MATH. SCAND. 22 (1968), 8186

AN EQUATION OF FINITE DIFFERENCES,

WHICH HAS SOME CONNECTION

WITH THE JACOBIAN THETAFUNCTIONS

JONAS EKMAN FJELDSTAD

In the following we consider the equation of finite differences

() + ayu(e+ 1) + a0z + 2)(1—Ag#+) = 0,

where a, and a,=0 are constants, 1 a parameter and |¢g|<1. To obtain
a solution of this equation we introduce a power series in the parameter 1

writing
w(x) = Y, A"z, % .
Putting the coefficient of A” equal to zero, we get
Cn(2n + 012,74 +a52,74%) = ay0*+12, % %¢, 4,
which may be written
Ca(l 4812, 4 852,2) = 4392,21Cn_1(9201[2,)" -

To obtain coefficients which are independent of x, we take

2y = g2y = 2q",
and get

(*) Co(l+0129" +0,22¢°") = apq*™12%¢c, ;.

Putting n=0, we get
co(l+a,24+ay2%) = 0.

We assume that the equation

1+a,24a,22 =0

has two different roots r;, and r, and moreover that they do not satisfy

an equation
ry = 79",

where m is an integer. Taking z=r;, we get from (*)
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7 T
ca(1—gm) ( 1 —iq") =tgnle,
Ty T2

()
Ty

(1—wu—q%~.a—gn(1_%q).“(1_%¢0'

or

C, = Cg

In order to abbreviate we introduce the following notations:

2,(q) =2, = (1-9)(1-¢})...(1-¢q"), 2 =1,

1 7 L8 41

— ) ={1—-= 1——=¢2 “ o 1*--“, =1,
q)n(rz) ( rzq) ( Tzq) ( Tzq ) %o

n’(l xz\n r\"
o 1" (A97) (r:)
(@) = or® S ———— i,

= 2n(3)

nPu Ty

7 n
n®()qT)\n _2)

o O (2

Ug(X) = €rs® 3,

"=, %(?)
1

However, we may find another form of the solution which is better
adapted for our purpose. Let

va(d) = 1-2)(1-49)...(1-2¢""), 9, =1

If we expand this after powers of 4, we find

and

Then

Similarly we get

g@*-p)p

1/’n(z') z (— l)p

p=0 p n-p

where 2,/(2,2,_,) is a generalized binomial coefficient.
Since |g| < 1, we may also let n tend to infinity, and then we have the
formula

0 qi(Pz—I?)
H(l-—lq')—Z(—l)” 5
y=0 p=0 »

an expansion which we shall use in the following.
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We observe that
¥a(d) = (1 -9 pn1(A9) + ¢ ya(29) -
We now assume
(@) = 11® 3, ¢ 9u(Ag°) -
Introducing this series, we get
> (Ca¥nlAg®) + @116, (A7) + agr 20,9, 41 (Ag7 1)) = O .
Substituting
Pa(Ag7) = (1-97") p,1(3g™+) + ¢y, (Ag"*)

we get
(1—g=®)c, 11+, g™+ 716, +agri %,y = 0.
Since
1 1 1
“TTRTR T

the equation may be written

r r
(l —q—(n+l))cn+1 - —{cn - (1 _q—n) Cp + —lc'nrl =0.
T2 Ty

This equation is evidently satisfied if

r
(1 "'q_n)cn - fcn—l =0
2

or

and hence if

qi(n2+n) ('rl)n
= (=-1)" =) .
= (-r I (2

n

We thus get a solution in the form

i(n?+n)
wie) = re 3 (105 (2) e,

n=0 n

and similarly
q Hn3+n)

Ug(x) = 15° Z (=1»

n=0 ﬂ

) . (g%) -
= (2)
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To compare these solutions with the solution given above, we put
A=0. Then y,=1, and

qi("2+"l) r
Y S A  ( (0
n=0 Q, Ty y=1

If we put 1=0 in the first form of the solution, we get
U () = cu7ry® .

By comparing the two values we find

y=1 7'2
and
o (2)
qi(n2+n) 7 0 r T
r=3 (= 1) (-3) va(Ag®) =r1’”II(1——‘q“)E— :
‘Qn Ty y=1 Ty 0 (71)
nPn\
L
Consider now the determinant
uy(x) uy(x+1)
Dx)=|* 1 .
@) = | uy@) uga+1)
From equation (1) we have
Uy () + @ty (X + 1) = —ay(1—2Ag%+ ) uy(x + 2)
Up(®) + AyUp(x +1) = —ay(1 —2g" M )uy(x +2)

which give
uy(2+2) uy(z+1)
Ug(x + 2) uy(x+1)

= ay(1—-2¢*1)D(x+1) .

D(x)

— a2(1 — zq:t+1)

This is an equation of finite differences of the first order, and if we put

= Z CaA™2q")*
we easily get
2 =11y
and
u = Co( = 1@,
which gives

D) = (rra)oco S (— 1) giotn (Ageyn = ¢y (ryry)® ﬁ (1—ge) .
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It remains to find the value of ¢;. If we put =0, we get

uy(x,0) = r* T (1—ﬁg")
y=1 Ty
and

wy(z+1,0) = rf“H(“ﬁw)‘
v=1 s
For u, we have to exchange r; and r,. For 1=0 we then have
d " s o
Dl@hno = (i (=) TT (1-2) (1-2¢7).
s "

y=1

The result is that
b r r
Dix) = () (=) TL (1= 207 (1-2¢') (1-2¢).
v=1 7‘2 rl
From this formula we conclude that the two solutions are independent if
rF 1297,

where m is a positive integer or zero.
We shall now consider the special case x=0 and A=1. We then have

0.1 = (h=r) TL0-0) (1-27) (1-2r).
On the other hand we get
u(0,1) = 1, (1) = 1y 3 (= 1)ngitnt+m (:_1)"
and similarly 2
up(0,1) = 1, u(1,1) = 1y 3 (= 1ynghtnt+m (?)n
1

and consequently

D(O,1) = 3 (=1 gt (

2

1 n+1
ront r1+)

n n
Ty Ty

Replacing ¢ by ¢, we get the fundamental formula

s n+1 n+1 oo r r
2(_ l)nqnﬁ+n (C’u’__ __7’1 ) = (ry—ry) H (1—g%) (1 _T_lqzv) (1 __r_zqzv)
2 1

n n
n=0 T T2 v=1

from which we may deduce the fundamental formulae for the Jacobian
thetafunctions.
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We now choose
ry =€, = e,
Then

(-]

3 (—1)ngn*+n 2¢ sin (2n + 1)
Nn=0 o o
= 2i sinaw [ (1—¢%) TT (1 —2¢* cos2nv+¢*) .
ye=1 y=1

Multiplying by the factor ¢* and cancelling the factor ¢, we get

=]
2y (= 1)nqn+b* gin (2n + 1)

n=0
0o (o]
= 2¢% sinzw [T (1 -¢2) TT (1 — 2¢® cos2av +q¥) ,
=1 =1
which is the fundamental formula for the Jacobian function &,(v,q).
Then we take r,=e and r,=ge~-** and get

(o] 0
z ( -1 )'n qn’e(2n+l)inv - z ( -1 )n q(n+1)2 e—(@n+1)inv
n=0 n=0

oo
= ¢m™(1+2 3 (—1)g"" cos2nav) .
n=1

On the right hand side we get

ei:w l'l' (1 —_ q21)(1 — qe—zim:) 1']1: (1 — q2v+le—21fm:)( 1-— q2v—1e21':w) .
ym] o=

This gives the formula

©o (o] o0
1+2 Y (~1)2¢"* cos2nav = JT (1 —g¢%) TT (1 —2¢%-1 cos2mv +q¥-2) ,

n=1 y=1 y=]1

which is the fundamental formula for the function 94(v,q).
The two remaining thetafunctions are obtained by replacing » by v+ 3.
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