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POWER BOUNDED MATRICES
OF FOURIER-STIELTJES TRANSFORMS

PHILIP BRENNER

1. Introduction.

The purpose of this note is to give a characterization of power bounded
matrices, the elements of which are Fourier-Stieltjes transforms. The
norm we use will be equivalent to the sum of the total variation norms
of the measures that correspond to the elements of the matrix. Such
matrices occur in the study of well posed initial value problems for sys-
tems of partial differential equations in L; and L, (for more details and
applications of this see [2]).

In the scalar case, necessary and sufficient conditions were obtained
by Beurling and Helson [1]. They proved that f is a Fourier—Stieltjes
transform with bound powers if and only if

f(y) = cexp(iz,y)),

where |¢c|=1 and x € R™.

In Theorem 3 below we give a corresponding necessary condition for
N x N-matrices ¢, the elements of which are Fourier-Stieltjes trans-
forms, that |j¢™|| be bounded. It will be shown that in this case the
eigenvalues of ¢ have the same form as f above.

In contrast to the scalar case, however, there seem to be no obvious
necessary and sufficient conditions. This is indicated in an example to
be given in connection with Theorem 3.

In particular we will construct a 2 x 2 matrix function ¢, which has
eigenvalues 1 and exp(2nty) and the elements of which are Fourier—
Stieltjes transforms. Further |p™(y)| is uniformly bounded in y € R and
m=+1,+2,..., but yet ||p" is not bounded.

In the proof of Theorem 3, we use a local version of the theorem of
Beurling and Helson. Although such a version seems to be known
(oral communication by Y. Katznelson), no proof of it has been published.
So for the convenience of the reader we give the main steps in the proof
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of this theorem (Theorem 1 in Section 2). A corresponding theorem for
multipliers on FL,, p+ 2, was proved in Lemma 5 in [2].

Using standard techniques introduced by Cohen and by Beurling and
Helson, we then use Theorem 1 to obtain, in Theorem 2, a characteriza-
tion of the homomorphisms of a class of ideals in L,(@) into M(&'),
where G and @' are LCA groups.

Having the applications of Theorem 3 in mind, we have tried to give
an essentially self-contained proof of this theorem and of Theorem 1
for R», without use of the structure theory of locally compact abelian
(LLCA) groups. This is the main reason for formulating, in Section 2,
the lemmas and propositions for R™.

I wish to thank professor Yngve Domar for several valuable sugges-
tions. I also wish to thank professor Vidar Thomée for stimulating dis-
cussions and Dr. Gerald Hedstrom for revising the English manuscript.

2. On a theorem of Beurling and Helson.

First some notations. G will be a locally compact Abelian (LCA) group
and I its dual group. The characters will be written (x,y), where z € G
and y e I In R®, the usual scalar product will be denoted {(z,y), and
on R™ we let the characters be (x,y)=exp(2ni{z,y)). The open ball in
R» with center y, and radius r will be denoted S(y,,7).

The set of bounded complex measures on G will be denoted M(Q®).
Further, the total variation norm of u can be written

(1) lull = sup{llu*fl; f€ Ly Iflh=1}.

This follows immediately if we let f approximate the measure with mass 1
at x=0.
For u € M(Q) we define the Fourier-Stieltjes transform 4 by

i) = [ @) duta)
(¢4

which is a bounded, uniformly continuous function on I'. If fe L,, its
Fourier transform f is, in the same way

@) = [ @) fa) d

and the set of Fourier-Stieltjes transforms is denoted by B(I"), and for
u,v € M(G) we have
(*»)"(y) = A(y) 9(¥) »
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and so B(I') is a commutative algebra of functions (containing 1). Normed
with ||g||=||¢| it is also a Banach algebra.

We are going to study functions which on an open set 2<1I" coincide
with a Fourier-Stieltjes transform. We say that ¢ € B({2) if there is a
1€ M(I') so that =4 on Q. Inspired by (1), and by some later applica-
tions, we introduce a seminorm |l¢||, on B(£2) by

liplla = sup {llu*fly s f € Ly, =0 outside 2, ||, <1}
which is well defined, since ¢f = uf does not depend on the behavior of ji

outside 2. If Q=1 then B(2)=B(I") and |¢|lo=|l¢l by (1). Obviously
|I]lg is dominated by the ordinary quotient norm in B(£).

The following two well known lemmas will be useful in the following.

Lemma 1. Suppose that Q2 is a bounded open set in B™ and ¢ a positive
number. Then there is a funciion ke L, 05k <1, with k=1 on Q and
with =0 outside some bounded set, and for which ||k|, <1 +e.

For a proof see Section 2.6 in [7].

Lemma 2. If p,, € M(R"), if | SC, m=1,2,..., and if fi,—>¢
point-wise on R™ as m > oo, then there exists a v € M(R™), with |v|=C,
such that ¢ =7 a.e. on B™.

For a proof we refere to 1.9.2 in [7].
Using the above we will now prove the following lemma, in which some
facts about B(R) and |||, are collected.

LeMMA 3. Suppose ¢ and ¥ belong to B(R2), for some open set 2 in RE™.

(i) If 2'<Q, then ¢ € B(Q') and H(Pfla 5”??”9
(ii) If a € R—{0}, y, € R™ and if a* o(y)=p(ay) and @, (y)=ey+Yo),

then |lpllo = lla* @lla-10= llpy,llo-y,-
(iii) We have |lpPo<|pllolPlle and if ke Ly, with k=0 outside 2,

then ok € B(R*) and (ol < (lplallkly-
(iv) If |lplls S C for each open bounded ball S in R, then ¢ € B(R™) and
llpll = C.

Proor. (i), (ii) and the first part of (iii) are obvious consequences of
the corresponding facts for elements in B(R"). The second statement in
(iii) follows from (1). We have

“‘Pié” = sup{|lu*k*fll;; f€ Ly, [flLS1}
< sup{lu*flly: f€ Ly, =0 outside 2, ||fl, < [lklly} =llpllolEl; -
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The proof of (iv) is slightly more complicated. Let ¢>0 be arbitrary.
By Lemma 1 we can choose a sequence {S;}° of bounded open balls,
and an associated sequence of functions k; € L, so that

(a) 8;<=8;4; and Us, 8;=Rn,

(b) E,:l on §; and fc,- is 0 outside S;,,,

(©) llkjll,s1+e.
Let ¢=4i; on S;,;, where u; e M(R™), and let ﬁj=ﬂj1(5j. Then #; > ¢ on
R» (in fact uniformly on compact sets) and, by (iii).

il = Nl kil = lipksll < ligllsy,, ksl < C(1+5)

As ¢ is continuous, by Lemma 2 we get that ¢ € B(R") and that |g|| <
C(1+¢). Since £¢>0 was arbitrary the lemma is proved.

We will now state the main theorem of this section. It is a generaliza-
tion of a theorem of Beurling and Helson [1], who proved it for 2=R.
As we already have remarked, the quotient norm in B(£2) is larger than
lI]lg, and so the following theorem holds also for the quotient norm.

THEOREM 1. Let 2 be an open connected set in I', and assume that
f€B(2), that |f|=1 on Q, and that there exists a constant C such that

Ifmle = C, m=12,....
Then there exist a complex number ¢, |c|=1, and an x, € G such that
fy) = clxpy), yel.

The proof of Theorem 1 for I'= R will be reduced to the case when f
is a sufficiently smooth function (this is the hard part of the proof).
Then the following proposition and the structure theoretic Lemma 4 are
used to complete the proof of the theorem.

ProposiTioN 1. Let S be a bounded open ball in R™ Assume that
exp (ip) € B(S), that ¢ is a real function in C*(S), and that there exists a
constant C such that

lexp(tmp)ls £ C, m=1,2,....
Then @ is a linear function on S.

The reduction to the smooth case will be done by proving the follow-
ing statement.

ProposrrioN 2. Let 8=8(0,r) and suppose that fe B(S) and |f|=1
on S, and that there exists a constant C such that

Ifmlg = C, m=12,....
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Then there exists a ball Sy=8(0,r,), 0<ry<r, and a real polynomial ¢
such that f=exp(ip) on S,.

Proposition 1 is proved by an idsa used by Hormander to prove it
when S=R" (by Lemma 3 this case is a consequence of Proposition 1).
A proof can be found in Lemma 5 in [2].

The proof of Proposition 2 is more complicated. The idea of the proof
is essentially that of Beurling and Helson [1], who used it to prove the
proposition for §=R. The main tool in the proof is the following lemma,
which in an essential way depends on the obvious fact that the only
characteristic functions in B(S) are those which are either identically 1
or 0 on S (since S is connected).

Main LEMMA. Let 8=8(0,7). Suppose that f and g belong to B(S) and
that |g|=1 on 8, that f=g on a closed subset of S with positive measure,
and that there exists a constant C such that

If™ls = C, lgmlls =C, m=12,....
Then f=g on 8.

Both the proof of this lemma and the rest of Proposition 2 are obvious
modifications of the corresponding proof in [1]. Notice that we only
have to treat the case when S is bounded.

The general case will be proved by the use of the following lemma.

LrmmA 4. If a locally compact Abelian group I'y is connected, then the
set of all one-parameter subgroups of I'y is dense in I.

Proor. Since any element in the subgroup of I, generated by the
one-parameter subgroups can be imbedded in a one-parameter subgroup
of Iy, the lemma follows from Theorem 25.20 in [6].

Proor or THEOREM 1. We first consider the case I'=R". Since
< R~ is open and connected, and so arc-wise connected, any two points
in Q2 can be connected by a chain of open balls contained in Q. It is
sufficient to prove that for every point y, € 2 there exist an open ball
So=28(yy1,) contained in 2 and a real linear function ¢ such that
f=exp(ip) on 8,.

By (ii) of Lemma 3 it is no restriction to assume that y,=0. Then,
by (i) of Lemma 3 the assumptions in Proposition 2 are satisfied, and so
the existence of S, with the wanted properties follows from Proposition I,
thus proving Theorem 1 in this case.

To prove the general case we will apply Lemma 4. Again we can
assume that 0 € 2. Let I'j be the largest connected closed subgroup of I"
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that contains 0. Then I'; also contains £. Let R be any one-parameter
subgroup of I,

By what we have already proved f coincides on 2nR with an affine
mapping of R into the circle group, that is, f coincides on 2NR with a
constant of modulus 1 times a character. Since f is continuous on £,
and since by Lemma 4 the set of one-parameter subgroups of I is
dense in I'y, it follows that f has the form

o(%py), YEL,

where |c| =1, for some z, € G, and Theorem 1 is proved.

3. Homomorphisms of ideals of L,(G) into M(G’).

Let T be a homomorphism of a closed ideal I in L,(#), with values
in M(G'). Here G and @ are LCA groups with dual groups I" and I".
It is known that some condition has to be imposed on 7' in order that it
should be generated by a piece-wise affine mapping of I into I" (cf.
Forelli [4]; if I=L,(G@) this is however always the case, as Cohen [3]
proved).

That a mapping ¢ is affine means that

Py+y —y") = oy)+oy) —ey")

for all y, ¥’ and y” in I". That ¢ is affine on some subset of I means
that it coincides on this set with an affine mapping.

Using Theorem 1 and the techniques introduced by Cohen and by
Beurling and Helson, we shall prove the following theorem.

THEOREM 2. Suppose that T is a homomorphism of a closed ideal I of
Ly(Q) into M(G'), and let 4,=1{y ; (Tf)" (y) %0, some feI}. Then there
exist a real continuous function @ from I'" to I', which is affine in the in-
terior of each component of 4,, such that

(Tf)"(y) = 0, yéa,,
(TH ") = Flew), wyed,.

When I=L,(@) and T was onto L,(G') this was proved by Beurling
and Helson [1], and as mentioned above a sharper result was proved by
Cohen [3] under the assumption I=L,(@). Assuming that ||T|=1,
Forelli [4] proved that T is generated by an affine mapping (i.e. the
same map on all components of 4,). The above theorem is neither con-
tained in nor contains the theorem proved by Forelli.
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We need some well known results and notations, mainly from the ideal
theory of L;. Most of the proofs can be found in [6] and [7].

LEMMA 5. Let A, be the set of y eI such that f(y)+0 for some fel.
Then each y € A, defines a mon-trivial homomorphism into the complex
numbers, whose value at f € I is f(y). Conversely, each non-trivial complex
homomorphism is obtained in this way.

A proof for locally compact groups can be found in [6], Theorem 23.4.

Each y € 4, defines a non-trivial complex homomorphism of I, the
value of which at fe I is (Tf)"(y). From Lemma 6 it follows that there
exists a p(y) € 4,, such that (7f)"(y)=f(¢(y)). The function ¢: 4, > 4,
determines 7':

(Tf) @) =0, yEd,,
(Tf) () = fle), yed,.

From the uniqueness theorem and the theorem on the closed graph, it
follows that 7' is continuous, i.e.

1771 = Clifl,  fel,

for some constant C (and so ¢ is continuous on 4,).

We want to prove that ¢ is affine in the interior of each component of
4,. To proceed to the next step in the proof of this we need the following
lemma.

LEMMA 6. For each y, € 4., there exist an open set S, containing y,
and a function g, € 1, such that §,=1 on S, and §,=0 in a neighborhood
of I'—4,.

For a proof we refere to Section 7.2 in [7], especially Corollary (a) of
7.2.5.

We will next consider the case when I''=R.
_ To get shorter statements, we introduce some notation. We let
I={f; fe I} and let T be the homomorphism with values in B(R) defined

by A
() = (@), fel.

The main step in the proof of Theorem 2 is now to show that 7' can be
continuously extended to a mapping from B(I") to B(S), S some open
set in B. More precisely we prove the following proposition.

ProrosiTION 3. Suppose y, € A,. Then there exists an open interval S,
containing Y, such that T can be extended to a continuous mapping from
B(I') to B(S,).
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Proor. Let S, be a neighborhood of ¢(y,), and ¢, a function in I,
as in Lemma 8. Since ¢ is continuous we can take S, containing ¥, so
that ¢(S,)<8,. Let u € M(G) and define

My) = blely)), yed,.
We shall prove that 4 € B(S,) and that
IAlls, = Cllull »

where ('’ is independent of y. Now gg,€l (since §, el and A00=Fki0,,
ke L, and k=1 on the set where g,+0), and so, on 4,

P02 = Bole) file) = @oli)@) = T(Go) -
Since §,=1 on S,, we find for any ke L,, with A=0 outside S, that
pr, = @(@oﬂ)ﬁ .

IAllsy = Cligolls lleall = C" fleall »
and the proposition is proved.

Thus

Proor or THEOREM 2. We first prove the theorem when I"=R.
Let 4,’ be an open connected set in 4,. Let j, ,, (y) = (x,my), which
belongs to B(I") and has norm 1 for m=1,2,... and z € G. Let y, be
an abitrary point in 4,’, and let S, be the corresponding interval, as in
Proposition 3. Then we have

AY) = fig,m(@(®) = (z,me(y)) € B(S,)
and
|Amls, < €', m=12,....

By Theorem 1 this means that (z,¢(y)) is affine on §,. Since y, in 4,
was arbitrary as was x € G, it follows that ¢ is affine on 4,’, and Theo-
rem 2 is proved for I"=R.

The proof for general LCA groups I"” now follows from Lemma 4, as
in the proof of Theorem 1.

4. Fourier transforms of matrices.

In this section we shall give the counterpart of Theorem 1 for matrices,
the elements of which are bounded measures. This we do in Theorem 3,
which describes the eigenvalues of power bounded matrices of Fourier—
Stieltjes transforms. We only treat the case corresponding to 2= R" in
Theorem 1, although it is not hard to change the proof, using the results
from section 2, to cover the general situation, i.e. when 2 is any open
connected set.
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We first discuss some properties of the algebra of matrices, the ele-
ments of which are bounded measures on R".

If v=(vy,...,vy) is & complex N-vector, |v| will denote its Euclidean
norm,

ol = (S0Pt
and if 4 is an N x N-matrix |4| will denote the norm of 4,
|4| = sup{|dv|; v=(vy,...,0y), [v]|S1}.

By #,(R") (or simply .#,) we mean the set of all complex N-vector
functions v =(vy,...,vy) on B™ such that v;e L, j=1,...,N. In Z,(E")
we use the norm

ol = [ Io@) s
Rn

Similiarly #(R™) denotes the set of N x N-matrices with elements in
M(R™). If ue #(R") its norm is

lull = sup{lu*vlly; ve Ly, =1},

where u*v is defined as the vector with components (u = (u;;))

N
(y*v)k = z,ukj*’vj, k=1,...,N-
J=1

Analogously u*v € #(R") is defined for any u,» € #(R™) via the usual
matrix multiplication, and we get

lexvll < [lgell ]l -
We also note that

N N
el = el = Z 2 el -
J=1 k=1

It follows that .#(R") is a Banach algebra with unit (non-commutative
for N>1).

For matrices and vectors with elements belonging to .#(R") (or %,)
we define the Fourier-Stieltjes transform (or Fourier transform) by
taking the transform element by element. If u e .#(R"), its Fourier-
Stieltjes transform is denoted 4. The matrix function 4 is uniformly
continuous and bounded on R*, since its elements are. The set of Fourier—
Stieltjes transforms of elements in #(R") is denoted by Z(E"). If we
introduce the norm ||&||=|ul|l, x € #(R"), it follows from

(u*v)" = fip
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that Z(R") is a Banach algebra with unit Z under pointwise (matrix-)
multiplication and addition. It is non-commutative for N > 1.
We notice that for each y, € R» we have

(7) layo)l = llall = el -

To prove this first choose v, so that [i(y,)v,| =|d(y,)|, and then, as in
the proof of (1), approximate v, by the Fourier transform of a vector
in #;. As a consequence of (7) we note that, if 4™ is uniformly bounded
in & for m=1,2,..., then [d™(y,)| is uniformly bounded in m and y,.
Hence the eigenvalues of fi(y) have modulus at most 1 (3 € R*). When
the eigenvalues have modulus 1, we give a complete description of
them. This is a consequence of the following theorem, which is the
main result of this paper.

THEOREM 3. If ¢ € B(R") and if for some constant C' we have

(8) lg™l = C, m= x1,%2,...,

then there exist functions Ay,. .., Ay of the form

(9) M(y) = ¢;exp(i{w;y)), yeBR™ 155N,

where x; € B™ and |c;| =1, and such that 2,(y),. . .,Ay(y) are the eigenvalues

of ¢(y), y € R™, counted with proper multiplicities.

As a corollary of this theorem, we have the following.

CoroLLARY 1. If ¢ € Z(R") and if the eigenvalues of ¢(y) have absolute
value 1 for all y € R*, and if

lg™l £ C, m=12,...,
then there exist functions Ay,...,Ay of the form
A(y) = c;exp(iz;y)), yeR" 15jsN,

where x; € R™ and |c;] = 1, and such that 4,(y),. . ., Ay(y) are the eigenvalues of
oY), (y € B"), counted with proper multiplicities.

ProoF oF CoroLLARY 1. By Theorem 3 it is sufficient to prove that
all powers of ¢ are uniformly bounded in #(BE"). For m=1 we have

g™ = Fldetgm)t = ¢ det™

since all the eigenvalues of ¢ have modulus 1. The elements of g™ are
sums of products of the elements of ¢™, and so

77 S Zx S IPP S S S - 1)L sup, [¢PIY s NN1OYE = ¢,
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and also
|[dete™|| = ||detg™| < N!sup, lgiiI¥ < NI1CY = C”.

Hence the powers of ¢ are uniformly bounded in #(R"), and the corollary
is proved.

Before we give the proof of Theorem 3, we make some remarks.

By the remarks preceding Theorem 3, if ¢ € Z(R") satisfies (8), then
the eigenvalues of ¢(y) have modulus 1, for all y € R*. Hence Theorem 3
and Corollary 1 are equivalent.

It will be clear from proof of Theorem 3, that if ¢ has bounded positive
powers in #(R"), and if for all y in some open connected set 2 ¢(y) has
an eigenvalue of modulus 1, then ¢(y) has an eigenvalue of the form (9)
on the whole of R".

If ¢ satisfies (8), and if p and p—! belong to Z(R"), then also y=pep?
satisfies (8).

The next example shows that there is no obvious converse of Theorem
3. We shall construct a matrix function ¢ in #(R) which has eigen-
values 1 and exp (2niy), i.e. eigenvalues of the form (9). Further |g™(y)|
is uniformly bounded for y € R and m= +1, +2,..., but |p™|| > o as
m — oo.

Let y4,(y)=0 for y <0, y,(y) =exp(2nify) for 0<y<1, and y,(y)=1 for
y =1, and let A(y) =exp(2niy). Multiply y, with a C*-function with com-
pact support which is 1 on [—1, 2], and call this new function y. It is
easy to verify that y(1—A) is Lipschitz continuous of order 1 for 0y =<1.
Hence we see that y(1—21) € B(R). Let

o= ((1) 7‘(1;’1)) e A(R).

We have
1 x(1=2m)
v = (0 am )
Since

2@ (1 =Am(y))| = 2
we see that

lp™y)| < 4,

and so |p™(y)| is uniformly bounded.

We suppose that
g™l £ €, m=12,....

From this we shall derive a contradiction. From the assumption above
we conclude that
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x(I-am)j = C, m=12,....

Now A™(y)=A(my), and so we get, with y(y/m)=x,.(¥),

(1= = xQ=24m £ C, m=12,....
Let 2=(3, %). Since (1 —24)-1is analytic on £, it belongs to B(2). Lemma
3(i) then gives

lm(1=2llg = lgm(1 -l = C, m=12,...,
and so

Imlla = I(1=2)C = C", m=1,2,....
But in 2 we have y,,(y) = exp(2nim[y) = y™(y). Hence
”Xm“a é C’ m=1)2)' LECIR

This contradicts Theorem 1, and so |l¢g™|| can not be bounded as m — oo.

The rest of this section is devoted to the proof of Theorem 3. We
first prove the counterpart of the Main Lemma from Section 2 in the
matrix case. The Main Lemma and Theorem 1 are the essential tools in
the proof of Theorem 3.

Maix LEMMA. Let ¢ € Z(R™) and suppose that g € B(R") and that g(y)
ts an eigenvalue of @(y) for all y in a set of positive measure. Assume
Jurther that there exists a constant C such that

lg™l = €, m=1,2,3,...,
lg™l £ C, m=4+1,+2,....

Then g(y) 18 an eigenvalue of p(y), for all y € R™, with constant multiplicity
a.e. on B™.

Proor. Let ®=g-1p. Then @ € #(R") and

1271 = lg=™Il g™l = C? m=1,2,....

Further let
y = HE+9D).

Then y € #(R") and
) < 2 S (’J”) B s, m=12,...
J=0

Further the only eigenvalues of ¢ of modulus 1 are the 1’s (the other
eigenvalues having modulus less then 1). Using (7) we see that y has
bounded powers, and so

Py) = lim,_, ,y™(y)
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exists for all y € R™, and the matrix 9 is of the form PDP-!, where D is
a diagonal matrix with 1’s and 0’s in the main diagonal.

Let A be the set of all y € B* such that g(y) is an eigenvalue of ¢(y).
Then A is a closed set of positive measure, by the assumption. If y e 4
then @(y) has 1 as an eigenvalue, and so also ¥(y) has an eigenvalue 1.
It follows that for y € A4 we have an eigenvalue 1 of ¥(y). The multi-
plicity of g(y) as an eigenvalue of g(y) is the same as that of 1 of ¥(y).
If y ¢ A then g(y) is not an eigenvalue of ¢(y), hence 1 is not an eigenvalue
of @(y). It follows that there are no eigenvalues of modulus 1 of ¥(y)
when y ¢ 4, and so ¥(y)=0.

An application of Lemma 2 to the elements of Y™ shows that there is
a v € A (R™) such that

¥ =, a.e. on R,
The eigenvalues of #(y) can be chosen as continuous functions of y € R™,
Since the eigenvalues of ¥(y) only take the values 0 and 1, it follows
that these functions must be constants, either 1 or 0, on the whole of R™.
In particular the multiplicity of 1 as an eigenvalue of #(y) is constant.

Now ¥+0 on A. As A has positive measure, the above implies that
?+0 on R®. Since B*—A is open and #=0 a.e. on this set, A=R"
Furthermore we see that g(y) has the same multiplicity a.e. on R" as
an eigenvalue of (y), as 1 has as an eigenvalue of #(y). This completes
the proof of the Main lemma.

We will need a version of the Wiener-Levy theorem.

LemMa 7. (Wiener—Levy) Let S be an open set in R™, let @y, . . .,y € B(S)
and let y,€ 8. If F is a holomorphic function of N complex variables in a
neighbourhood of (@1(Yo),. - ., Pn(Yo)) then there exists, for any neighbour-
hood S;<=8 of y,, an open ball Sy=8(yy,7,) =8, such that F(gpy,...,px)
coincides on S, with the Fourier transform of an Ly-function f, with f=0
outside 8.

We will also need the following variant of the Wiener theorem.

LemmA 10. If v e Z1(R") and if D40 on an open ball S=8(y,,r), then
there exist an open ball Sy=8(y,,1,), 0 <7y <7, and a constant C such that
for every f € L, with f=0 outside S, we have the inequality

(10) £l = Clif*olly -

We can now give a proof of Theorem 3.

Proor or THEOREM 3. Let ¢(y)=/(y), p € #(R") and let A(y) be an
eigenvalue of g(y), for all y € R*. Let 2 be any non-void open connected
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set in R®. We shall first make use of the fact that the elements of ¢
belong to B(R"). So we choose a ball §;=_8(y,,7,), 71> 0, in £ such that
A and a corresponding eigenvector u are analytic functions of the ele-
ments of ¢ when restricted to §;. We can assume that «+0 on S,. By
Lemma 7 there exists a function g € L, and a vector v € .#; and a ball
Sy=8(y,7s), 71>75>0, such that §=2 and D=u on S,. If we now apply
Lemma 8 to v and S, we finally find a ball §=_8(y,,7), r>0, such that
(10) holds for all f € L, with f=0 outside 8. For such a function f we have

o™(y) 8y) Fly) = gm(y) wy) Fly) = () wy) Fy)

= Jm(y) 9) f(v)
for m=1,2,.... We can estimate the norm of the left hand side by
(11) lgmafll = u*mxoxflly < llw*m [f*olly < Cllelly £l s

where u*m is the convolution of u with itself m times. Using (10) we
get an estimate to below for the norm of |¢™ "z‘zf I,

(12) g™+ £l < Cllg*msvxfly = Clig™af|| .
From (11) and (12) we get, with a new constant C,
(13) lg*™*fll, = ClIfll: -

By the definition of ||-||g, however, (13) means that
(14) 1Als = lg™ls = C,  m=12,....

By the remarks preceding the theorem, we have |A|=1 and therefore
we can apply Theorem 1 to A. It follows that A is the restriction to §
of a function of the form

h(y) = ¢ exp(i{z,y)), le|]=1 and z e R"1,

that is, a function that has bounded powers in B(R"). The Main Lemma
then shows that & is an eigenvalue of ¢ on the whole of B”. Since the
non-void open set £ was arbitrary, as was the eigenvalue A, the fact
that & has constant multiplicity a.e. on R® as an eigenvalue of ¢ con-
cludes our proof.
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