. Fig. 3 suggests, and it is easy to
check arithmetically, that

[@k—1> Ck—1] [ Q-1 B2, 01 034117 (@1, Cpa]

Therefore, if k> 1, then

[ax—2s Ck—2] @ -1 B 11 D108 41] 7 [Oge 15 Che 1] 5

and if k<n—1, then

[@%—15 Co—1) \[@m1 By g1 05 ] 7 [ @125 €] -

In either case it follows that the non-trivial subintervals [a,¢,] of [a,b]
and [c,c,] of [¢,d] are projective in n—1 steps, contrary to our assump-
tion. Thus we must have k<1 and k>n—1, which implies that n<2.

Lemma 3. Suppose L is a modular lattice such that M 5 is not a homo-
morphic tmage of a sublattice of L. If (v,z,y,z,u) and (v',2",y’,2’,u’) are
diamonds in L such that y =yu', z=2'+v and [y,u]\[v',2'], then
[v, 2]\ [, %],

A2+ (y +w')
xl + w'

(=" +w')(y' +w)
- xl

w’ xl(yl + wl)

Fig. 7
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Proor. Our reasoning is motivated by Fig. 7. The element w=v+u’
belongs to the edge [z,u] of the first diamond. If z<w <wu, then u, z, ¥,
z, v and w generate the lattice in the upper half of the figure. Under
the transposition [y, «]\[¢',2'] the element y + zw goes into w’ =2'(y + zw),
and together with «’, 2, ¥, 2’ and ¢’ this element generates the lattice in
the lower half of the figure.

Without appealing to the figure one easily checks that the sequences

(2w + yw, z+ yw, y + 2w, w,u),
(@ +w')y +w'),y +w',2" +2'(y +w'), 2" +w',u')
are diamonds. We claim that
[xw + yw, w]\ [y +w' %] .
In fact, since v’ <w< (x+u')(y+%'), we have

zwtyw+u = (z+uw w+y+u')w = w,
Yy +w' =y +2(y+aw)
' +2')(y +aw)
= u'(y+aw) = v'w(y+aw) = v (2w+yw) .

The two diamonds must therefore be degenerate. In particular w=w,
that is, u=v+4'. Dually »'=u'v, and the proof is complete.

Lemma 4. If L is a modular lattice such that M, 5 is not a homomorphic
image of a sublattice of L, then any two non-trivial intervals in L that are
projective to each other have mon-trivial subintervals that are projective to
each other in three steps or less.

Proor. Assume that the given intervals, [a,b] and [c,d], are projective
in four steps, and that no non-trivial subintervals are projective in fewer
than four steps. It is clearly sufficient to show that these assumptions
lead to a contradiction.

By Lemma 2 there exists a strongly normal sequence of transposes

[2,0] = [ao, 0] /(01,011 [@s, b2] 7[5, 053]\ [24,04] = [c,d],
or dually. We therefore obtain three diamonds

(@9 + @z, by + g, @1, a9 + by, by)

(@2, @1b3,b9,0103,b,03) ,

(@g+ag,by+ ay,a3,b5+ay,b;)
We claim that

(1) (@ + a2, 0,1\ [ag, 01051 /' [ag + a4, b5] -
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In fact,

aby = ay(bibs),  @p+by = byt (ag+ay), [ag,b]\[ayb,],
biag = ay(bibs), bytay = by+(az+ay), [as,bs]\[asb,],

whence the assertion follows by Lemma 3. We now verify that

(2) (@0, 00] /' [b2+ @g+ @y, by + bg] \[ay, b,] .
Indeed,

b + (be+ag+ay) = by+ay = by +bby+a,+ay = b;+b,,

bo(be+ag+ay) = ag+ by(by+ay)
= g + boby(by+ay)
= @y + by(by+0,8y) < @+ bo(by+ay)
= ay+boby = a,

Here we have made use of the fact that, by (1).
bibs+(as+a,) = by and bay = bibsay < bibs(ay+ay) = a,.

Thus the first part of (2) holds, and the second part follows by symmetry.

By (2) the intervals [a,b]=[a,, b,] and [c,d]=[a,,b,] are projective in
two steps, contrary to our assumption. This contradiction completes
the proof.

3. Proof of Theorem 1.

Lemma 5. Suppose L is a modular lattice, a, b, ¢, d € L and a<b<c<d.
If [a,b] and [c,d] are projective in three steps, then [a,b] transposes up onto
a lower edge of a diamond, and [c,d] transposes down onto an upper edge of
a diamond.

Proor. The condition b <c¢ implies that no non-trivial subintervals of
[a,b] and [c,d] are projective to each other in fewer than three steps. It
follows by Lemma 2 that [a,b] and [c,d] are connected by a strongly
normal four-termed sequence of transposes

[a,b] = [@g,b5] /7 [31,01]\[@2, 051 /' [@3,b5] = [c.d] .

Then [a,b] transposes up onto the lower edge [ay+ a,,by+ @,] of the dia-
mond

(@o+ @, b + Ap, @y, @y, Ay + b3, b4)

(Fig. 4), and [c,d] transposes down onto the upper edge [b,a3,,b5] of
the diamond
(@, @1b3, by, b1, b1bs)

Math, Scand. 22 — 18
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Proor or THEOREM 1. Assume that the condition (i) of the theorem
is satisfied, but (ii) fails. Then there exists a subdirectly irreducible lat-
tice L in V whose dimension is larger than 2. Choose a,, a,, a,, a;€ L
with ay<a, <a,<a;. Then some non-trivial subintervals [a,b] of [ay,a,]
and [c,d] of [a,,a,] are projective to each other, and by Lemma 4 these
intervals can be so chosen that they are projective in three steps. Simi-
larly, some non-trivial subintervals [¢’,d’] of [¢,d] and [e,f] of [a,,a,] are
projective to each other, and again we can assume that they are projec-
tive in three steps. Finally [¢’,d’] is projective to a subinterval of [a,b],
also in three steps. We infer by Lemma 5 that [¢’,d'] transposes up onto
a lower edge [v,z] of a diamond (v,z,¥,2,4), and transposes down onto
an upper edge [z’,u'] of a diamond (v',2',y',2',%'). Thus [v,z]\([2', '],
whence it follows that the ten elements u, x, y, 2, v, ', ', ¥, 2/, v’ form
a lattice which has M; ; as a homomorphic imate. This contradicts (i).
Thus (i) implies (ii).

To prove that (ii) implies (iii) we need only observe that the inclusion

(1) a(b+cd)(c+d) < b+ac+ad

holds in every lattice of dimension 2. Indeed, in such a lattice we always
have c<d or d<c or ¢cd=0, and each of these conditions implies that the
inclusion holds.

Finally, (1) fails in M, ; if we take for a, b, ¢ and d the four elements
that are both additively and multiplicatively irreducible, with ¢ and b
in the lower diamond. Therefore (iii) implies (i).

4. Applications.

For each cardinal n > 3 there exists one and, up to isomorphism, only
one lattice M, of dimension 2 and order n+2. All these lattices are
simple, and therefore subdirectly irreducible. To complete the list, let
M, be the one-element lattice and M, the two-element lattice. The
lattices M, with = infinite obviously all generate the same equational
class U,, since they all have the same finitely generated sublattices.
For n finite let U, be the equational class generated by M,. Also let
U, ; be the equational class generated by M, .

COROLLARY 6. The equational classes U,, n=1,2,...,w0, form a strictly
increasing sequence. They all have the property that My 4 ¢ U,, and they
are the only equational classes of modular lattices that have this property.

Proor. Clearly U,c U, whenever 1<n<m. According to Jonsson
[3], Corollary 3.4, if n is finite, then every subdirectly irreducible member
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of U, is a homomorphic image of a sublattice of M. Therefore, if n <m,
then M, ¢ U, so that U, <U,,.

By Jénsson [3], Theorem 3.2, every subdirectly irreducible member of
U, is a homomorphic image of a sublattice of an ultraproduct of lattices
M, and is therefore isomorphic to one of the lattices M,. Thus M; ;¢ U,
and hence M, 5 ¢ U, for every n. Conversely, suppose V is an equational
class of modular lattices such that M 5 ¢ V. By Theorem 1, every mem-
ber of V is a subdirect product of lattices of the form M, and V is there-
fore completely determined by the class J of all cardinals n with M, e V.
If J has a largest member %, then V=U,, and £ is finite. In the alterna-
tive case it is easy to see that J is the class of all positive cardinals,

and therefore V=U,,.

‘We note that the two applications of Jonsson [3] in the above proof
can be easily avoided. Regarding the first application this will be clear
from the next corollary, and to eliminate the second application we
need only examine the proof of Theorem 1. It is shown there that every
two-dimensional lattice satisfies the inclusion in condition (iii), while
M, 3 does not satisfy this inclusion.

CoroLLARY 7. U, 1s the class of all modular lattices that satisfy the
inclusion
a(b+cd)(c+d) < b+ac+ad,

and for 1<n<w, U, 1s the class of all modular lattices that satisfy this
inclusion and the inclusion

a Tl (@+e) < 3 ax

0si<j<n 0si<n

Proor. The first assertion is an immediate consequence of Theorem 1
and Corollary 6. To prove the second statement, observe that in a two-
dimensional lattice the second inclusion is satisfied whenever two of the
elements a,%,,2,,...,%,_; are equal as well as when one of them is 0
or 1, but fails whenever all n+1 elements are distinct atoms. Hence
this inclusion holds in U, but fails in M, ,,.

COROLLARY 8. Uj is the class of all modular lattices that satisfy the

inclusion
a(b+c)(c+d)(d+Dd) < ab+ac+ad.

Proor. This is but a relettering of the second inclusion in Corollary 7
for =3, and it clearly implies the first inclusion there.
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This result is a solution to Problem 45 in Birkhoff [1], p. 157. In Schiit-
zenberger [4] another characterization of Uy, is offered without a proof.
The axiom system proposed there consists of the lattice axioms and the
modular law, together with the identity

a(b+c(d+e)) = a(b+cd) + a(b+ce) + ac(d +e) + ad(c+ be) + ae(c+bd) .

This identity holds in M; but fails in M, and Mj 5, and Schiitzenberger’s
assertion therefore follows from our Theorem 1.

CoROLLARY 9. In the lattice of all equtional classes of modular lattices,
U, is covered by precisely two classes, Uy and Ug z, and every class that
properly contains Uy contains either U, or U, .

Proor. That U, and Uj 3 cover U, follows from Jénsson [3], Corollary
3.4. If V is an equational class that properly contains U,, then either
U, sV, or else Vis one of the classes U, with n>3. In the latter case
we therefore have U,c V.

A weaker form of this result was proved in Gritzer [2]: If V is an
equational class of modular lattices that properly contains U,, and if V
is generated by a finite lattice, then U,cV or U, 3 V.

CoroLLARY 10. In the lattice of all equational classes of modular lattices,
if 3<n<w, then U, is covered by precisely two classes, U, ,; and U, + Uy 3,
and every class that properly contains U, contains either U, or U, 5.

Proor. The class U,NU; 3="Uj, is covered by U, 5, whence it follows
that U, is covered by U, + U; 3. Other than this, the proof is exactly
analogous to the one for Corollary 9.
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