A NOTE ON EQUIMORPHISMS OF PROXIMITY SPACES

DON A. MATTSON

It is well known [3] that two realcompact spaces X and Y are homeomorphic if and only if C(X) and C(Y) are isomorphic, where C(X) and C(Y) are the rings of continuous real-valued functions on X and Y, respectively. The purpose of this note is to prove: that if X and Y are realcompact proximity spaces, then X and Y are equimorphic if and only if there is an isomorphism of C(X) onto C(Y) which maps the class of δ -functions in C(Y).

The class P(X) of δ -functions in C(X) is generally not an ideal of C(X). The rudimentary algebraic structure of P(X) was observed in [2].

Let δ_1 and δ_2 be proximity relations on X and Y, respectively. The proximity spaces X and Y are equimorphic [5] if there exists a mapping t of X onto Y such that both t and t^{-1} are δ -functions.

We define C(X) to be δ -isomorphic to C(Y) if there exists an isomorphism γ of C(X) onto C(Y) such that $\gamma[P(X)] = P(Y)$.

THEOREM. If X and Y are realcompact proximity spaces, then X and Y are equimorphic if and only if C(X) and C(Y) are δ -isomorphic.

PROOF. If X and Y are equimorphic, it is obvious that C(X) and C(Y) are isomorphic. It is easily verified that C(X) and C(Y) are also δ -isomorphic.

Conversely, let γ be a δ -isomorphism of C(X) onto C(Y). Then f is a bounded δ -function in C(X) if and only if $\gamma(f)$ is a bounded δ -function in C(Y). (See theorem 1.7 in [3].) Thus the restriction of γ to the ring $P^*(X)$ of bounded δ -functions in C(X) is an isomorphism of $P^*(X)$ onto the corresponding ring $P^*(Y)$.

Every function f in $P^*(X)$ has a unique extension f^* in $C(\delta_1 X)$, where $\delta_1 X$ is the Smirnov compactification of X. (See [4] or [6].) Conversely, the restriction to X of a function f^* in $C(\delta_1 X)$ is in $P^*(X)$. Hence γ induces a δ -isomorphism γ^* of $C(\delta_1 X)$ onto $C(\delta_2 Y)$. Since $\delta_1 X$ and $\delta_2 Y$ are compact, a homeomorphism t^* of $\delta_1 X$ onto $\delta_2 Y$ is induced by γ^* . Let t be the restriction of t^* to X. Then t is an equimorphism of X into

Received December 13, 1966; in revised form March 9, 1967.

 $\delta_2 Y$, since X is a δ -subspace of $\delta_1 X$. We next show that t maps X onto Y. Let $a \in X$ and let \overline{M}_a be the ideal of functions f^* in $C(\delta_1 X)$ that vanish at a. Then t(a) = b if and only if $\gamma^*[\overline{M}_a] = \overline{M}_b$, where \overline{M}_b is the ideal of functions $\gamma^*(f^*)$ that vanish at b. But $f^* \in \overline{M}_a$ is equivalent to $f \in M_a \cap P^*(X)$, where M_a is the maximal ideal in C(X) fixed at a. Now M_a is real, so that $\gamma[M_a] = M_c$ is a real maximal ideal in C(Y) that is fixed at a point $c \in Y$, since Y is realcompact. (See [3, theorem 8.3].) Thus $\gamma^*(f^*) \in \overline{M}_b$ if and only if $\gamma(f) \in M_c \cap P^*(Y)$. Since $\gamma^*(f^*) = \gamma(f)^*$, it follows that b and c are zeros of every function in \overline{M}_b , and since the correspondence between the maximal ideals of $C(\delta_2 Y)$ and the points of $\delta_2 Y$ is one-to-one, we have b = c. Thus the values of t are in Y. That t is onto Y follows from the realcompactness of X. This completes the proof.

Remarks. Proximity spaces with δ -isomorphic rings of continuous real-valued functions may fail to be homeomorphic. An example is provided by the space W of all countable ordinals with the interval topology together with the Stone-Čech compactification W^* of W. If δ is the proximity on W induced by C(W), then C(W) is δ -isomorphic to $C(W^*)$, and W and W^* are not homeomorphic. Thus the condition that X and Y be realcompact cannot be omitted from the theorem.

There also exist homeomorphic realcompact spaces X and Y, so that C(X) and C(Y) are isomorphic, but where X and Y are not equimorphic. (See [5].)

REFERENCES

- 1. V. A. Efremovich, The geometry of proximity, Mat. Sb. (N.S.) 31 (73) (1952), 189-200.
- J. E. Fenstad, On l-groups of uniformly continuous functions. III, Proximity spaces, Math. Z. 83 (1964), 133-139.
- 3. L. Gillman and M. Jerison, Rings of continuous functions, Princeton, New Jersey, 1960.
- 4. S. Leader, On clusters in proximity spaces, Fund. Math. 47 (1959), 205-213.
- 5. Z. Mamuzic, Introduction to general topology, Groningen, The Netherlands, 1963.
- 6. Yu. M. Smirnov, On proximity spaces, Mat. Sb. (N.S.) 31 (73) (1952), 543-574.

TRINITY COLLEGE, HARTFORD, CONNECTICUT, U.S.A.