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AFFINE PRODUCTS OF SIMPLEXES

ALDO J. LAZAR

1. Introduction.

Let 8;,8, be two compact Hausdorff spaces and denote by
C(8;,C(8,)) the space of all continuous functions on §; having values in
C(8,)). If C(8;,C(8S,)) is endowed with the supremum norm, then it is
well known that this Banach space is isometrically isomorphic to
C(8; % 8,), the space of all continuous functions on the cartesian product
8; x 8, with the usual norm. It turns out that a similar situation is
valid for simplexes too. Suppose that K,,K, are simplexes and let
A(K,,A(K,)) be the space of all continuous and affine functions on K,
with values in 4(K,), the space of all real valued continuous and affine
functions on K, with the supremum norm. A(K,,4(K,)) normed by
Ilf|l = supg, e, Ilf (k1)l| has the finite binary intersection property for balls
(cf. [13, Theorem 3.3]). Since it is clear that the closed unit ball of
A(K,,A(K,)) has at least one extreme point, it follows from results of
Lindenstrauss [14] and Semadeni [16] that there exists a simplex K
such that A(K)=A(K,,A(K,)). Moreover, by Theorem 2.3 below, this
simplex is uniquely determined up to an affine homeomorphism. We
investigate here the properties of the simplex K, called by us the affine
product of K, and K,. Actually we deal with the affine product of an
arbitrary family of simplexes. Since the above construction is cumber-
some for infinite families of simplexes we start from another representa-
tion of A(K,,A(K,)): this space is isometrically isomorphic to the space
of those real-valued continuous functions on K, x K, which are affine
with respect to each variable in part (endowed also with the supremum
norm).

Section 2 of the paper contains two general results on simplexes which
are used in the sequel. The first one gives conditions for a continuous
function defined on the extreme points of a simplex K to admit a continu-
ous and affine extension to K and is a generalization for non-metrizable
simplexes of a theorem of Alfsen [2], [3]. The section ends with an
adaptation for simplexes of the Banach-Stone theorem. In Section 3
we define the affine product of simplexes and study some of its general
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properties. In Section 4 the facial structure of the affine product is
analysed. To this end we use maps of the affine product onto its factors
which remind the projections of a cartesian product of compact Haus-
dorff spaces.

The affine product of simplexes was independently defined and investi-
gated by Davies and Vincent-Smith [7], using a tensorial approach. We
did not omit those of our results which overlap with theirs (e.g., Theorem
3.2), since we thought it preferable to have a self-contained alternative
way of treatment.

This paper is part of the author’s Ph.D. thesis prepared at the Hebrew
University of Jerusalem under the supervision of Professor A. Dvoretsky
and Dr. J. Lindenstrauss. The author wishes to thank them for their
helpful guidance and kind encouragement.

The author is greatly indebted to Dr. G. F. Vincent-Smith, for many
valuable suggestions concerning this paper. In particular, all the proofs
of Section 4 are due to him; those originally proposed were awkward
and much longer.

Let K be a compact convex subset of a locally convex linear topological
space. A subset FF'<— K is called a face of K if it is convex and satisfies

0<iA<]l, ki ,kye K, Mey+(1=AkyeF = ky ke ¥ .

The set of the extreme points of K (one-point faces) is denoted by oK.
If X is a Banach space, we denote by A(K,X) the space of all continu-
ous and affine functions on K having their values in X and we consider
it equipped with the norm ||f||=sup,.x ||f (k). We denote A(K,(— oo,))
by A(K). Let S(K) be the cone of all continuous concave functions on K.
The upper and the lower envelopes of a bounded real valued function f
given on a subset M of K containing 0K are defined as follows (cf. [6]):

f(k) = int{gk): g€ S(K), ga2f},  kekK,
f(k) = sup{g(k): ge —S(K), gu=f}, kekK.

If u is a Radon probability measure on the compact convex set A,
then the point k € K is called the barycenter of u if f(k)=[gfdu for
each fe A(K). The probability Radon measures on K are ordered by

B > P <= ffd,‘h éffd/‘m VfeS(K)
K K

(Choquet’s ordering). For every k € K there exists a measure u on K,
maximal in this ordering, whose barycenter is k ([6], [15, p. 24]). The
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compact convex set K is called a simplex if for each k € K the correspond-
ing maximal measure is unique. It is easily seen that a closed face of a
simplex is itself a simplex. One can embed the simplex K into 4*(K)
by an affine homeomorphism in a natural way:

Tk)f) = fk), keK, fe AK

We shall make no distinction between K and its image in A*(K). The
simplex K is called an r-simplex if 0K = 0K (cf. [1]).

A normed space X is said to have the finite binary intersection property
(F.2.1.P.) if every finite collection of mutually intersecting closed balls
in X has a non-void intersection (cf. [14]).

Let H be a space of functions on a set. The space H has the Riesz
separation property if, whenever f,,f,,9:,9.€ H, fivfs<g.Ag,, there
exists h € H such that fivf, £h<g,Ag,.

Let S be a compact Hausdorff space and H a subspace of C(S) which
separates the points of § and contains the constants. The Choquet
boundary of H consists of those points s € § such that the only positive
linear functional « € C*(S) which satisfies u(f)=f(s) for all fe H is the
evaluation at s.

2. Affine extensions and affine homeomorphisms.

Alfsen [3] (see also [2]) gave necessary and sufficient conditions for a
continuous map defined on the extreme points of a metrizable compact
convex set K (valued in a locally convex linear topological space) to
admit an affine continuous extension to the whole of K. We are going
to show that his characterization is valid for non-metrizable simplexes
as well. A similar result was obtained by Effros [11].

Lemma 2.1. Let K be a simplex and f: K — (— o0, 00) a bounded contin-
ous function. There exists an affine and continuous extension of fto K
if and only if f and f are continuous on 0K. Such an extension, if it exists,
18 unique.

Proor. The conditions are obviously necessary since an affine continu-
ous real function is the upper and the lower envelope of itself.

Suppose that f and f are continuous on dK. As remarked by Alfsen
[3, p. 4] this implies that

(2.1) Fk) = flk) = fk),  kedkK.

Hence, f can be extended to a continuous function on oK.
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The upper envelope f is the pointwise limit of a decreasing net of con-
tinuous concave functions on K. By Dini’s theorem the convergence of
the net is uniform on 0K. Consequently, for every natural number n
there is a continuous concave function g, on K such that

(2.2) Fk) < gu(k) < fR)+1/n, k€K .
Similarly, there is a continuous convex function 4, on K such that
(2.3) fk)=1/n < hyk) < f(k), kedK.

By (2.2), (2.3) and Bauer’s maximum principle [4] we infer that 4, <g,.
From a theorem of Edwards [9] it follows that there exists f, € A(K)
with b, £f, £g,. From (2.1), (2.2), (2.3) and the last inequality it follows

that FE) —foB)] < Un,  keok,

that is, the sequence {f,}*_,<A(K) converges uniformly to f on oK.
By applying again Bauer’s maximum principle we conclude that this
sequence is uniformly convergent on K. Clearly, its limit, which coin-
cides with f on 0K, is the desired extension.

The uniqueness of the extension is an immediate consequence of the
Krein-Milman theorem.

REMARK. The continuity on 0K of only one of the envelopes is not
sufficient for the existence of a continuous and affine extension. Indeed,
suppose that K is a simplex, 0K + 0K and let f be a continuous concave
function on K such that for a certain point k,e 0K \0K it satisfies
J(ko) > p(f), p being a probability Radon measure on K having its bary-
center in k,. Then f=f but Jlox has no continuous and affine extension
to K.

TrEOREM 2.2. Let K be a simplex and K, a compact convex subset of a
locally convex linear topological space E. A continuous map T:0K - K,
can be extended to a conttnuous and affine map of K into K, if and only
if for each f* € E* the real functions

P ~N—
f*oT and f*oT
are continuous on oK. Such an extension, if it exists, is unique.

Proor. Let A'(K,) be the subspace of A(K,) formed by the restric-
tions to K, of all continuous and affine functionals on £. By the hypo-
thesis and the preceding lemma it follows that if ¢ € 4'(K,), then goT
has a unique continuous and affine extension to K. Let U': A"(K,) -~
A(K) be the map which puts in correspondence the function ¢ € 4'(K)
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with this extension of po7'. It is readily seen that U’ is a bounded
linear operator. Since 4’(K,) is norm dense in 4(K,) (see [15, p. 31]),
U’ has a bounded linear extension U: A(K;) -~ A(K). The adjoint U*
of U maps K into K, (K, K, are considered canonically embedded into
A*(K), A*(K,), respectively) since U*20 and U(lg,)=1x. Obviously
U*  is the required extension of 7'.

The uniqueness of the extension follows from the fact that 4'(K,)
separates the points of K.

REMARK. As pointed out by Alfsen [3], if K is an r-simplex, then any
continuous map 7': 0K — K, fulfills the conditions of the theorem and
therefore admits a continuous and affine extension to K. For real
valued maps this fact was proved by Bauer [5].

Now we turn to the generalization of the Banach—Stone theorem.

THEOREM 2.3. Let K,, K, be simplexes. The spaces A(K,), A(K,) are
1sometrically isomorphic if and only if K, and K, are affinely homeomor-
phic.

Proor. The “if”” part of the theorem is trivial. Assume that 7' is a
linear isometry of 4A(K,) onto A(K,). Obviously T*(K,) is a simplex
affinely homeomorphic to K, contained in the closed unit ball of A*(K,).
It is easy to see that F+=K,nT*(K,) is a closed face of K, and T*(K,).
Similarly, F-=K,nT*(—K,) is a closed face of K, and T*(—K,). The
extreme points of K, belong to 7*(K,)uT*(— K,). Hence

K, = conv(F+UF-) = conv(F+UF-)

by the Krein—-Milman theorem and [8, p. 79-80]. Moreover, since K,
is a simplex, the representation of each point k € K, as

k= A+ (1-A)k"
with 0SA<1, k' € F+, k"’ € F- is unique. Define ¢: K; — T*(K,) by
a(k) = A" —(1-A)k"”

where k € K, is represented as above. Clearly o is affine and a compact-
ness argument proves that it is also continuous. Since 7T*(K,)=
conv (F+u(—F-)) and T*(K,) is a simplex, ¢ is an one-to-one map onto
T*(K,). The map T*-10 ¢ is an affine homeomorphism of K, onto K, and
the proof is complete.

REMARK. It is worth noting that, as remarked in [3], two non-affinely
homeomorphic simplexes may have homeomorphic sets of extreme points.
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3. The affine product.

Let {E;};.; be a family of linear spaces and K,<FE, a convex set for
each ¢ € 1. Denote by p; the projection of X{K,:4 € I} onto K;. A map
f from X{K,: 4 € I} into a linear space is called multi-affine if it is affine
with respect to each variable in part, that is, if for each i, € I, from

kk ke X{K;:1el},
pik) = pyk') = py(k?), 1e€l\{ip},
Pig(k) = Ap;(k') + (1 —A)py(k?), 0=A=1,
it follows that
f(k) = Af (k1) +(1—=A)f(k2) .

From here throughout this paper K ={K;:4 eI} will be a family of
simplexes. By H we denote the space of all continuous and multi-affine
real valued functions on X{K,: 4 e I} with the supremum norm. This
space will be used to define the affine product of K but before doing
this we must take one more step.

TaeoreM 3.1. H has the F.2.1.P.

Proor. If I is finite, the statement of the theorem may be proved by
induction relying on Theorem 3.3 of [13]. Suppose that I is infinite.
Denote by B the subspace of H defined as follows: f e B if and only if
there exists a finite set 1, <1 such that f is constant with respect to the
variables k; € K;, i € I\ I, that is,

Pk =py(k?), Viel; = f(k\)=f(K?).

According to [14, p. 34] the assertion will be proved if we show that B
has the F.2.1.P. and is dense in H.

Let us prove that B has the F.2.1.P. Clearly, it suffices to show that
any finite set {f,,f,,...,f,} =B is contained in a subspace of B having
the F.2.1.P. By the definition of B there is a finite set I’ I such that
Si:fas- - -:fn are constant with respect to the variables k; e K;, 1e I\1I'.
Denote

B = {feH: kk2e XK;, p,(k)=p;(k?) Vie INI' = f(k')=f(k?)}.

Then {f,fs,. . ..fu} B ' <B. Since B’ is isometrically isomorphic to the
space of all continuous and multi-affine functions on X{K,:4eI'} and
this space has the F.2.1.P. as remarked at the beginning of the proof,
our claim about B is proved.

Now we pass to prove that B is dense in H. Let fe H and £>0.
Cover X{K;:1 €I} by neighborhoods V,,V,,...,V,, from the usual
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basis of the cartesian product such that the oscillation of f on each of
them is less than e. Denote

J={el: AV, p(V)+K,, 1slsm}.

Choose ke K;, ieI\J, and define f': X{K;:i €I} - (—o0,00) by
J'(k)=f(k") where

, pik), ted,
pilk’) = {k“ ieINJ.

Since J is finite we have f’ € B. Clearly, if k € X{K,:7 € I}, then
If'(k)=f(B) = |f(E)=f(R)] < &

(ke V,=k'€V;). Thus B=H and this completes the proof of the
theorem.

Since the function identically equal to 1 on X{K,: ¢ € I} belongs to H
(and is an extreme point of the closed unit ball of this space) it follows
from [14, Theorem 4.7, Theorem 6.1] and [16] that there exists a sim-
plex K such that H=A4(K). By Theorem 2.3 this simplex is uniquely
determined up to an affine homeomorphism and we call it the affine
product of the family K. It will also be denoted in the sequel by
TI1{K;:i€I}. The order in H given by [14, Theorem 4.7] coincides
with the natural order (f=0 <= f(k)=0, Vk € XK,), so one may take
as K the positive face of the unit sphere of H* when the order in H* is
dual to that of H. It is not hard to see that the defined affine product
of simplexes is commutative and associative.

We are now going to identify the extreme points of [J{K;7eI}. If
ke X{K;:i eI}, then ke H* denotes the functional given by k(f)=
f(k), fe H. Tt is easily seen that k — & is a homeomorphism between
X{K;:i eI} and the subset {k: ke XK,} of [T{K;:i¢el}.

THEOREM 3.2 A functional f* € H* is an extreme point of [1{K;: ¢ €I}
if and only if f*=k for a certain ke X{0K;:4 € I}.

Proor. Let ke X{oK,:1e€I}. If I is finite, one can prove that
kEed [1{K;: i € I} by using Theorem 3.2 of [13] and an induction argu-
ment. Let I be infinite and assume that

F=30+0), Llell{K;:iel}.

It is enough to show that !, and [, take the same values on B, where B
is the space defined in the proof of Theorem 3.1. Pick fe B and let
I' <1 be a finite set satisfying the condition
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Pi(kY) =py(k?), YVie INI' = f(k')=f(k?).
Denote, as before,
={geH: kL ke XK, pi(k')=p,k?), Vie I\I = g(k')=g(k?)}.

We have already remarked that B’ is isometrically isomorphic to the
space of all continuous and multi-affine functions on X{K;:iel'}.
Thus, by the validity of the theorem for finite affine products, the func-
tional % |p 18 an extreme point of the closed unit ball of B'*. Hence
k(f)= ll(f) lo(f), that is, ke 0 TI{K;: i € I}.

The proof of the ‘“‘only if”’ part is almost identical with that of the
corresponding part of Theorem 3.2 in [13] so we omit it.

The next result establishes the relationship between the cartesian
product of compact Hausdorff spaces and the affine product of simplexes
defined by us. If § is a compact Hausdorff space, we denote by .#,(8S)
the set of all Radon probability measures on 8 endowed with the w*-
topology as a subset of C*(8). It is well known that .#,(S) is an r-simplex
and conversely, every r-simplex admits such a representation (cf. [5]).

CoroLLARY 3.3. If {S;:4 € I} is a family of compact Hausdorff spaces,
then M,(XS,;)=TI#(8S;). The affine product of a family of simplexes is
an r-simplex if and only if each factor is an r-simplex.

Proor. By the preceding theorem 9 [T.#,(S;) = X0.#,(S;)= X8, and
the result follows from the fact that an r-simplex is completely deter-
mined by its set of extreme points. The second assertion is a trivial
consequence of Theorem 3.2, the Tychonoff theorem and its converse.

ReMARK. It is easy to check that even if K,, K, are one-dimensional
simplexes, the image of K, x K, does not fill up the affine product
K, TI1K,.

If fe H then we denote by f the continuous and affine function on
TI{K;: i € I} corresponding to f, that is, f(k)=f(k), ke X{K;:ieI}.
So far only real valued functions have been extended to TT{K,:¢ € I}.
The next theorem shows that continuous and multi-affine maps into a
locally convex linear topological space can be extended to the affine
product.

TarorREM 3.4. Let C be a compact convex subset of a locally convex
linear topological space E and T: X{K;:1e€l}—~C a continuous and
multi-affine map. Then there exists a unique continuous and affine map
T:T1{K;:i eI} - C such that T(k)=T(k) for every ke X{K;:ieI}. If
E is a Banach space, then
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sup||T@)|| = sup [|T(k)| -
lelIK; keXK;
Proor. Put K=TI{K;:ieI}and let 7": 9K — C be the map defined
by T'(k)=T(k), k€ X{K;:1 e I}. For any z* € E* we have

P ~~ —
z*¥0 T’ = a*ol" = x*oT
since z*o 7' is continuous and affine on K, and on 0K coincides with

z*oT'. By Theorem 2.2, 7' has a continuous and affine extension
T:K —C. If ke X{K;:i eI} and z* € E* then

x*(T(Tc)) = x?T(lE) = x¥(T'(k)) ,

which means that T'(k)=7T(k). The second assertion of the theorem
follows easily from the fact that 7(K)=conv7(XK,).

REMARK. In case C is a simplex the same result was obtained by
Davies and Vincent-Smith [7].

CoRrOLLARY 3.5. Let {K;:i€l,}, {K;:i€l,} be two families of com-
plexes. If I,ul,=1I,I,nI,=0, then]1{K;: ¢ € I} is affinely homeomorphic
to (TT;er, Ki) TT(TTzer, Ko)-

Proor. Denote K,=TI{K;:1€l,}, K,=TI{K,;:t€l,}. Let H be,
as usual, the space of all continuous and multi-affine functions on
X{K;:1eI}. Let H' be the similarly defined space for X{K;: 1 e I,}.
By Theorem 2.3 it suffices to show that H is isometrically isomorphic
to A(K, T1K,)=A(K, A(K,))=A(K,,H'). Pick fe H. Define

f'e X{K;:eel} > H'
by
FUNER) = f(k), KkeX{K;:iely), k¥e X{K;:iel,},
where
p'(k1)7 1€ Il ’
Pilk) =\ ), iel,.

From the previous theorem we infer that there is a continuous and affine
function f’: K, — H’ such that f'(')=f’(k'). Clearly, ||f’[|=|\f|l and the
map f - f ' from H to A(K,,H’) is linear. It is easily seen that the image
of H by this map is all of A(K,H’). Thus we have found the desired
isometry.

4. Projections and closed faces.
Now we turn to investigate some properties of the faces of the affine
product TI{K,;:s € I}.
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For any index ¢ € I one can embed A(K;) isometrically into A(TTK,)
by the map
Tif =f'. fedAK),
where

F(k) = flpy(k)), ke X{K;:iel}.

T;* maps A*(J1K,) onto A*(K;) and the image of [J{K;:4 €} is K;.
We denote by P, the restriction of 7;* to [T{K;:¢ € I} and call it the
projection of the affine product onto K;. Obviously P, is continuous,
affine, and if ke X{K;:1 eI}, then Pyk)=p;(k). Actually, one may
define P; as the extension of p; given by Theorem 3.4.

ProrosiTioN 4.1. If F is a closed face of TI{K;: 1 €1}, then P,(F) is a
closed face of K.

Proor. Since P,(0F)<0K, by Theorem 3.2, this is a particular case of
a result of Davies and Vincent-Smith [7, Lemma 6, Corollary 6].

TrEOREM 4.2. If P, is a closed face of K, for every i €l, then F=

N P7YF;) is a closed face of TI{K;:i €I} affinely homeomorphic to
TI{F;:iel}.

Proor. Clearly, F is a closed convex subset of TJ{K;: %€ I}. Suppose
that 1,,l, e TI{K;:9€ I}, 0<A<1, and Al;+ (1—A)l, € F. Then AP,(l,)+
(1=2)P,l,) e F; and this implies P;l,) e F;, P,l,) e F;. Therefore,
leF,l,e F, which means that F is a face of K.

Now we turn to show that A(F) is isometrically isomorphic with H,
the space of all continuous and multi-affine functions on F’'=
X{F,:1 e I}; according to Theorem 2.3, from this it will result that F
and JT{F;:47 e} are affinely homeomorphic. Consider F’ canonically
embedded in F. The restrictions to F’ of the functions of 4(F) form
(by [4]) a space isometrically isomorphic with 4(F'), which we denote by
A(F)p.. We have A(F)p<H<C(F'), and it is easy to see that the
Choquet boundary of both A(F)z and H is 0F. Since A(F)p has the
Riesz separation property, it follows from the generalization of the
Stone-Weierstrass theorem by Edwards and Vincent-Smith [10] that
A(F)p=H.

ADDED IN PROOF: Some of our results were obtained independently
by A. Hulanicki and R. R. Phelps in a forthcoming paper about tensor
products of ordered linear spaces.
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