MATH. SCAND. 22 (1968), 87—-107

ON THE MACKEY-TOPOLOGY FOR
A VON NEUMANN ALGEBRA

JOHAN F. AARNES

1. Introduction.

We consider a von Neumann algebra 4 as a C*-algebra which is also
a dual space as a Banach space. Our interest is aimed at the duality
(4,A4,), where A, is the pre-dual of 4. The study of the Mackey-topology
7(A,4,) for a von Neumann algebra 4 was initiated by S. Sakai in [12],
[15]. He pointed out that the extremal property of this topology must be
a useful tool in the theory of von Neumann algebras. We hope the
present paper will support this view.

Basic for the understanding of the properties of the Mackey-topology
is our knowledge about the weakly (that is o(4,,4)-)compact subsets
of 4, . For the commutative case, characterizations of these sets have
been known for some time [3], [4], [8]. That similar characterizations
were available in the general, non-commutative case seemed probable,
and results in this direction were obtained in [1], [15], [16], [17], and
finally by C. Akemann in [2]. For the sake of completeness, we
start with presenting these characterizations of o(4,,4)-compact sub-
sets of 4,. The proofs are in several places different from Akemann'’s.
We then go on to study some of the properties of the Mackey-topology.
With this topology, A4 is seen to be complete, and even fully complete
(B-complete) in the sense of Ptak [11]. In section 4 we give some proper-
ties of the Mackey-topology related to the order-structure of 4. In the
next section we consider the following problem: If B is a sub-von Neu-
mann algebra of 4, when does there exist a linear ultra-weakly continuous
projection of 4 onto B? We obtain a partial answer to this, and apply
it to the question whether the Mackey-topologies ©(B,B,) and 7(4,4,)
coincide when the latter is relativized to B.
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2. Notation and basic concepts.

Throughout the paper, 4, B will denote von Neumann algebras. By
Ay, B, we denote their pre-duals, and by A*, B* their norm-duals,
respectively. A+, A*, A, denote the cone of positive elements, the her-
mitian elements and the unit sphere in 4, respectively. A,+ and A,
are the cone of positive elements and the hermitian elements in 4,,
respectively. We call the elements of A, normal linear functionals. A
linear functional f on A is completely additive if for any family {e}, .,
of mutually orthogonal projections in 4 we have

f(zyel‘ ey) = zyeI’f(ey) .

An element fe A* is normal if and only if it is completely additive
[13] [16].

We consider several locally convex topologies for 4, all of which are
admissible in the sense of [10] relative to the duality (4,4,):

(1) the norm topology (n) on 4 as the norm-dual of 4,;
(2) the Mackey-topology () (that is, ©(4,4,) is the topology of uni-
form convergence on relatively o(4,,4)-compact sets);
(3) the *-ultra-strong topology (s*) given by the family of semi-norms
{op,0p* 1 p € Ayt} where
apl@) = pera,  a,*a) = plert),  wed;

(4) the ultra-strong topology (s) given by the family of semi-norms
{xp: p € Ayt}, and finally
(5) the ultra-weak topology (¢) (that is, a(4,4,)).

This sequence of topologies is monotone descending with respect to
their strength, and the four last are compatible with the duality (4,4,).
For the elementary properties of these topologies (except (2)) we refer to
[6]. We note some properties of (7). Multiplication is separately continu-
ous, indeed the maps z — 2*, ax, za and a*za, a € 4, are all continuous
[12]. A co-base for this topology is given by the relatively o(A4,4)-
compact subsets of 4,* This follows immediately from the fact that
the map f — f* is o(A44,4)-continuous for fe A,, and that each such f
can be written f=f, +if,, where fi=3(f+f*) € A * and f,= — §i(f—f*) €
Al

If e is a projection in 4, the von Neumann algebra {eae: a € 4} will
be denoted A4,. The linear map a — eae is (o)-continuous. For fe 4,,
a € A, we denote by af and f, the linear functionals z — f(az) and = -
f(a*za) respectively. af and f, are normal, and the linear maps f — af
and f — f, are o(4,,A4)-continuous [12].
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If fe A,*, the support of f is the least projection e in 4 such that
f.=f. Then f(e)=f(1)=|f|l, and f(1—e)=0. Here 1 denotes the identity
element of 4. If fe 4,%, it may be uniquely written f=f+—f-, where
[+, f~ € Ayt and have mutually orthogonal supports e,, e, respectively.
We write |f|=f++f-. Then |f| has support e, +e,, and f=(e,—e,)|f].
Note that || f||=|f+]|+If-I=lIf]ll- If e is a projection satisfying e = e, +¢,,
we have f=f,. More generally, if f€ 4, there is an element p € A,+ and
a partial isometry u € 4 (that is w*u and wu* are projections in 4), such
that f=up and p=u*f. The support of p is equal to uu*, and we write
p=|f|. If fis hermitian, the notation agrees with the one introduced
above. We refer to the equation f=wu|f| as the polar decomposition of
£ (cf. [6], [12]).

If {a,},cr is a net in A+, the notation a,}0; y € I' means that {a,} is
monotone decreasing, with inf, .a,=0.

A positive, linear functional p on A is fasthful if a € 4+, a0 implies
that p(a)+0. Recall that if 4 is commutative, then it is isometrically
isomorphic to a space L™(S,u), and its pre-dual to L*(S,u) [19].

3. o(44,4)-compact subsets of 4,.

Let A be a von Neumann algebra, and B a von Neumann sub-algebra
of 4. Each normal linear functional on 4 has a restriction to B, and
conversely, each normal linear functional on B has a normal extension
to A, by the Hahn-Banach Theorem. Let r: 4, - B, denote the
restriction map, so 7(f)=f/B, fe Ay, and r maps 4, onto B,. It is
easily seen that r is continuous with respect to the topologies o(44,4)
and o(By,B) for 4, and B, respectively.

THEOREM 1. Let K be a subset of A,. The following conditions are
equivalent:

(i) K is relatively o(A,A)-compact.

(il) r(K)< By 1s relatively o(By,B)-compact for every (maximal) com-
mutative, von Neumann sub-algebra B of A.

(iii) K s bounded, and each sequence of projections {e,},.nSA4 such
that e, | 0, converges uniformly on K.

(iv) There is a positive, normal linear functional p on A with the follow-
ing property: For each ¢ >0, there is a 6 > 0 such that if

zed, o<1, oprtr+za*) <4,
then
If(®)] <& forall feK.



90 JOHAN F. AARNES

ReMARk. The equivalence of (i) and (ii) seems first to have been
noticed by Takesaki [16]. However, the proof of the implication (ii) = (i)
which we give here, is different from his. That (i) implies (iii) is essen-
tially contained in [1]. The more embracing fact, that (i) implies (iv)
was first proved by Sakai [15] for algebras of finite type, and then by
Akemann in the general case [2].

Proor or THE THEOREM. (ii) = (i). To show that K is relatively
(A, A)-compact when (ii) holds, we will employ the Smulian compact-
ness criterion ([10, 16.6 p. 142]). Thus, we have to prove that K is
bounded in the o(A4,,4)-topology, and that each linear functional f
on 4 which is bounded on K° is normal, i.e. belongs to 4,. If x€ 4 is
self-adjoint, then it is contained in some (maximal) abelian von Neumann
sub-algebra B of 4, so

SqueKIf(x)l = SqueKIT(f)(x)l < ®

since 7(K) is o(By, B)-bounded. Every element in 4 is the linear combina-
tion of self-adjoint elements, so K is clearly o(4y,4)-bounded. Then K
is also norm-bounded, so

Kc8,=1{geds: gl £ m}
for some positive integer m. Hence
K°28,°={xed: |z| s 1/m}.

So if f is bounded on K°, it is also bounded on §,,°, which means that
f € A*. Therefore, to prove that f is normal, let {e,},. be an arbitrary
net of commuting projections in 4 such that e, 0, y € I. We must show
that f(e,) - 0, y € I. Now take a (maximal) commutative von Neumann
sub-algebra B of A which contains the family {e,},. . Let

M = sup{|f(z)|: z€ K°}.

According to the hypothesis, »(K)< B, is relatively o(B,,B)-compact.
Hence by the commutative result [4], [8], or [7, ch.IV. 8.11, p. 294],
there is a y, € I'" such that |y(e,)| <&/M for all y € r(K) whenever y 2 y,.
That is e, € Kye/M for y=7y,, so |f(e,)| S Me/M=¢ for y2y,. Hence
fle,) >0, and fe 4y.

(iil) = (ii). This is an immediate consequence of the commutative
theorem, for example [7, ch. IV. 8.9, p. 292].

(iv) = (iii). It is evident that if e, | 0 where {e,} is a monotone se-
quence of projections in A, then (iv) implies that e, converges uniformly
to zero on K. It is also clear that (iv) implies boundedness of K.

(i) = (iv). We establish this implication through three lemmas. The



ON THE MACKEY-TOPOLOGY FOR A VON NEUMANN ALGEBRA 91

proofs of the first and the third are due to Akemann [2], the second we
prove by a modification of an argument of Sakai [15], and is slightly
shorter than the proof given in [2].

Lemma 1. Suppose {a,},enS 44", and a, -~ 0 (8) as n - . Then, for
&> 0 given, there is a sequence {e,},.n of projections in A such that e, — 1 (s),
and |la,e,||£06 for n=1,2,....

Proor. Let X be the characteristic function of the interval ]1—4,d[.
By the functional calculus we may define e, = X(a,) for each n. Then e,
is a projection in 4, and we have a,22§%?(1—e,)2 0. Since a, — 0 (s) it
follows that 1—e, — 0 (s), thus e, — 1 (s). It is also clear that |ja,e,||<d
for all n.

LeMMA 2. Let K be a relatively o(Ay, A)-compact subset of A, and sup-
pose that {a,}.nS 4, and a, - 0 (s*) as n - . Then a, - 0 uniformly
on K as n — oo.

Proor. Since a,, —~ 0 (s*) we know that {a,} and {a,*} both converge (s)
to 0. This implies that the self-adjoint and skew-adjoint parts of the
sequence {a,} both converge (s) to 0. Hence we may and shall assume
that the a,, are all self-adjoint. Suppose that the lemma is false. Then
there is an ¢>0 and sequences {f;}< K, {z;}< 4,, ¢ € N, where {z;} is a
sub-sequence of {a,}, such that

(1) |fz(xi)| > g, 1=1,2,....

By the Eberlein Theorem [7, V. 6.1, p. 430] K is relatively sequentially
compact in the o(A4,,4)-topology, so we may assume that f; — f, € 4,
as ¢ — oo, with respect to this topology. Now, let {e,} be as in lemma 1,
that is, e; > 1 (s) and |lz;e,]| <9, ©=1,2,..., for some arbitrarily chosen
6>0. Then we have

[fo—S@l = [(fo—fi)@iel + 1(fo—13) (%:(1—e)))l

2M5 + |(fo—fi)z1—e))l ,

where M =sup{||f|| : fe K}. The sequence {f;} converges pointwise to f,
on the unit sphere 4, of 4, which is o(4,4,)-compact. By the Osgood
Theorem [10, ch.3, 9.6, p.86] there is a point zy€.4; such that

{f;}j=0,1, ... 18 equi-continuous in z, when restricted to 4,. That is, we
can find a o(4,A4,)-neighborhood U of 0 in 4, such that

IA IIA

implies that
Ifi(x)—fi(x)] < 6 for j=0,1,....
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Now choose j, such that j = j, implies |f;(z,) —fo(%,)| <d. It follows that
|fi(x) —fo(x)| < 30 for j=j, whenever x € V.
Now put
Y = exoe;+x,(l—e)) .

Since by construction e; and x; commute, a simple computation shows
that y; € A,. Moreover, e; > 1 (s) implies that y; - z, (s), and hence
also in the (o)-topology. Then we can choose i, N such that 724,
implies that y; and e;zqe; belong to V. It follows that

[(fo—f)(dl =€)l = [(fo—FDysl + [(fo—Fi)(esmoes)| < 60
for i 214, j2Jj,. Consequently
I(fo—fi®)] < (2M +6)0
for ¢ 214,,j2j,. Since é was arbitrary, and fy(z;) — 0, this contradicts (1),

and the lemma is proved.

LemMa 3. Let K be a relatively o(Ay,A)-compact subset of A k. Given
any &> 0 there exists >0 and a finite subset {fy,...,f,}S K such that,
ifae 4, and

Ifil(@*a+aa*) < 6, i=1,...,n,

then |f(a)| <e for all fe K.

Proor. Suppose the lemma is false for some £>0. Then we may
construct sequences {a,}< 4, and {f,}< K, such that if

U, ={xed,: |fi@x*x+xx*)<2-", i<n},

then an € Un! but ]fn+1(an)[>8' Put f=zsz-12_i|fil, and let e be the
support projection of f. Now

f(an*an+anan*) = z 2-¢ ,fil(a’n*an'l'a’nan*)
=1

< 3 2| (@n*ay +aga, ) + S 2f

=1 t=n+l1

24 21n Y,
where M =sup{||f||: fe K}, so
fla,*a, +a,a,*) >0 as n-—>oo.

It follows then by Proposition 4, p. 62 in [5], that {ea,e} is (s*)-conver-
gent to zero. By Lemma 2 this sequence then converges uniformly on K.
However :
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lfn+1(eane)| = lfn+1(an)' > &,

a contradiction, and the proof is complete.

PRrROOF OF THE IMPLICATION (i) = (iv): It is sufficient to prove it
when K< A,*. Then Lemma 3 applies; let ¢, =n"1, and choose a match-
ing >0 and {f,",...,f,}<K according to Lemma 3. Put

= Son(Srze).

Then p has the required property with respect to K. The proof is com-
plete.

CoroLLARY 1. The Mackey-topology ©(4,4,) coincides with the (s*)-
topology on bounded sets in A.

Proor. Asnoted in Section 2, the Mackey-topology is stronger than the
(s*)-topology. That the converse holds on bounded sets, is now an im-
mediate consequence of the implication (i) = (iv) of the preceding theo-
rem.

CorOLLARY 2. Multiplication is simulianeous (t)-continuous on A,.

Proor. The mapping (z,y) > 2y of A,x 4, into A, is continuous
when A4, is given the (s*)-topology. The result then follows from Corol-
lary 1.

RemARK. Several other characterizations of relative o(4,,4)-com-
pactness are now easily available. For instance, K is relatively o(4,,4)-
compact if and only if each monotone, descending net of self-adjoint
operators z, | 0, also converges uniformly on K. That this is so follows
from the fact that this condition is implied by (iv) and implies (iii) in
the theorem.

4. Order-properties of the Mackey-topology 7(A4,A4y).

In this section we state some properties of the (v)-topology related to
the order-structure of the von Neuman algebra 4.

We say that a net {z,},.,< A" is order-convergent (O-convergent) to
an element z € A*, and write x, — x (0) if there is a cofinal subset I"
of the directed set I', and two nets {y,}, 1, {2 }yer in A" satisfying

(i) yyiz; zt2; p el
(i) 2z, =x, =y, if y2y'.
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A net {x,},.rc4 is O-convergent to an element x € 4, and we write
z, —»z (0) if }(z,+=,*) - (x+2*) (0), and

- iz, —x,*) > —fi(xz—x*) (0).

It is clear that x, -« (O) implies z,* - 2* (0), and that », -z (0) if
and only if z,—z — 0 (0). Note also that z, - = (O) implies that the net
{z,} is eventually bounded in 4, because of (ii) above. We observe that
if {x,} is a net in 4 converging to an element x € 4 in the norm-topology
of 4, then z, - z (0). Finally, we say that a vector-topology T for 4 is
order-continuous (O-continuous) if for a net {r,}< 4 we have z, >z (T)
whenever z, — z (0).

Proposition 1. The topology (t) s the strongest order-continuous,
locally convex topology on A.

Proor. We first prove that () actually is O-continuous. Let {z},.r
be a net in 4, and let z, -z (0). By the preceding remarks, it is not
restrictive to assume that {z,} <4, and that x, > 0 (0). To show that
x, - 0 in the topology (7) it is then by Theorem 1 sufficient to prove that
x,—>0 (s). Let I"cI' and y,{0 such that —y,<wz <y, if y2y'"
Suppose for some y,’ € I"” we have |ly, [|=M. Let the (s)-seminorm |-,
on 4 be given by

llzll, = p(x*x)}, where p=0, ped,.

We may assume |jp||=1. Now, choose y'2y,’, y" € I such that [ly,|, <
}¢/M, for a given ¢>0. For y2y', y e I', we have

0=sy,—=z, = 2,
so that
0 = p(y,—=,) < 2p(y,) = 2|y, -

Now recall that if z € 4, x 20 we have p(x?) < p(x)|x|. Hence

By —2,) < Py —2,) lyy =)l < 2y 1,2 < e
80
)y = llylly + llyy—2,lp, < etet.

Since ¢>0 was arbitrary, this proves that z, - 0 (s), and consequently
that the topology (r) is O-continuous. Now let 7' be any O-continuous,
locally convex topology on A. Since convergence in the norm on A
implies O-convergence, 7' must be weaker than the norm-topology. It
follows that a 7'-continuous linear functional f is bounded on 4 and thus
belongs to A*. Since T is O-continuous f is completely additive, and
consequently normal, i.e. an element of 4,. By the Mackey—Arens
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Theorem [10, 18.8, p. 172] it then follows that 7' is weaker than (7).
The proof is complete.

REMARK. Another proof of the fact that if {z,},., is a net of bounded
self-adjoint operators on a Hilbert space 5, O-convergent to a bounded
self-adjoint operator x on 5#, then it is convergent in the strong operator
topology, was given by Fell and Kelley [9]. The proposition above
generalizes the corresponding well-known statement for the commuta-
tive case, which follows from measure theory [3], [7], [8].

REMARK. McShane [18] has proved that if A =.2 (), 5# some Hilbert
space, and {z,} is a bounded net of self-adjoint-operators such that
x, - z (s), then z, - x (0). It follows from this result and proposition 1,
that if {z,} is a bounded net in 4 =2(5#), then z, - « in the topology
(7) if and only if z, -z (0).

CoroLLARY. Let U be a neighborhood of 0 in A in the (t)-topology.
If {y,},er is a met in A such that y,}0, y € I, then there is an index
yo € I' such that when —y,<z<y,,, x€ A, we have xe U.

Proor. Let y,10, and suppose the statement above to be false.
Then, for each y € I there is an element x, € A" satisfying —Y <, <y,
and z, ¢ U. But then z, — 0 (0), and consequently #, - 0 in the topology
(7) by Proposition 1. This is a contradiction, and the corollary is proved.

Under additional assumptions, somewhat more can be said in the
direction of the last corollary. We first prove

ProrosrrionN 2. If A is a von Neumann abgebra of finite type, and
Kc A, is relatively o(A,,A)-compact, then K'={|p|: ¢ € K} is relatively
a(A,,A)-compact.

Proor. Let {r,} be any sequence in A4;* such that =, -~ 0 (s). By
Theorem 1, K' is relatively o(4,,4)-compact if we can prove that x,

converges uniformly to 0 on K’. Suppose that it does not. Then there
is an >0, a subsequence {y,} of {z,}, and a sequence {f;}< K such that

Ifilw) =& $=1,2,....

Let f;=w;|f;| be the polar decomposition of f;, u; € A. Since |juy|=1 for
all 4, it follows directly from the Schwarz inequality that w;*y; — 0 (s).
The *-operation is s-continuous on the unit sphere of 4 [13], so u;*y;, - 0
(s). It follows that the sequence {u;*y;} converges uniformly to 0 on K,

and hence il = |fiwi*yy)| < €

for sufficiently large ¢. Since this is a contradiction, the proof is complete.
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ADDED IN PROOF. K. Saito [24] has recently shown that Proposition
2 is true for finite algebras only.

One may go ahead at this point and obtain as an easy corollary that
the normal hull

{fedy: 02|f|Zlg9l, 9 K}

of a g(4,,4)-compact subset K of the pre-dual of a finite von Neumann
algebra is also o(4,,4)-compact. However, the concept of normality
seems not to be so useful generally as in the commutative case. The
reason for this is that we do not always have

lgl(l=]) = sup{f(z): 0=|f|<lgl},
not even for hermitian g and =.

ProrosrTioN 3. If K'={|f|: fe K} 1is relatively o(Ay,A)-compact
whenever K 1s relatively o(A,A)-compact, there are local bases U and ¥~
for the Mackey-topology (t) such that

(a) —y<x<y, 0syeU = zeU, Ue¥,
(b) z*xZy*y, yeV = zeV, Ve¥ .

In particular, ye V = |y| € V. Hence, for each meighborhood U of 0,
there is a meighborhood V of 0 such that

Os|z|=lyl, wyeV, =zedr = zelU.

Proor. Let & be the collection of relatively o(4y,4)-compact sets
such that if fe K € &, then f>0. Let % be the collection of sets

U={zed: |f@|s1, feK},
and let ¥~ be the collection of sets
V=1{xed: fa*z)}t<1, fe K},

where K runs through &#. We claim that % and ¥~ are local bases
around O satisfying the requirements of the proposition. It is easily
seen that % and ¥~ are local bases for two locally convex topologies
T 4 and J - respectively. By the Schwarz inequality, - is stronger
than 4. Now, let K be any ¢(44,4)-compact set in 4,*, and put

K+ = {ft: feK}, K-={f-:fekK}.

Then K+, K- belong to &, and hence also 2K+, 2K~ and K, =2K+U2K-.
Take
U={xed: [g)=1, geK,}.
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Then, if z € U, we have for fe K

If @) = If*@)—f~@)] = [f+@)] + |f (@)
= §(12f*@) + [2f~@)]) = 1,

since 2f+ and 2f~ € K;. Hence U g K° which shows that 7, is stronger
than the Mackey-topology ©(d4,4,). Now let f be a J,--continuous
linear functional on 4. f is clearly bounded. If {e} ., is a net of com-
muting projections in 4 such that e, {0, y € I', then e, > 0 (), and it
follows that f is completely additive, and hence belongs to 4,. By the
Mackey—Arens theorem it then follows that J, is weaker than (7).
Hence % and ¥~ are local bases for the Mackey-topology (7).
Now, if —ysz=<y, 0Sye U, for an U e %, we have for fe Ke F
and U=K°
—fy) =f@ =fy), so |f@@) =Ifl =1,

that is, x € U, proving (a). If 0=2z*xSy*y, y € V, then
f*a)} < fly*yt = 1,
so z € V, and in particular y € V implies that

lyl = *yteV,
proving (b). Now, let U’ be any (t)-neighborhood of 0 in 4. Take U,
V in %, ¥ respectively such that V< U< U’. Then, if y € V, we know
that |y| € V, and hence |y| € U. So, if |z|<|y|, we have |x| € U by (a).
If x € A*, we have |x|=xt+2", S0

@) = If@)—fl)] = f(e)) =1 if fekK,
and U=K° Hence, z € U and the proof is complete.
CoroLLARY. If A 18 of finite type, the conclusion of Proposition 3 holds.
For reference, we also note the following fact.

LemMma. If A is of finite type, and K is a o(Ay, A)-compact subset of A,
then there is a positive, normal, linear functional p on A such that f=f,
for all f e K, where e=support p.

Proor. We may assume that K<Ad,* By Proposition 2, K'=
{If] : fe K} is relatively o(4y,A)-compact. So, by Theorem 1, there is
a positive, normal, linear functional p on 4, which in particular has the
property that p(e’)=0 implies that [f|(¢’)=0, e’ any projection in 4.
The lemma follows.

Math. Scand. 22 — 7
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5. The restriction problem.

We are going to consider the following problem. Let 4 be a von Neu-
mann algebra, and let B be a von Neumann sub-algebra of 4. When is
the restriction of the Mackey-topology for 4 to B equivalent to the
Mackey-topology for B? That is, when do we have v(4,4,)|B=
©(B,B,)? As can easily be verified, this restriction property holds for
each of the other topologies usually considered for von Neumann alge-
bras. The ultra-weak topology for B is the topology o(B,B,), but is
also the restriction to B of the topology o(4, A,), the norm on B is deter-
mined either as the dual norm with respect to B,, or as the restricted
norm on A to B, and so forth. However, it is not obvious that the same
is true for the Mackey-topologies for 4 and B relative their pre-duals.
Indeed, for locally convex spaces in general, it is false:

A subspace of a Mackey-space need not be a Mackey-space, since
each locally convex space is topologically isomorphic to a subspace of a
product of semi-normed spaces, which is a Mackey-space.

We single out a class of sub-algebras B of 4 having this restriction
property, so that ©(4,4,)|B=1(B,B,), characterizing them by a “mini-
mal distance property”, which may be of some interest in itself. It is
easily seen that the equivalence of 7(4,4,)|B and ©(B,B,) depends on
the existence of a o(4,,4)-compact set K, A, such that r(K,)=K for
each o(B,, B)-compact set K < B,, where r is the restriction map f — f| B,
f€ A,. What we want to do, is therefore to construct a continuous map
¢ of B, into A, such that ro ¢ is the identity map on B,, that is, we are
looking for a continuous cross-section for r.

In all what follows, 4 and B will denote von Neumann algebras,
Bg A will mean that B is a von Neumann sub-algebra of 4. Let 1y
and 1, denote the identity elements of B and 4 respectively, and if e
is a projection in 4, let (4,,e) denote the set of positive, normal, linear
functionals p on A satisfying p(1,—e)=0. By a projection P of 4 on B
we simply mean a linear map of 4 onto B satisfying Po P=P.

DerFiNiTION. We say that B A has the minimal distance property
(m.d.p.) with respect to 4, if for each g € B, * there is p € (4,,15) which
extends g and satisfies the following condition: For every a € 4 there is
a, € a+ B such that

pla*a,) £ px*x) forall zeca+B.

The following result shows that the m.d.p. comes close to being neces-
sary for ultra-weakly continuous projections to exist.
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ProOPOSITION 4. Let P be an ultra-weakly continuous projection of A on
B with ||P||=1. Then B has the m.d.p.

Proor. Let P,=P|4,, where e=15. By a result of Tomiyama [21],
P, is positive, and satisfies

Py(xy) = xPy(y) forall xzeB, yed,.

Let P, be the linear map @ — eae of 4 onto 4,, and take P'=P,0 P,
so P’ is a positive projection of A onto B satisfying

P(1,)=e¢ and P'(xa)= zP'(a), xe€B,acd.

Let ¢ be any element of B,*, and put p=goP’. Then p e (4,,e). Now
take any a € 4, and put a;,=a—P'a. Let x be any element of a+ B, it
can then be written x=a,+b, b € B. The form

(?/az)p = p(z*y)’ y:ZEA’

is positive and conjugate bilinear on 4 x 4, and introduces a semi-norm

W, = .9} yed,
on A. We now obtain

(a1,b) = p(b*a;) = poP'(b*a,) = p(b*P'a;) = 0.
Hence, by the Pythagorean equality it follows that
”x“p2 = ”a’lnp2+“b”p2: S0 P(x*x) g p(a’l*al),
and the proof is finished.

NoTe. In the first draft of this paper the above result was stated in a
less general form. We are indebted to W. Arveson, who made us ac-
quainted with Tomiyamas result and his own work [20]. The last part
of the proof above is modeled after one of his arguments.

REMARK. An immediate consequence of this proposition is that if e is
a projection in 4, then 4, has the m.d.p. with respect to 4. In particu-
lar, this is true for any (o¢)-closed two-sided ideal in 4. Kadison and
Singer [22] showed that a positive projection of norm 1 always exists if
B is abelian. It is also known [20], [23] that if A is of finite type and
countably decomposable, then a normal projection of this kind exists on
any Bc A.

We are now going to study the problem to which extent the condition
m.d.p. on B is sufficient for ultra-weakly continuous projections to exist.

LemMa 1. Let 0<p € A, and suppose that p is faithful when restricted
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to B€A. Then there is at most one element a, € a+ B, a € A, satisfying
pla*a,) S p(x*x), x € a+ B.

Proor. Let a € 4 be given, and suppose that
pla*ay) = plag*ay) = d? < p(a*z),
for all xea+ B, and a,,a, €a+B. Then }(a,+a,) ea+ B, so
d = [[3a1+as)ll, = Hlayllp+Hlaal, = 4,

0 |la;+ay|l,=2d. For the semi-norm ||, the parallellogram equality
holds. Hence

llas—aall,® = = llag+aqllp? + 2(llallp®+ llaqll,?) = 0.

Now a,—a,=B, and ||-||, restricted to B is a norm since p|B is faithful,
so this implies that a,=a,, and the proof is complete.

Lemma 2, If A2 B, and B has the m.d.p. with respect to A and e is a
projection in B, then B, has the m.d.p. with respect to A4,.

Proor. Let 0 =g, € (B,)s, and define p; on B by py(x)=q,(exe); x € B.
Then p, € B,+, and therefore by assumption has a suitable extension
g€ (Ay,15). Now take p=gq|4,. For ze B,, we get

p(x) = q(x) = py(x) = qyexe) = ¢4(x),

80 p is an extension of ¢; to 4,. Note that

: q(1p—e) = py(lp—e) = ple(lzp—ele) = 0,
80 q € (Ay,e).

Now, let a € 4, be arbitrarily chosen. Since B has the m.d.p. in 4,
there is an z; € @+ B such that

q(x*2y) S glx*x), zea+B, xeAd.
Hence, also
(2) q(x,*xy) = p(x*x), xea+B, x4,
since a+ B,ca+B. Now z,=a+b, be B, so
ex,e = eae+ebe = a+ebe,
a, = exe € a+B, and a,€4,.
Further,
pla*ay) = q(a*ay) = 9((37”1‘3)*(@3713))
= g(ex *ex,e) = q(z,*exy),
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since the support of ¢ is contained in e. Now

q(w *exy) = g(x*xy) S p(ay*ay) ,
by (2) which proves that B, has the m.d.p. in 4,.

Lemma 3. If A2 B, and B has the m.d.p. in A, and there is an element
q € B,*+ which is faithful on B, then there is a linear projection P of A
onto B and an element p € (Ay,1g) extending q such that P is continuous
with respect to the semi-norm ||-||,.

Proor. Let p e (44,15) be an extension of ¢, chosen so that by as-
sumption and Lemma 1, for each @ € 4, there is a unique a,€a+ B
satisfying

pla*a,) £ pla*x), x€a+B.

By a standard Hilbert-space argument, a, is orthogonal to B with respect
to the conjugate bilinear form (.,.),. Define Pa=a—a,. Then Pa e B,
SO

lall,® = llaullp®+11Pall,® 2 [[Pall,? .

We observe that if a € B, then Pa=a since a, =0 in this case. It is easily
verified that P is linear so it satisfies the conditions of the lemma.

LemMa 4. Let E be a Frechet space, and let T : E - B be a linear
map of E into the von Neumann algebra B. Suppose that p € B, + is faithful
on B, and that T' is continuous with respect to the norm ||-||,, on B. Then T
18 continuous with respect to the C*-norm on B.

Proor. We prove that 7 is closed, that is, if z, - «, in ¥ and T'x, -
y(n) in B, then Tx=y. We first observe that each f e B, is continuous
with respect to ||.||, when restricted to B,. It is sufficient to prove this
for f € B,+, and it is also sufficient to prove that f| B, is ||.||,-continuous
at 0. (Cf. [10, 13.5, p. 113].) So let f € B,* be given, and suppose

lall, >0 as n—oo, z,€B8.

Since p is faithful, f is absolutely continuous with respect to p, and it
follows from [5, Prop. 5, p. 62] that f(z,*z,) - 0. Now

If(z)I? = f(1) f(za*2

80 f(z,) = 0 as n — oo, proving that f|B, is continuous with respect to
fl.1l, for all f € B,.

Since Tz, — y(n), the set {T'x,Tx,},.y is bounded in norm, we may
assume by 1, that is, {T»,Tx,},.ySB;. Now x, -z, so by assumption
Tz, — Tz||, — 0. It follows from the observation above, that
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fTx,) — f(Tx) foreach feB,.

On the other hand; Tz, — y(n), so in particular f(Tx,) — f(y) for f€ B,.
Hence, f(y)=f(Tx) for all fe B,, proving that y=T«. By the closed
graph theorem it follows that 7' is continuous with respect to the C*-
norm on B.

LemMA 5. Let T : A — B be a linear map of A into B. Let p,, p, be
positive, normal linear functionals on A, B respectively, and suppose that p,
18 faithful on B. If T is continuous with respect to the semi-norm |.||,,
on A and the norm ||.|,, on B, then T is ultra-weakly continuous.

Proor. By [5, Theorem 1, p. 40], it is sufficient to prove that foT
is ultra-strongly continuous on 4, for each f e B,. Clearly T fulfills the
hypothesis of Lemma 4, so there is a constant A > 0 such that 7'(4,) = AB,.
We may without loss of generality suppose that A=1, so 7(4,)< B,.
Now, if f € By, we observed in the proof of Lemma 4 that f| B, is .,
continuous. It follows that fo 7' is |[.[|, -continuous on 4,, and so —
a fortiori — ultra-strongly continuous on 4,;. The proof is complete.

Combining Lemma 3 and Lemma 5 we get the following result:

ProrosiTioN 5. If A2B, and B has the m.d.p. with respect to A, and
there is an element p € B,* which is faithful on B, then there is a linear
projection P of A onto B which is ultra-weakly continuous. '

CoroLLARY. Let A2 B, and suppose B to have the m.d.p. in A. Let p
be a positive, normal linear functional on B, with support(p)=e € B.
Then there is an ultra-weakly continuous linear projection P of A onto B,.
Moreover, if Py : (B,)y - Ay ts the adjoint of P, then Py is o((B,)«,B,)-
(A4, A)-continuous, ro P, is the identity mapping on (B,)y, where r is the
restriction mapping f — f|B,, f € A,.

Proor. The map P, : a — eae is an ultra-weakly continuous projec-
tion of 4 onto 4,. Since B has the m.d.p. in 4, and e € B, we know by
Lemma 2 that B, has the m.d.p. in 4,. p is faithful on B,, so by Proposi-
tion 5 it follows that there is a projection P, of 4, onto B, which is ultra-
weakly continuous. Now take P=P,o0 P, and the first statement of the
corollary is proved. The adjoint P, : (B,), — 4, is then automatically
o((B,)x,B,)-6(A,A)-continuous. If ¢: B—> A is the injection map.
then Po¢ is the identity map on B,. It follows that

(Pot)y = igoPy = r0P,
is the identity map on (B,),.
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Nortke. If g € (B,)s, then (P,g),=Pyg. Indeed, if z € 4, we have for
instance

(Pxg)(ex(l—e)) = g(Plex(1—¢)))
g(P2oP1(e:c(1 -—e)))

g(Pz(e(ex(l—e))e)) = g(Py(0)) = 0,

i

I

and likewise
(P*g)((l "6)373) =0,
80
(Pyg)(x) = (Pyg)(exe), zxed.

THEOREM 2. Let A2 B. The Mackey-topologies ©(4,4,) and ©(B,B,)
coincide on B in each of the following cases:

(a) B has the m.d.p. and each o(By,B)-compact set is metrizable;
(b) B has the m.d.p. and is of finite type;

(¢) B has the m.d.p. and s countably decomposable;

(d) 4 is of finite type and countably decomposable;

(e) 1g is finite and countably decomposable in A.

Proor. Let ¢ : B — A be the injection of B into 4, and s=1, : 4, -
B, the restriction map f — f| B, f € 4,. We must show that ¢ is a homeo-
morphism of B into 4. Let U be t(4,4,)-neighborhood of 0 in 4.
Then K=U%< A, is o(A4,A4)-compact, so K,=8(K) is o(By,B)-com-
pact. Clearly i(K,°) < U%, proving that ¢ is continuous. To prove that 7
is relatively open, let U be a v(B,, B)-neighborhood of 0 in B. We may
assume that U= K° where K is a o(B,,B)-compact subset of B,. The
theorem will be proved if we can find a ¢(4,, 4)-compact subset K, of 4,
such that s(K,)=K. For if this is the case, we have K,°ni(B)=U,
which shows that ¢ is relatively open. So let the ¢(B,, B)-compact subset
K of B, be given, we may without loss of generality assume that
K< B,» If Bis of finite type, we know by Lemma, Section 4, that there
is a positive, normal linear functional p on B, such that f=f, for all
fe K, where e=supportp. If K is metrizable, the same is true. Indeed,
since K is compact it contains a countable, o(By, B)-dense subset {f,},cn-
Put p=3 ,2-"|f,|, and take e=supportp. Now, if fe K, there is a
subsequence {f, };.y converging in the o(B,, B)-topology to f. Hence, if
x € B, we have

flexe) = Iimifn;(exe) = hmzfn.(x) = f(x),

f=f for fekK.

80
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Let p have the property described above, it is then faithful on B,, so
by the preceding corollary there is a o((B,)s,B,)-0(44,4)-continuous
linear map of (B,)y into 4,. Let t: B, - (B,), and r: A, — (B,)s be

7
(Be)x <—_t—_ B,

the restriction maps of B, and 4, onto (B,),, respectively. Then K,,

defined by
K, = (Pxot)(K) g 4y,

is ¢(4,,4)-compact, and we want to prove that s maps K, onto K. So
take an element f e K, put

h = (Pyot)(f)e Ky and f' = s(h).
Then

((Pyot)(f))
(ro Py)(#(f) = Uf)

so f and f’ have the same restriction to B,. Hence, for x € B we have
f(@) = f(@) = fexe) = f'(ewe) = f'(2),

where the last equality follows from the note preceding the theorem.
Hence f=f’ which proves that s(K,)=XK. This proves the theorem
under the conditions (a) and (b).

Hf') = (tos)(h) = r(h)

Ii

I

REMARK. The condition in (a) that o(B,,B)-compact sets shall be
metrizable, holds if B has a countable, total subset L (that is, f(x)=0
for all x € L implies f=0, where fe B,). This is true if B acts on a
separable Hilbert space, since in this case B; has a countable dense
subset in the o(B, B, )-topology (cf. [5, p. 34]), and such a set is certainly
total.

More generally, if B is countably decomposable, there is a posi-
tive, normal linear functional on B with support equal to 15. This
follows easily from Prop. 6, p. 6, in [5]. By examining the proof above it
becomes clear that the condition that B is finite or o(B,, B)-compact sets
are metrizable, may be replaced by the condition that B is countably
decomposable. So the theorem holds under (c). That it holds under (d)
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follows once we have shown that it holds under (e). But if (e) is satis-
fied, the algebra A,, is of finite type and countably decomposable, so
we know by the remark following Proposition 4 that B has the m.d.p.
Since it is countably decomposable, the result follows from (c). The proof
is complete.

6. Completeness.

The following proposition and its corollaries are simple consequences
of the general theory of locally convex spaces. However, the truth of
these facts seems not to have been noticed in connection with von Neu-
mann algebras.

Ptak [11], has generalized the open-mapping theorem in terms of full
completeness. A locally convex Hausdorff space E is fully complete
(B-complete) if it satisfies the following condition: If M is a linear sub-
space of the dual E* of F such that for each circled, convex o(E*, E)-
closed equi-continuous subset K of E* the set KnM is o(£*,E)-closed,
then M itself is o(Z*, E)-closed. Ptak proved that this property is
equivalent to the validity of the open-mapping theorem, in the following
sense. A linear map @ of a linear topological space E into another F,
is almost open if ®(U) is a neighborhood of 0 in F whenever U is a neigh-
borhood of 0 in E. The theorem states that if £ and F are locally convex
spaces, and @ : E — F a linear, continuous, almost open and surjective
map, then @ is open if and only if £ is fully complete.

As can be seen from the Grothendieck completeness theorem [10,
16.9, p. 145], if E is fully complete then it is complete. The converse
is generally false, although it holds for metrizable, locally convex spaces.

Let A be a von Neumann algebra, and A4, its pre-dual.

Prorosrtion 6. If C is a convex subset of Ay, then C is o(d,A)-closed
if and only if its intersection with each circled, convex, o(Ay,A)-compact
set in Ay 18 o(Ay,A)-closed.

Proor. The condition is clearly necessary. Suppose now that it is
satisfied, and let f be a point in the o(Ay,4)-closure of C. Since C is
convex, we may find a sequence {f,}<C such that

Ifu=fll >0 as n—>co.

It follows in particular that {f,} is relatively o(Ay,4)-compact. A4, is
complete, so by the Krein theorem [7, V 6.3, p. 434], the bi-polar
K={f,}" is o(4,,A4)-compact, circled and convex. Now fe K, {f,}<
KnC, so by assumption f € C, and the proof is complete.
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COROLLARY 1. 4 is complete and fully complete in the Mackey-topology
T(A,44).

A locally convex space E is said to be barrelled if each absorbing,
circled, convex and closed subset of £ is a neighborhood of 0. A Banach
space is barrelled. A linear, surjective map of a locally convex space to
a barrelled space is almost open [10]. Hence we have:

CoROLLARY 2. If A is a von Neumann algebra equipped with the topology
7(4,A4,), and D@ is a continuous, linear map of A onto a barrelled space E,
then @ is open.

CoROLLARY 3. Let A be a *-algebra of operators on a Hilbert space 5,
and suppose that the identity operator is in A. Then the following are equiv-
alent:

(i) A=A4".
(ii) A is complete in the Mackey-topology of A’ relative its pre-dual.

Proor. If A=A", A is complete by Corollary 1. On the other hand,
if A is complete in the Mackey-topology of 4", it is closed in 4", and
hence also ultra-weakly closed in 4”. Since A is ultra-weakly densein 4",
it follows that A=4"".

REMARK. If 4 is infinite-dimensional, the Mackey-topology 7(4,4,)
can never be metrizable. Indeed, if it were, then each bounded linear
functional on 4 would be continuous, [10, 19.4 p. 183 and 22.3 p. 210].
A set in 4 is bounded in the () topology if and only if it is norm-bounded,
so this would imply that A*=A4,, so that A became reflexive. But a
reflexive C*-algebra is finite dimensional [14, Prop. 2, p. 661].
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