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TENSOR PRODUCTS, INFINITE PRODUCTS,
AND PROJECTIVE LIMITS OF CHOQUET SIMPLEXES

E. B. DAVIES and G. F. VINCENT-SMITH

Introduction.

In this paper we prove that the weak tensor product of two simplex
spaces is a simplex space, that the projective tensor product of two com-
pact Choquet simplexes is a compact Choquet simplex, and give repre-
sentations of these tensor products. We then prove that the space of
multilinear functions on the infinite cartesian product of a family of
compact Choquet simplexes is a simplex space for the natural partial
ordering and supremum norm. We then show the existence of projective
limits in the category of compact Choquet simplexes and linear homo-
morphisms, the existence of projective limits in the category of compact
Choquet simplexes and linear boundary preserving homomorphisms, and
use these results to give a representation of an inductive limit of an
inductive family of simplex spaces.

Prerequisites.

An (AL)-space is a Banach lattice ¥V in which norm and order are
related by

(i) |+yl=|lx—yl|| whenever x,y € V with zay=0,
(ii) o+yll=l+ |y whenever 0<z,ye V.

An (AL)-space is a boundedly complete vector lattice, and the norm is
additive on its positive cone [9, pp. 100, 107]. Choquet [5], [6] and Ken-
dall [14] show that the base

{xeV: 022, ||=1}
and the cap
{xeV: 05z, |z|=1}

of the positive cone are linearly compact Choquet simplexes. If V is a

Banach space dual with weak*-closed positive cone, then the cap is

weak*-compact, and the base is weak*-compact if it is weak*-closed.
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According to E. G. Effros [11], a simplex space is a real partially ordered
Banach space A whose dual space is an (AL)-space for the dual partial
ordering. A is said to have the Riesz separation property (r.s.p.) if
when f,g<h,k € A, there is some u € A with f,g<u=<h,k. The following
intrinsic characterisation of simplex spaces and its corollary are due to
Davies [7], [8].

THEOREM 1. A s a simplex space if and only if it is a real partially
ordered Banach space with the r.s.p. and closed positive cone in which norm
and order are related by

() IfII=llgll whenever f,g € A with —g<f<g;
(ii) whenever f,ge A, there exists he A with f,g<h, and such that

1= A1l lgll-

CoroLLARY 1. If A is a normed linear space satisfying the conditions of
the theorem (except that of being a Bamach space) then the norm completion
A of A is a simplex space whose positive cone is the closure in A of the
positive cone tn A.

If 4 is a simplex space with dual cone K(4), then the base
{reK(d): |af=1}

is weak*-compact if and only if 4 has a norm unit [11]. A norm wunit is
a positive element e € 4 such that the unit ball in 4 is the set

{fed: —esf<Ze}.
If such an e exists it is unique, and in this case the sets
{xe K(A4): |x||=1} and {xeK(4): {e,x)=1}

are identical. If A4 is a simplex space we denote by X(4), or simply by X,
the weak*-compact Choquet simplex

{xed': 02z, ||z|=1 and {e,x)=1 whenever e is a norm unit of 4} .

Therefore X is either a base or a cap for K(4) according as 4 has a
norm unit or not. If X is a base it does not contain the origin. If X is a
cap it will contain the origin as an extreme point. Henceforward a sim-
plex is a compact Choquet simplex in a locally convex Hausdorff topological
vector space, which is etther disjoint from the origin, or else contains the
origin as an extreme point. An affine function f from a simplex X into a
linear space is said to be linear if f(0)=0 provided 0 € X.

If X is a simplex, and Y is a convex set in a linear topological space,
then &7(X,Y) denotes the space of all continuous affine functions from
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X to Y, while o7 (X, Y) denotes the space of continuous linear functions
from X to Y:
(X, Y) = {feL(X,Y): f(0)=0}.

So if 0¢X then &((X,Y)=o/(X,Y), but if 0 X and 0¢ Y, then
(X, Y) is void. When Y is the real field we write «/(X) and o7 ,(X).
If X is a simplex then X is homeomorphie with X(27(X)) under the
natural map, and we shall not distinguish between the two simplexes.

If 4,,...,4, are simplex spaces, then B(4,,...,4,) is the space of
bounded real multilinear forms on 4,x...x4,, and

K(4,,...,4,) = {T e B(4,,...,4,): T(fi,-..,f,)20 whenever
OéfiEAi, ?:=1,. . .,n}

is defined as the positive cone in B(4,,...,4,). If {X;: ¢ € I} is a family
of simplexes and Y is a convex subset of a linear space, then a function
F from the cartesian product X{X,: i eI} to Y is multiaffine (multi-
linear) if it is an affine (linear) function in each co-ordinate variable.
Thus F is multilinear if it is multiaffine and if F({z;})=0 whenever
{w;} € X{X;: 1 €I} has a zero entry. If ¥ is a convex set in a linear
topological space, then #Z({X;}:Y) and ALZ\({X,;}:Y) denote
respectively the spaces of continuous multiaffine and multilinear func-
tions from the topological cartesian product X{X,: eI} to Y.

A projective topological tensor product of a family {X,: i€ I} of sim-
plexes is a simplex X together with a function P € 4o/ ({X,},X) such
that for every simplex Y, and every F € Ao/ ({X;},Y) there exists a
unique F' e o/ (X,Y) such that F=F'oP. A projective topological
tensor product of simplexes is unique up to linear homeomorphism and
will be denoted by &{X;: i €I}. If none of the simplexes {X,: ie I}
contain the origin, and ®{X;: ¢ € I} exists, then it is the tensor product
of the family {X;: ¢ eI} considered only as compact convex sets in
linear topological spaces [16].

We state here two density results we shall use later.

Lemwma 1. If X is a simplex, and if L is a subspace of oZy(X) which
contains the constant functions (if any) and separates the points of X, then
L 15 dense in oZy(X).

If X is a compact Hausdorff space and L is a subspace of C(X) which
contains the constant functions and separates points, then the Choquet
boundary of L,

0.(X) = {xe X : ¢, is an extreme point of the unit ball
of the dual of L} .
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Here ¢, is the evaluation functional at x. If X is a simplex, then the
Choquet boundary of &7(X) is the set of extreme points of X. The fol-
lowing may be deduced from the results of [10].

THEOREM 2. Let X be a compact Hausdorff space, and let L and M be
subspaces of C(X) which contain the constant functions and separate points.
If L is a subspace of M with the r.8.p. and if 0. (X)=0y(X), then L is
uniformly dense in M.

Finite tensor products.
In this section A4,,...,4, are simplex spaces with positive cones
A+, .., A,+. We write X, for X(4,), i=1...n.
Lrmma 2.
(i) If T e K(A,,A,), then
|IT||=sup {T'(hy,hy) : by € A;*, By 1, 4=1,2}.
(ii) If T,U € K(A4,,4,), then |T + U||=|T|+||U].

(i) If T s a positive real-valued bilinear function on A,*x A,* such

that
sup {T(h’kZ) : h’i € Ai+! ”h"zné 1, i= 172} < o0,

then T has a unique extension to an element of K(4,,4,) again de-
noted by T'.
Proor. (i) If T,U € K(4,,4,), then given ¢>0 there exist f;,q,€ A
with “f'i“! ”g'l,” = 1) t= 1’27 such that
ITl—%e < T(fu.fo)s  WUll—4e < U(g1,9,) -
By Theorem 1, there exist h;e A;* with +f;, +g,<h; and |h) =1,
1=1,2. Now
T(hysbo) =T (f1. fo) = 3T (hy+fr.ha—fo) + 3T (R —fr.he+f5) 2 0.

Therefore _
4 1Tl —4e < T(f1, fa) = T(hpho) = |7,
an
|71l = sup{T(hy,ho) : by € Ai*, |Iil| =1}

(ii) Similarly |U||— }e < U(hy,hy) and
1T+ 10l —& < (T'+ U)hy,he) = T+ U

Since the norm is subadditive, ||T'+ U||=|T||+ ||U||.
(iii) Extend 7' to the bilinear functional 7,4, x A,* - R by put-
ting T(f1, fo) = T(91> fo) —T(y, f2) whenever f,e€A;, g,, h e A+ with
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fi=91—P, and f, € A,+. Extend this 7' to a positive bilinear functional
T: A, x4, - R by putting
T(fu fo) = T(f1,92) — T(f1,hs)

whenever f, € 4; and f, € 4, with f,=g,—h, for g, h, € A,+. Since the
positive cone in a simplex space is generating, both of these extensions
are well defined and therefore unique. The arguments of (i) show that

sup{T(f1. f2) : fie Ay IflI =1}
< sup{T(hyhy) : by Agt, [hdIS1, i=1,2)
so that T e K(4,,4,).

Lemma 3. K(4,,4,) is a lattice cone.

Proor. If T € K(A,,4,) and fe 4,, then T(f,,-) € 4,’ the dual of 4,.
For T,U € K aund fe 4,+ we put

(1) V(f,*) = sup{T(fo, ")+ U(fp, ") : fr, fa€ 417, hH+f51),

the sup being taken in the boundedly complete vector lattice 4,". Sup-
pose that f,g,h,k € A+ with h+k<f+g. Since 4, has the r.s.p. there
exist f1, fa, 91,92 € A, with

fitgr =h; fotga=Fk; fitfaSf, @1+9. 59,
therefore
V(f+g,*) = sup{T(h,")+Uk,-): h,ke A, h+k<f+g}

sup{7(fy, ")+ U(fo, )+ T(g1, ")+ Ulge, *) :
Jufo 90.92€ Art, fi+foSf,01+9:59)

= V(. )+ V@),
whenever f,g € 4,+. Similarly,
Viaf,*) = aV(f,")
whenever fe A;+ and real a20. If f, € 4;*, i=1,2, then
s Vifufo) £ T+O) . fo) s

and V satisfies the conditions (iii) of lemma 2. Therefore V has a unique
extension to an element V € K(4,,4,). From (1) we have that T,U<V.
If T,U<W e K(4,,4,) then whenever fy, fo, f€ A,+ with fi+fa<f we

h
wve Ty )+ Ufa ) € Wifn )+ W(fs-) S W)

and formula (1) implies that V(f;, -)< W(f,*). Thus V is the least upper
bound of 7' and U, and K(4,,4,) is a lattice cone.
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Let
Y,={TeK(,,...,4,): |T|=£1 and T(e,,...,e,)=1

whenever e¢; are norm units of 4;, t=1,...,n},

and let Y, be considered as a subset of the locally convex Hausdorff
linear topological space B(4,,...,4,) endowed with the weak operator
topology. If z,€ X;, ¢=1,...,n, then the operator

2,0%,8...Qx, € K(4,,...,4,)
is defined by the formula
Q%R . . QTp(fys for - 5 fu) = TI{fisz) 1 i=1,...,n}

whenever f,e A;,1=1,...,n.
THEOREM 3. Y, is a simplex.

Proor. The results of Choquet [5], [6] and Kendall [14] show that Y,
is a linearly compact Choquet simplex. As in the proof of Alaoglu’s
result [1], Y, is homeomorphic with a closed subset of the topological
cartesian product of a family of closed intervals, and is therefore com-
pact.

THEOREM 4. T is an extreme point of Y, if and only if T=x,Qw,
where x; are extreme points of X;, 1=1,2.

Proor. If T is extreme in Y,, then either 7'=0, and we can take
either ; or ,=0, or ||T'||=1. Suppose that ||T'|=1. Let Z be the simplex

{zed,: 02z and |]z|=1}.

Then Z is the convex hull of X, and the origin, and the extreme points
of Z are the extreme points of X, together with the origin. For fe 4,+
with ||f|<1 we have T(f,)€Z. Let urpy, ., be the unique maximal
representing measure of 7'(f, ) on the simplex Z [15, p. 66], [2]. Let 4
and B be Borel subsets of Z with AuB=Z and AnB={0}, and define
operators 7'y and 7', by the formulae

Tf9) = [9duryy  Thio) = [gduny,,
A B

whenever f e 4,* with ||f||<1 and g € 4,. On their domain of definition,
T, and T, are linear in each variable and may be extended by positive
homogeneity and linearity to real positive bilinear functionals on 4, x 4,,
again denoted by 7T';, T, such that T’y + T,=T. By (iii) and (ii) of lemma 2
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we have that T',,T, € K(4,,4,) and |T,||+||T.|=|T]. If T, and T, are
both non-zero we have that

IIT1II +1 z”

IIT 1l “T2”

is a convex combination of elements of Y,. Since 7' is an extreme point
of Y, we have that T,/||T||=T,/||T,|| which is clearly impossible since
AnB={0}. Therefore either T, or T,=0. Take fe 4,+ with ||f||£1
such that T'(f,-)#0. Then for an arbitrary Borel set 4 we have that
brs,5(AN{0}) is either 0 or ugy 5(Z\{0}). Therefore the support of
K¢z, contains one point x, other than the origin. Since urp, ., is a
maximal measure, z, is an extreme point of X. If we put 4 = {x,}u{0}
and B=Z\ {z,}, then for this 4 and B, T, +0 so that 7,=0. Therefore

T6.0) = | gdurg, = o) oD, el IfIS1 ged,
{z2}u{0}
where ¢ is a positive affine functional on {f e 4,*: ||f|| £ 1} with ¢(0)=0.
By linearity, ¢ may be extended to an element x; € X, such that

T(f,9) = {f,x ){g,x,y whenever fed, ged,.

It follows immediately that 2, is an extreme point of Xj.
The converse is straightforward, and will be omitted.

THEOREM 5. AléA 18 1sometrically isomorphic with &Z(Y,), and is
therefore a simplex space in the tnduced partial ordering. Moreover, the
positive cone in A ®A 18 the closed convex hull of the set

{1®f;: fie 4, i=1, 2}.

Proor. Let u=37,/;®g;, fi € 41, g;€ 4,5, j=1,...,m, be an arbi-
trary element of 4;®4,. Then the crossnorm A given by the formula
Mu) = sup{|3 =1<f]’x1><g]1x2>l z, e 4, el <1, ¢=1,2}

sup{| -=1<f7’x1><g]’x2>l Zz; € Xi’ 1= 1’2}

is the least crossnorm on A4,®A4, whose associate is a crossnorm [12],
[9, p. 65]. The weak tensor product A,®A4, is the completion of 4,®4,
for 4 [9], [12]. The formula

(O[u])(T) = Z T(f;.95), TeVXy,

defines a linear map 6 of A1®A2 into &7(Y,). The supremum norm
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l16[]I

sup {|(0[])(T)| : T € Y}
sup {|(0[u])(T)| : T extreme in Y,} [9, p. 65]
Sup {2, (fy ) 052> : %, extreme in X;} = A(u) .

Therefore 0 is a well defined linear isometry. If 74U € Y,, then there
exist f € 4; and g € 4, such that T(f,g)+ U(f,9) so that 6(fRg) separates
T and U. By lemma 1, 4,®4, is isometrically isomorphic with a dense
subspace of o7 (Y ,) so that A1(§§)A2 is isometrically isomorphic with .o7,( Y ,).
Let H be the convex hull of

{0(/1®f2) : fie 4+, t=1,2}.

Let ¢ be in the dual of &/ (Y,). Then there exist positive scalars a,b
and elements 7' and U of Y, such that

o) = af(T)-bf(U) whenever feoy(Y,).
If ¢ is positive on H, then
aT(fy, fo)—0U(f1,fz) =2 0 whenever f,ed,*, i=12.

It follows that
aT-bUeK(4,,4,) and ¢=0.

If H is not dense in the positive cone of &7 (Y,), then, by the Hahn—
Banach theorem there exist 0 <f e .7y (Y,) and a ¢ in the dual of &7 (Y,)
such that ¢(H)=0 and ¢(f)<0. Then ¢ is not positive, which contra-
dicts the above remarks. Therefore H is dense in the positive cone of
A o(Ys).

From theorems 4 and 5 we obtain the following corollary.

COROLLARY 2. AlgbA2 has a norm wunit if and only if both A, and 4,
have one.

THEOREM 6. AléA2 is isometrically and order isomorphic with
ML (X x X,).

Proor. Let M =M oA (X, xX,), let A, be the linear span of .# and
the constant functions, and put

W = {(z;,2,) e X;x Xy : 2 or z,=0}.

Then #, separates points of X, x X,\ W, and separates W from the
points of (X, x X,)\ W. The functions in .#, are constant on W. Let 8
be the quotient space of X, x X, obtained by identifying the points of W,
and let the positive isometry y : #; - C(S) be the natural embedding
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of A, in C(S). Then M,=vy(.#,) contains the constant functions and
separates points of S, moreover

M = y(A) = {feM,: f(W)=0}.
Define the map @ : /(Y,) - .#, by the formula
D(f) (@, @) = f(2,:@%5), feA(Yy), (¥,%) € Xy xX,.

As in the proof of theorem 5, it follows from the definition of the norm
in &(Y,) that @ is a positive isometry. If L,=yo®((Y,)), then

L = pod(fy(Y,)) = {feL,: f(W)=0}.

Moreover L,<M, and L, separates the points of S. The Choquet
boundary of .7(Y,) is the set of extreme points of Y,. It follows from
theorem 4, that s € 91 (S) if and only if either s=W or s=(z,,%,) with
x; extreme in X;, 1=1,2. Since L, <M, we have that o (S) <0, (S).
If

(X1,%3) € Opr,(S)NOL(S) and x, = §(ya+2,)

where z,,y, € X,, then

e(xl,xz)lul = %(8(11,yz)|ul+8(¢1,Zz)lu1) :

Since M, separates points of S we have that (x;,y,)=(%,2,) = (%;,2,) so
that x, is an extreme point of X,. Similarly x, is extreme in X, and
(x4,2,) €0r,(S). Since L, has the r.s.p., we have that L, is uniformly
dense in M, by theorem 2. Since L, and M, are uniformly closed, L, =
M,. Therefore L=M. Since @ and y are both isometric order isomorph-
isms the result follows.

CoROLLARY 3. If X, and X, are simplexes, then (X))@~ (X,) is
isometrically and order isomorphic with &7 (X,x X,). The boundary of
MA (X, x X,) 18 the cartesian product of the boundaries of /(X,) and
& (X,).

The above results have natural extensions to the product of n simplex
spaces which we state below. The proofs of these results are by induc-
tion on 7, and we omit them.

THEOREM 7. K(4,,...,4,) is a lattice cone, Y,, 1s a simplex and T s
an extreme point of Y, if and only if T=2,Q...Qu,, where x; are extreme
points of X, t=1,...,n.

It

m
u = zfu,®.. '®fnj; fijeAi’ 'l:=l,.. o n, j=l,...,m,
J=1
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is an arbitrary element of ®{4,: ¢=1,...,n}, then the formulae

O(u)(T) = zT fipe-ofn)y  TeX,,

j=1

I'(u)(zy,. . .,2,) = zl<f1i’x1>' co i L fup ), weX, i=1,...,n,
]1:
define maps
0: {4;: i=1,...,n} > A\(Y,),
I': @{d;: i=1,...,n} > ML ({X;}2) -

THEOREM 8. The range of 0 is dense in /(Y ,), the range of I is dense
in ML ({X}7_1). The maps 0 and I' are isometries which extend by con-
tinuity to zsometmes of &{4;: i=1,...,n}onto Ly(Y,)and M {X ).
If ®{A : .,n} has the partial ordering induced by 0, then the posi-
tive cone 1is the closed convex hull of

{f1®. . .®fn . f‘i EAi"', i'—_l,. . .,n} 3
and I' s an order isomorphism.
THEOREM 9. Y, 18 a projective tensor product of {X,: i=1,...,n}.
Proor. Define P € A ({X,},Y,) by the formula
Pxy,...,x,) = ,Q0...Qx%,, z,€X;,i=1,...,n.
If Y is a simplex, and F € £ ({X,},Y), then for fe o/ (Y),
foF € M \{X,}),
I'Y(foF) e ®{4;: t=1,...,n},
0-Y(foF) € oA y(Y,).
Then the formula
or(f) = 0T fe F)T), TeV,, fedy(Y),
defines for each 7' € Y, an element ¢, € Y. This is because
(i) @qp is linear,
(ii) @p(e)=1 whenever e is a norm unit in 7,(Y),

(iii) @p(f)=0 whenever 0=fe o/ (Y),
(iv) |pr(f)] =1 whenever fe (YY), and ||f||<1.

Furthermore, if 7', is a net in Y, converging to T € Y, then ¢ (f)
converges to p(f) for each f e &/(Y), and @5 converges to ¢,. There-
fore the map 7' — @, defines a function F’ € &7 (Y,,, Y), which is unique
since it is uniquely defined on the boundary of Y,,. We see immediately
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that F=F'oP, so that Y, is indeed a projective tensor product of
{X;:1=1,...,n}

We remark that P is an injection if and only if 4; has a norm unit for
each ¢=1,...,n. In this case Y, is a tensor product of {X,;: ¢=1,...,n}
in the usual sense [16]. Combining theorems 8 and 9 we have the follow-
ing representation:

TrEOREM 10. If {X,: i=1,...,n} 15 a family of simplexes, then
RfAy(X,): i=1,...,n}
18 isomelrically isomorphic with
A (B{X;: i=1,...,n)).
Moreover, the positive cone of
S{ty(X): i=1,...,n}
for the induced partial ordering is the closed convex hull of

{f1®...®fn: fiGAi+, 7:=].,...,'n}.

Infinite tensor products.
In this section {X;: ¢ € I} is a family of simplexes.

Lemwma 4. If F is the subspace of ML ({X;}) which consists of those
Junctions which depend only on a finite number of co-ordinate variables, then
F 1s uniformly dense in ML (({X,}).

Proor. If ke A ({X,;}) and >0, then there exists an open cover
{V;: j=1,...,k} of X{X;: ¢ €I} such that
2 |({z:})—h({y}) < ¢ whenever {x},{y;}eV; j=1,....k.
Moreover, we may assume that each V; is the intersection of cylinder sets:
Vy=Uypx...xUyy X{X;: iel, i£1(),...,n(H)},

where U, is open in X, 7(j)=1(j),...,n(j), j=1,...,k Fix p;e X,
with p, =0 whenever 0 X;, 1€ . Define fe .#o/({X,}) by the formulae

(@) = Miyd) whenever {u} € X{X,: i1}
and
_ [#; whenever ¢=1(j),...,n(j),
Y = {pi otherwise .

Then {y;} € V; whenever {z;} € V;, j=1,...,k, and by (2), |[f-k|<e.
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If A2 0, then f> 0, if there are an infinite number of X, which contain
the origin, then f=0, and we obtain the following corollaries.

COROLLARY 4. The positive cone in ML\ ({X,;}) is the closure of
{feF: fz0}.

CoROLLARY 5. If more than a finite number of X, contain the origin,
then ML \({X,}) contains only the zero function.

THEOREM 11. A ({X,}) is a simplex space.

Proor. It is enough to consider the case where only X,),...,X;y
contain the origin. Let % (¢4,...,1,) be the set of f € # which depend on
no co-ordinate variable other than ,,...,7,. Then

F = U{F Gy sin)t e rin €1, (Groe e osfi) S g orin)} -

If 4,...,%, is an arbitrary finite subset of I containing j,,...,5,, then
there is a canonical isometric and order isomorphism

o: MAN{X;),. .., X,,}) onto  F(iy,...,10,)
given by '

O'(g)({xl}) = g(x.tl,. N .,x,;n), xi E.X,i, ‘i € I, g EV”MO(X‘I:I" . ey Xin) .

Thus Z(iy,...,%,) is a simplex space for the natural partial ordering.
Since any four elements of & are contained in some such F(i,,...,%,),
it follows that % has the r.s.p., and satisfies conditions (i) and (ii) of
corollary 1. Moreover, the positive cone in & is closed in &#. By corol-
lary 2, the completion of &, namely #.27,({X,}) is a simplex space.

DeriniTioN 1. If 2; € X, ¢ € I, we shall use ¢, to mean the restric-
tion of the evaluation functional at {x;} to #.o7({X,}). Further we define
Y= {xeMdd({X,;}): 022, |[z]| 21, and {e,x)=1 whenever
e is a norm unit of A ({X;})}.

LeMMA 5. The non-zero extreme points of Y, are
{ey : O, is extreme in X, i €1} .
Proor. If ¢, is extreme in Y, and x;=34(y;+7;) where y;,z;€ X;

for some j € I, then e, = }(ey,+¢,), Where

. i=), 4 =i,
?/i={yj J Zi’—‘{j

xz; otherwise, x; otherwise .

Therefore z,; is extreme in X, for each ¢ € I. Conversely, suppose z; 0
is extreme in X;, ¢ € I. If ¢,,=}(y +2) with y,z € Y, then, by theorem
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7, the restrictions of y, z, and e, to F(iy,...,t,) agree for arbitrary
%3,. . .,0y € I. Therefore

Yig =215 = ey -
Since & is uniformly dense in A ({X,}), y=2=¢,, is extreme in Y.
Let @ be the natural isometric isomorphism of 27(Y ) onto A/ (({X,}).
THEOREM 12. Y is a projective topological tensor product of {X,: 1 € I}.

Proor. Define Pe A/\({X,;},Y,) by putting P({z;})=¢,, when-
ever 2; € X;, 1 € I. P is 1-1 on those {¥;} containing no zero entry. If ¥
is a simplex, and F e £\ ({X;},Y), then foF e #s/\({X,;}) and
DY foF)e A (Y,) whenever fe o/ (Y). For TeY,, define ppre Y
by putting @p(f)=P Y (fo F)T) whenever fe o/y(Y). As in the proof
of theorem 9, the map T' — ¢, defines a unique F' € £ (Y, Y) such

that F'o P=UF. Therefore Y is a projective topological tensor product
of {X;: iel}.

Projective limits of simplexes.

From the proof of lemma 4, we observe that .#o7({X,}) is the norm
closure of an inductive family of simplex spaces. We are therefore led
to consider inductive systems of simplex spaces, and their dual systems,
projective systems of simplexes. Throughout this section (4, <) is a
directed set.

DEFINITION 2. A projective system of simplexes directed by A, is a family
{X,: « €A} of simplexes together with a family of continuous linear
maps p,;: Xz X, defined whenever « < € A such that

(i) P, is the identity on X,, x € 4,
(ii) Pap© Pp, =Py Whenever a<f<y e,

and is denoted by {X,,p,;}. By {X,,p,} we mean that X, is a simplex,
and {p,} is a family of continuous linear maps from X to X, which
satisfy the relation p,z0 p;=p, whenever a<feAd. We call {X,p,} a
projective limit of {X,,p,,} if, given {X ', p,’}, there exists a continuous
linear map p: X' — X, such that p,’=p,op whenever « € 4.

A projective limit is unique up to linear homeomorphism. In what
follows, none of the simplexes contain the origin.

DEerFINITION 3. An inductive system of simplex spaces directed by A is a
family {E,: « € A} of simplex spaces together with a family of positive
linear contractions g, : B, - E, defined whenever « <f € 4, and such
that
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(i) ¢,5°95.=9,, Whenever a<f<yed
(ii) g,, is the identity on £, a € 4,

and is denoted by {E,.q,}. By {E,q,} we mean a simplex space E,
together with a family of positive linear contractions ¢, : E, - E, such
that gz0qs,=q, whenever a <f e A. We call {£,,q,} an inductive limit
of {E,,q,,} if, given {E,,q,'}, there exists a positive linear contraction
g': Ey,— B, such that ¢,/=¢'oq, for all x=A. An inductive limit of
{E,,45,} is unique up to positive isometry.

Suppose that p: X — Y is a continuous linear map of the simplex
X into the simplex Y, then p is Borel measurable. If m(X) denotes the
space of real-valued functions on X, then the formula

@)@) = f(px), fem(Y), zeX,

defines a positive linear map ¢ : m(Y) - m(X). Moreover ¢ maps Borel
measurable functions to Borel measurable functions, convex functions to
convex functions, and upper semicontinuous functions to upper semi-
continuous functions. We call ¢ the dual map of p. If X and Y are
canonically embedded in the spaces &7(X)’ and &/(Y’) with the weak*-
topologies, then the adjoint of the restriction of ¢ to /(X) agrees
with p on X. We therefore denote the adjoint of ¢: &/(X) —» /(YY)
by p. Similarly, we consider X and Y canonically embedded in C(X)',
C(Y) and also denote by p the adjoint of ¢: C(Y) — C(X). Then p
maps probability measures to probability measures, and

[raww = [ a)au
B P-1(B)
whenever f is a Borel measurable function on ¥ and B is a Borel subset
of Y.
The following lemma has been proved independently by F. Jellett in
the case of onto maps, and also occurs in [10].

Lemma 6. If p is a continuous affine map of the simplex X into the
simplex Y, then p(0X)<0oY if and only if p maps maximal measures to
maximal measures.

Proor. If g is the dual map of p, then ¢ maps convex functions to
convex functions, and u.s.c. functions to u.s.c. functions. Suppose
h e C(Y) is convex, then 4 is u.s.c. and affine, and agrees with 2 on 07,
If p(8X)<2Y, then g(h) is u.s.c. and affine, and agrees with g(h) on 2X.
It follows that

g(h) = g(h) = inf {g(f) : h<fe L (Y)}.
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If u is maximal then [14, prop. 9,3],
[a® au = [athy au = ind{[ g() du: hs7e 1D,

[rapw = mt{[sap: nsfe (D)} = [Ragw,

so that p(u) is maximal [14, prop. 9,3]. The converse is trivial.
CoROLLARY 6. If p(0X)<0Y, then the range of p is a face of Y.

Proor. Let Z be the range of p. Then Z is a compact subset of Y.
If p(x) e Z, and p is the maximal representing measure of x € X, then
p(u) is the maximal representing measure of p(z) on Y. Moreover,
suppp(u) =Z. Suppose p(x)=§(y +2) with y,z€ Y. Let 4,9 be the maxi-
mal representing measures of y and z respectively. Then p(u)=4(1+9)
so that suppA,suppd <Z. Therefore y,z € Z and Z is a face of Y.

TaroREM 13. If {X,,p,5} is a projective system of simplexes directed
by A, then a projective limit {X,,p,} exists.

Proor. If &/(X,)', « € A, has the weak*-topology, then the cartesian
product E=X{«(X,): x €A} is a locally convex Hausdorff linear
topological space. The cone

K={{z,}eE: 02z, xeA}

is a boundedly complete lattice ordered cone, where lattice suprema are
taken co-ordinatewise. K is the cone of all positive linear functionals on

F=3{oX,): acd},

where 02{f,} € F, if and only if 0<f, for all x € 4. For x<feA we
denote by g,, the dual map of p,,. If § € A, we define the positive linear
map Tp: F — F by putting

" whenever «x &,
TAf) = 0}, whero g, = [/ 5

9p.(f,) Whenever a<f.

We denote by ¢, the restriction to K of the adjoint of 7';. This #; is given

by the formula
x whenever x < f,

W) = W) v = { .

Pas(%g) whenever a<f.

Let
L={{z}eK: t{x})={x,} forall pe A}
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be the cone of invariant elements of K. Then {z,} € L if and only if
0 < z,e(X,) and p,4(x5) =2, whenever &, € A with x <. If

X, = {{za}eL: z, € X, for all oceA},

then X, is a closed subset of the cartesian product X{X,: « € A4},
and is compact for the relative topology. This coincides with the relative
topology of X as a subset of Z, so that X is a compact subset of a
locally compact Hausdorff topological linear space. If {x,} € L, then there
exists a unique net {a,: x € A} of positive real numbers such that
v,ea,X,, aed If x,fed with « <f, then x,=p4(7;) € a3 X, so that

ag=a,=a forall «,fed.

Therefore {axz,} € X, and X, is a base for L. We now show that L is a

lattice cone.
Suppose that z,y € L, and that zvy is their least upper bound in K.

For « € A we have that
zvy £ t(xvy).

If «,feA with a,f<p €, then t,t,=t,;,=t, so that

L(xvy), Llevy) S t(xvy)

and the net {¢{(xvy): « €A} is directed up. Define 2V y as the least
upper bound of {{ (rvy): « € A}. Since this set is directed up we have
[4, p. 29, formula (2)]

(fixVy) = sup{{f,t,(xvy)): a €}
= sup{{f.t.(xvy)): «>f e}
= sup{(f,tﬂt“(a:vy)) ta>ped}
= sup {{Tpf,t,(avy)) : a>pe A}
(Tpf,2Vy) = {[.t(xVy),

whenever 0<fe F. Since § is arbitrary, «Vye L. If xvy<ze L, then
t(xvy) =t (2)=2, x € A, so that 2V y is the least upper bound of z and y
in L, and L is a lattice cone. Therefore X is a simplex. Define
P, Xoo > X, by p({x,})=x, whenever {z,}eX,, then {X_,p.}
Suppose that {X_',p,’} and define p': X' - X, by putting p'a’=
{p,’x'} whenever 2’ € X ’. It is immediate that p’ is continuous, linear,
and that p,’ = p, o p whenever « € 4, so that {X_,p,} is a projective limit
of {pruﬂ}'

We note that the projective limit X_ obtained above -coincides
with the projective limit of the projective system of compact Hausdorff
spaces, {X,,p,;} as defined by Bourbaki [3]. Theorem 13 shows the
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existence of the projective limit in the category of simplexes and continu-
ous linear transformations, the following shows that the projective limit
exists in the category of simplexes and continuous linear boundary
preserving maps.

TrEOREM 14. Let {X,,p,5} be a projective system of simplexes directed
by A such that ps(0X,;)=0X, whenever x,feA with «x<f. Then
{0X,: s} @5 a projective system of topological spaces. If {X,,p,} is a
projective limit of {X,,p,g}, then 90X, is homeomorphic with the topological
projective limit im {0X : p,,}.

<«

Proor. Let X be as in the proof of theorem 13. If {x,} e X is
such that z,e€0X, for each x €, then it is immediate that {z,}e
0X,. To prove the converse take {z,} € X, and choose an arbitrary
o €. Let u, be the unique maximal representing measure of z,. By
lemma 6, p,q(ug) =u, whenever a <feA. Fix a € and let B be an
arbitrary Borel subset of X,. For ax<f € 4, define y; € o/(X,)" by the
formula

<fﬂ7yﬂ> = J- fﬁ d.”';z: fﬁed(xﬂ) .
Paﬁ_l(B)
If f<y €A, then by lemma 6,

pﬂy(luy) = Auﬁ ’
so that

<qyﬁ(fﬂ)> ?/y> = f qvﬂ(fﬂ) d/uv

Pgy~1o pag~L(B)

= | foduy = Gpup
Pap~UB)
so that y,=p,,y,. For arbitrary fe A choose y € A with «,f<y and
put ys=1p,,y,. It may be verified that y, is well defined by this formula
and that y,=p,,y, whenever f <y € A. Define z,, similarly, by replacing
B by X,\ B in the above construction. Then {y,},{z;} € L, and {y,}+
{25} ={xs}. If {x,} is extreme in X, then there exist real positive num-
bers a,b such that y,=ax, and z,=bx,. That is

bJ‘f“ du, = a f f.du, whenever f esl(X,).
B X\B

If follows that u,(B) is either 0 or 1 whenever B is a Borel subset of X .
Therefore u,=¢, for some x, € 0X,. Since « is arbitrary, z, € 90X, for
all x € A. Therefore [3]

Math. Scand. 22 — 11
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0X,, = lim{oX,: p,}.
-e-

Moreover, the relative topology on 0.X, is the projective limit topology
and the theorem is proved.

If some of the X, contain the origin, then we choose 0%z, X, put
Y,=X,+z,; and define p;: Y, Y, by

ﬁa—ﬁ (x,+ zﬁ) = paﬂ(xﬁ) +2z,

whenever x;€ X;and a<f e A. If {Y,p,} is the projective limit of the
system constructed in theorem 13, then we define X =Y —{z,} and
put p,({¥.}) =y.—2,, « € A. It follows that {X,p,} is a projective limit
of {X,,p,s}, and that theorems 13 and 14 are true in this case.

We now consider the dual question of inductive limits. Suppose that
{E,,95,} is an inductive family of simplex spaces, and let X, =X(%,).
Then E,=5/,(X,) and we may define p,,: X, > X, by the formula

<fmpaﬂ(xﬁ)> = <qﬂa(fa)9xﬁ>’ Tz € X,a’ f.€E,.

It is immediate that {X,,p,,} is a projective family of simplexes with a
projective limit {X_,p,}. If, for « € A, we define ¢, : B, — o/ (X,) by

putting
<qa¢fa? {xa}> = <fa’xa>’ fa € E'ou {xzx} € Xoo s

then ¢, is a continuous linear contraction. Therefore {2/\(X.),q,}.
Suppose that {E,’,q,'} and define the transformation ¢’ : /(X)) - £,
as the dual of the natural map p": X, - X_. Then ¢, =q oq, for all
x e, and {o/y(X,),q,} is an inductive limit of {¥,,q,,}.

We have shown the existence of the inductive limit for which we now
give a representation. Consider the direct sum

F=3{E, aed} =3{LyX): xed},
and let the map 6 : F — o7, (X,) be defined by the formula
0Nz = X Forads {fdeF, (o} e X

If {x,}, {y,} are distinct points of X_, then for some fe .4 we have
xz%yz. Define {f } € F, putting f,=0 for x+p and f;=g,, where g,
separates x; and y,. Then 6({f,}) separates {z,} and {y,}, and by lemma 3,
the set O(F) is uniformly dense in &7y(X ). Similarly, arguing as in the
proof of theorem 5, the positive elements in O(F) are uniformly dense
in the positive cone of &7 (X,). Let ||-||, and ||-||, denote the norms in
& o(X,) and &Fy(X,), respectively, and let N be the semi-norm in-
duced on F by 6. That is:
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Nool{fa}) = 116{f} o
sup {|Z<fr) : {z.} € X}
sup {|Z4gs(f.). x| : fed, f,40=>x<p, and
zge N{ps, X, : p<yed}}
inf sup {|3,c 4{2ps(fL): ¥ : BEA, fL+0=a<p, x5epp, X}

B<vy

= lim {|, 595, (fll}
Be(4, <)

It

Il

I

whenever {f,} € F. The third equality follows from [3, Ch. 1, appendix
2, Theorem 1]. For fe o/ (X,) we put

my(f) = min{f(x): x e X,}.

If {f,} € F, then it may be shown in a similar manner that 6({f,})=0
if and only if

lim {mﬂ(zo&<ﬂ Qﬂa(fa))} g 0 .
Be4, <)
Let E be the quotient space F|N~1(0), and let {f,}” denote the equiv-
alence class of {f,} € F. We denote by K the cone

{fa}~ el : lim {mﬂ(2a<ﬂ Qﬂa(fo‘))} 20¢.

Be(4, <)

THEOREM 15. Let B, be the completion of E for the quotient norm
W = Um0 0p(fllls,  {f}€E,
Be(4, <)

and let K, be the closure of K for this norm. Then E, is a stmplex space,
with positive cone K,. Moreover {E,,q,} is an inductive limit of {E,qp,},
where q, : E, — E, is given by the formula

2.(f) = {55
where f,=f and f=0 if o+ f, whenever f e K.
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