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ON ONE-SIDED INFINITELY
DIVISIBLE DISTRIBUTION FUNCTIONS ON R*
HARALD BERGSTROM

1. Introduction.
Consider distribution functions (d.f.’s) on a x-dimensional Euclidean

space R*. Denote the points on R* by letters x,y,..., and their coor-
dinates by the same letters with subscripts, x = (2;,%,,. ..x,). A direction
is a vector v=(v,,%,,. . .,7,). A point 20 is called a boundary point of the

support of a distribution function G with respect to the direction » if

=0 for e=0
f dG(x){>0 for ¢>0.
v (@—29)<s
In the 1-dimensional case there are only two directions. The boundaries
of the support of an infinitely divisible d.f. G' in R! have been investi-
gated by G. Baxter and J. G. Shapiro [1]; G. G. Tucker [5], C. G. Esseen
[3], and M. Jifina [4] gave the exact boundaries in relation to the in-
variants in the Lévy representation of the characteristic function.

It may be of interest to investigate boundaries in some sense also for
d.f.’s on R* for x> 1.! We shall show that it is possible to associate these
boundaries with the divisibility property and with invariants directly
related to this property, and also with the invariants in the Lévy repre-
sentation. For this purpose we essentially use the limit theorem for
sequences of convolutions of d.f.’s. Hence our method differs from the
methods used for one-dimensional d.f.’s by the authors quoted above.
The most laborious part of our investigation is the construction of a d.f.
with given invariants, carried out in Section 2. This construction, how-
ever, may have an interest of its own.

From [2] we quote two theorems which we state here in special forms
in accordance with the present applications. At first we shall make some
remarks on concepts used in the book mentioned.
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1 Dr. Richard Savage inspired me to this investigation by pointing out its importance
for some applications. The work was prepared while I was a visiting professor in the De-
partment of Statistics, Florida State University, Tallahassee, Florida.
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Consider functions ¢ which are nondecreasing in the sense used in [2,
p. 238] at all points different from the origin. Let the function Q; de-
fined by
(1.1) Q) = lim,,_, . q(x), k=1,2,...,%, k+j

exist for j=1,2,...,%. Itis called the jth marginal function of ¢q. A point
 is called exceptional for g if it is a discontinuity point of some marginal
function of gq.

For a d.f. F, on R* we consider the sequence {n[F,—e]}, where e
denotes the unit d.f. and say that this sequence tends completely to a
function ¢ (which then is of the type just mentioned) if the sequence
tends to g at all non-exceptional points for ¢ and if, at any infinite limit
point Z (i.e., with at least one coordinate equal to + oo or — o), it tends
to the corresponding limiting value ¢(Z). For this complete convergence
we use the notation c-lim n[F,—e].

We say that a number % is proper for ¢ if all points x with z;= +7
or x;= —n for some j are non-exceptional for g. Of course the set of
proper numbers # for ¢ is dense on (0, + co) since the discontinuity points
of @; are countable. We use the notations

l_)(n) ={x: |z <7 k=12,...,x},
D) = {x: |z) £ k=1,2,...,x}.

The following theorem is a special form of Bergstrém [2, Theorem II
6.4, p. 321].

THEOREM 1.1. A sequence F,*" of convolution powers of d.f.’s F, on
R*, n=1,2,..., converges completely to a d.f. G if and only if the sequence
{n[F,—e]} is Cauchy convergent in the Gaussian norm.

We combine this theorem with Theorem II 5.3.3 in [2] which we use
in the following special cases.

THEOREM 1.2. 4 sequence {F,} of d.f.’s is Cauchy convergent in the
Gaussian norm if and only if F, tends completely to a d.f. F.

THEOREM 1.3. The sequence {n[F, —e]} defined in Theorem 1 is Cauchy
convergent in the Gaussian norm if and only if the following conditions hold :

(i) c-lim n[F,(z) —e(z)] = q(x)

exists (q fintte for x+0),

(i) lim n f z; AF () = ay(n)
n~—>»+00 E(ﬂ)

exists for numbers n proper for g,
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n+oo

(i) lim 7 J 24y dF () = 04507
)

exists for numbers n proper for q.
ReEMARK 1. The condition (i) implies the following properties of ¢:

a) ¢ is nondecreasing and bounded on R*—D(5) for any 5 >0,
b) lim,, , . g(x)=0 for any £,
c) limallmk—)+oo g(z)=0.

Hence

(1.2) f dg(z) < +oo
lzjlzno
for any 7,>0 and any j.
The condition (iii) implies the relation

(1.3) f 22 dg() < +oo,
D(n)—-Di0+)

the notation indicating the limit as #' — 0+ of the corresponding inte-
gral over D()—D(%’).

REMARK 2. The quantities ¢, «; and «;; are invariants of the infinitely
divisible d.f. G@=c-limF,**. We call ¢ the first invariant, the vector
o =(xy,&,. . .,%,) the second invariant, and the matrix («;) the third
invariant. The second invariant is uniquely determined by ¢ and «(z,)
for any number 7,> 0 which is proper for ¢. The third invariant is uni-
quely determined by ¢ and the limits «;(0+)=lim, o, o;y(7) which
exist when 7 tends to 0+ through proper values.

REMARK 3. The conditions (ii) and (iii) are here given in a form
slightly different from the conditions 2° in the quoted theorem, but it
is easily seen that the conditions 1° and 2° in that theorem are equivalent
to the conditions (i)—(iii) in the theorem above.

According to Theorems 1 and 2 an infinitely divisible d.f. can be con-
structed as a limit of u sequence of convolution powers. We shall show
in Section 2 how this construction can be carried out when the invariants
are given.

Now we state the main theorem of this paper, the proof of which will
be given in Section 3.

THEOREM 1.4. In order that 2° be a boundary point of the support of an
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infinitely divisible d.f. G on R* with respect to the direction v it is mecessary
and sufficient that the invariants q, « and (xy) of G satisfy the conditions

1° f dg(z) = 0,
yv-x<0
2° vex(n) >valasn >0+,
3° {«;;(0+)} is the covariance matriz of a singular normal d.f. which has
its support on the hyperplane v-x=0.

2. Construction of infinitely divisible d.f.’s.

LemMa 2.1, Let F and G be infinitely divisible d.f.’s on R* and F = F,*»,
G =G, *" for any positive integers n. Then

F+@ = cim[}(F, +G,)]*2 .

REMARK. More generally we have the relation

F.+F coi+ B, \ Men
Fl*Fz*. . *Fk = lim”_)_‘_m( 1n+ 271,_]: + Icn)

if the F; are infinitely divisible d.f.’s and F;=F}" for all n. This can
be proved by means of the general product-sum inequality in Bergstrém
[2, p. 161]. However, one may use a special method for the case k=2,
as we show here.

Proor. For any two d.f.’s F and G we have (cf. Bergstrém [2, Lemma
7.11, p. 82]).

(21)  (FuxGQ)* — HF o+ G)*| = nl|Fy %Gy — (F o+ G
= nll(Fp—Gn)* = in|[(Fn—e) — (Gn—e)]*¥,

where [|-|| denotes the Gaussian norm. By [2, Theorem II 4.2.3, p. 301],
we have
|(F —e)*(G—e)ll < y1llF —ell |G~el

with a constant y, for any d.f.’s F and G. Using this inequality we get
from (2.1)

(2.2) [(FpGp)* — 3(Fpt Gp)**| = dnpy [IFn—e] + |Gr—ell® -

Since F,*» and G,*" tend completely to F and @, respectively, we find
by Theorem 1.1 and Theorem 1.3 that {n[F, —e]} and {n[G,—e]} are
Cauchy convergent in the Gaussian norm and so they are bounded in
this norm. Hence the right hand side of (2.2) tends to 0 as n - + o0 and
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by Theorem 1.2, [}(F, + G,,)]**" tends completely to F x« G which obviously
is infinitely divisible.

It may be observed that we use the boundedness of n[F, —e] and
n[@, —e] in the Gaussian norm only in order to prove that the right hand
side of (2.2) tends to zero. By means of Lemma 1 the construction
problem can be reduced. At first we observe that the normalized normal
d.f. @ with moment matrix (x;(0+)) has first and second invariants
equal to 0. Hence if F is an infinitely divisible d.f. with the invariants ¢,
o, (xg"), with &;;(0+)=0 for all ¢ and j, then @« F has the invariants g,
&, (%4).

Since ¢ has the property (1.2), we can determine a sequence {»,} of
values proper for ¢ such that 9, -~ 0+ as n - + oo, and

1
= [ dg@ =pa<1.

R*—D(np)
Define the d.f. H, by
1
(23) H@=> [ )+ (1-pe(a)
[t:t<z]-D(np)
and the moment vector (c,™,...,c,™) by
(2.4) o™ = f x; AH (%)
Do)

for some value 7, proper for ¢. Then put

(2.5) dm = o™ — a(n)fn
and
(2.6) F(x) = }[Hu(z) + e(x+d™)] .

It easily follows that F, is mean-continuous when ¢ is mean-continuous
and 7, is proper for g. We state

THEOREM 1. The d.f. F=c-limF *2* where F, is defined by (2.6), is
infinstely divisible with the invariants q, «, («;;'), oy’ (0+)=0 for all 4
and j.

For the proof of this theorem we need
Lemma 2.2. We have ¢®=o(n"1) as n - + oo,

We first use this lemma to prove the theorem and then prove the
lemma.
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Proor or THEOREM 1. By the definition of F, we get, choosing
r; < ~n< —mn, for some j,
2n[F,(x)—e(x)] = 2nF, (z) = q(x) + ne(zx+d™) - q(x) as n — oo,

since x;+d;™ <0 for sufficiently large n. Choosing z;2%>0 for all j
we get
2n[F ,(x) —e(z)] > q(x) as n—> +oo,

since x;+c, >0 for sufficiently large n. Furthermore,

2n f x; dF,(x) = n f z; dH ,(x) — ncj(")-l-oc,-(no) = a;(ny)
D(no) Do)
and
2n f z2dF,(x) f x;2 dq(x) + 2n(d ™) — f x;2 dg(z) ,
D(n) D(n)y—DO+H) D(m)—D(0+)

since d;™=o0(n-*) by Lemma 2 and the definition of d™. Clearly the last
integral tends to 0 as 9y — 0+. Then also

2n J- zx; dF

n(®) = 0
D(m)y-D(0+)

as first n > + oo and then 9 - 0+. The rest of the proof follows from
Theorems 1.1 and 1.3.

Proor or LEMMA 2.2. We observe that

1
o da(e) + ~mn [ da(e).

1
f x; dH () -
[nni=lzil<no D(noy-D(nn)

D(no)

The first term on the right hand side is equal to

f z; dQ,(x,)

-0

1 70
+ = [ 200z .

n

Both these terms are o(n-%) according to Bergstrém [2, Lemma I, 7.11,
p. 102], and

1 1 *
;; Nn J- dQ(x) = 7'1:.7:21 Nn ’. dQ](xj)

D(no)—D(np) s I;leéﬂo

s23 | e = on ).

I=1 pusizji<no
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3. Proof of the main theorem.
LemMma 3.1. For any direction v and d.f.’s F and G the following im-
plications hold :

1° de(x)=o, JdG(x):O = de*G(x)=o,

v <0 v 2<0 v x<0

20 f AF+G(x) > 0 < f dF(z) > 0, f dG(z) > 0,
v <0 v <0 v <0

3° f dF(z) = 0 < f dF**(z) = 0, n any positive integer.
vy 2<0 v <0

Proor. The first two implications follow from the inequalities

(3.1) ] LOdF*G(x) é.,- Lodﬁ’(x) +.,. LodG(x),
(3.2) ) L OdF*G(x) gv. LodF(x)'. iodG(x),

and 3° follows from 1° and 2°.

LeMMA 3.2. In order that the zero point be a boundary point of the sup-
port of an infinitely divisible d.f. @ on R* with respect to the direction v it
ts mecessary that its invariants ¢ and {x;} satisfy the following conditions:

1° f dg(z)=0,

- 2<0

2° ‘f vz dg(x) < + oo for any n>0,
Din—-D(0+)
3° {x4j(0+)} is the covariance matriz of a singular normal d.f. which
has its support on the hyperplane v-x=0.

Proor. Let G=G,*" for any positive integer n where G, is a d.f.
If zero is a boundary point of G with respect to » then, according to
Lemma 3.1, 3°, it is also a boundary point of G, with respect to ». Hence
applying Theorem 1.3 we.get

f dq(z) = lim n f d@,(x) =0,

N—>+00

v-2<0 v 2<0

and thus 1°.
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According to the same theorem we also have

vx(n) = lim » f vz dQ,(x)

and
vea(n) = lim n vz dG, (z) = f vz dg(z)
" Diy-Die) Diny-D(e)

if # and ¢ are proper for ¢q. Letting ¢ - 0 we get 2°.

Since @ is uniquely determined by its invariants, we find, by the con-
struction in Section 2, that G is a convolution of two infinitely divisible
d.f.’s H and @ with the invariants ¢’, «', («;;') and ¢”, «”, («;'"’), respec-
tively, where ¢'=gq, a'=«, «;(0+)=0, ¢"=0, &«"'=0, «;"(0+)=
x;#(0+). Then @ is a normal d.f. with the covariance matrix {x;;(0+)}.
We have to show that it is singular with its support on the hyperplane
v-x=0. Now if @ has not its support on the hyperplane »-x=0, we have

f dd(z) > 0

rxz<-h

for any real number % and thus

f iQ(z) 2 f dH(x) f dd(z) > 0

v <0 v-x<h v x<—h

for A > 0 sufficiently large. This contradicts the fact that zero is a bound-
ary point of the support of G with respect to ».
The lemma is proved.

In order to prove Theorem 1.4 we first suppose that G is an infinitely
divisible d.f. with the invariants ¢, « and (x;), and assume that z° is a
boundary point of the support of @ with respect to the direction ».
The conditions 1°-3° of Lemma 3.2 must be satisfied. Denote by
G(- +22) the function which has the value G(x + 2°) at the point . Then
the zero point is a boundary point of the support of G(- +2°) with respect
to » and G(- +2°) has the invariants ¢, « — 9 and («;;). In fact we have

G(- +2% = Gxe(- +29),
and by Lemma 2.1 we get
G(- +2%) = c-lim {}[Gy +e(- +2%/n)]}**" .

Hence (cf. Theorem 1.3) G(- +2° has the invariants given above. We
have thus reduced the proof to the case where 2°=0.
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It is easily seen that v «(%) is non-negative and nondecreasing. Hence
(3.3) lim, o, v-a(n) = %
exists and A= 0. Assume that % is not 0. If y is a point on the hyperplane
v-x=h, then G(: +y) has the invariants ¢, x —y, («;), and
(3.4) lim, o, v+ (ax(n)~y) = 0.

As in Section 2 we construct an infinitely divisible d.f. @ with these

invariants. Let
F= climF, *n, G=Fx+«D,

where
(3.5) F,(x) = 3}[H(2) + e(x+d™)],
(3.6) dm = o — [x(np)—yln,

1
o™ = f x; dH,(x) = — f z; dq(x) .
Ding) " Do)-Dinm)

The last relation follows from the definition of H, (cf. (2.3) and (2.4)).
Since g(z) is constant on »-z <0, we get

1
H@) =~ [ )+ [1-palefx).

{[t:¢=x)-Dnn)}nly- 220]

By (3.3), (3.4), and Lemma 2 we get

v-(alm)=y) = valng) = lim gy v-a) = [ 22 da@).
D(no)y-D(0+)
Regarding (3.6) we thus get

1w+ d™ = ny-c™ — v+ (x(n,) — y) = f vz dg(x)— f vz dg(x),
D(n0y—-D(nn) Do-D(o+)

where the last difference is non-positive since g(z) is constant on »-z < 0.
Thus »-d™ <0 and hence e(x+d™) is constant on v-z<0. Since H,(x)
and e(x+d™) are constant on v-x <0, F,(x) is constant on »-2 <0, and
thus F(x) is constant on »-z <0, according to Lemma 3.1.

Now Fx® has the same invariants as G(- +y) and thus is identical
with this d.f. But then G(z) is constant on »-z <% in contradiction to
the assumption that the zero point was a boundary point of the support
of @ with respect to the direction v. Hence A=0. By the construction
of F we have proved that there exist infinitely divisible d.f.’s to any
given invariants satisfying the conditions in Theorem 1.4.
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By the method that we have presented it is possible to construct
infinitely divisible d.f’s with a given support, since we may consider
boundary points with respect to different points and directions.

At last we shall sketch an alternative formally simpler but less ele-
mentary proof of Theorem 1.4, still using the theorem about the existence
of infinitely divisible d.f.’s G with given invariants and the factorization
G=F«+®. We then give a procedure by which we reduce the proof in
the general case to the special case x=1. However, it is easily seen that
the simplification is only formal.

Let us study the measures pg, up and g, which belong to G, F and @
respectively. We introduce a new coordinate system by a linear trans-
formation x= By, chosen so that v-x=y,. We require that the zero
point be a boundary point of the support of @ with respect to the direc-
tion ». Let G, F and @ be the d.f.’s corresponding to ug, gz, and g,
respectively, in the new coordinate system. These d.f.’s are infinitely
divisible and the zero-point is a boundary point of the support of @
with respect to the direction orthogonal to the hyperplane y, =0. Define
GO by

é(l)(yl) = limyg,...,yn—++ooG(y) )

and F® and @O in the same way. Clearly @® is the unit d.f. on the
line. Further, putting F=F, * for every positive integer n and ob-
serving that F is infinitely divisible, we get F®=(F,®)* If now
Theorem 1.4 is proved in the case » =1 we find by this theorem that the
necessary and sufficient conditions for the zero-point being a left boundary
point of F are as follows:

1° lim # f dF,O,) = 0, 7>0,
n—>+00
Yyi<-n

2° lim lim n» Yy, dF,O(y,) = 0.

n—>0+ n—>+400
lyl<n

These conditions may be written

lim n f dF,(y) = 0, 7>0,

n—>400
+ y1<-n

lim lim n j y,dF,(y) =0,

>0+ n—>+o00
>0+ lyal=n

respectively, or, if the transformation y=B-1x is performed,
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lim » f dF, (x) = f dg(z) =0, >0,
n=-+o0 Y r<—1n yox<—n
lim lim n J v-x dF(z) = lim, o, v-o(n) = 0.

n—>04+ n—>+4o00 Dn

By these conditions F is determined and @ can be derived in the same
way as before.
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