MATH. SCAND. 22 (1968), 63—74

MEASURE THEORY FOR C* ALGEBRAS II

GERT KJARGARD PEDERSEN

As the title indicates, this paper is a sequel of [4], to which we refer the
reader for motivation and general terminology. The main result is the
extension of the notion of C* integrals, introduced in [4], to cover also
non-positive integrals. Before this we establish some auxiliary results
about order-related C* subalgebras, some of which may have independent
interest. In section 3 we divert ourselves with the very simple example,
already mentioned in [4], of a C* algebra generated by two projections.
Since, however, the set of available examples of C* algebras is very
small, we feel justified in doing so.

The author wishes to express his gratitude to Lektor E. Kehlet for
valuable advise and stimulating conversations during the various stages
of this work. Among other things he pointed out the curious corollary
1.5.

1. Order-related C* subalgebras.

Let 4 be a C* algebra universally represented as operators on the
Hilbert space H, and let 4’ be the double commutant of 4. Then 4"
is also the weak closure of 4 in B(H), and as a vector space it is iso
morphic to the second dual of 4. We let X denote the set of projections
from A" which can be approximated strongly from below by elements
from 4.

If § is the set of positive linear functionals on 4, and M and N are
subsets of S and A+, respectively, we denote by M* (resp. N*) the ele-
ments in A+ (resp. S) vanishing on M (resp. N).

A *subalgebra B of A is called order-related (or hereditary) if B+ is
an order ideal in 4+, and B is the linear span of B+.

THEOREM 1.1. There is a one-to-one correspondence between

(1) order-related C* subalgebras of A,
(2) closed left ideals in A,
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64 GERT KJZRGARD PEDERSEN

(8) weak* closed order ideals in S,
(4) elements in X.

Proor. (1)~ (2). Let B be an order-related C* subalgebra of 4.
Then B+ is a closed order ideal, and by 1.1 in [4] the set

L={acd| a*aec Bt}

is a closed left ideal with B=L*nL. Conversely, if L is given, define
B=L*nL. Then B is a C* algebra with B+= L+, To show that L+ is an
order ideal take a € A+, b € L+ with a<b, and let {u,} be the right ap-
proximate identity for L contained in L+, defined in 1.7.3 of [2]. Then
atu, € L, and since bt € L we have

llatu,—at|? = |I(1-w)a(l—w)]|
= (A —ub(l—wy)|| = [pH(1—wy)|* > 0.

It follows that a* € L, hence a € L+.

(1) +» (3). This is 5.1 in [3], just as another proof of (1) +» (2) can be
found as theorem 2.4 in the same paper. The correspondence between a
closed order ideal Bt of A+ and a weak* closed order ideal P of S is
given by

B+ =P+, P = B+,

In particular we notice that the smallest closed order ideal containing
a subset J of A+ is JL.

(1) & (4). If Bis an order-related C* subalgebra of 4, then the above
mentioned approximative identity for B converges strongly up to a pro-
jection p € X. We have pB=DB and p is the smallest projection in 4"
with that property. If conversely p € X, define B=p4" "pnd, and we
have pB= B and p is upper strong limit of elements from B.

TrEEOREM 1.2. A positive functional on an order-related C* subalgebra B
of A has exactly one norm-preserving (hence positive) extension to A.

Proor. Let {u,} be the approximative unit in B+ with u, converging
strongly to p € X. For any x € A" we can find a net {a;} <4 converging
strongly to z, and if z € pA”'p, then since {u,} is a bounded set, the net
{u,a,u,} =B will converge strongly to prp=xz. We conclude that p4''p
is the weak closure of B.

Now let f be a state of B, and let f be an extension of f to a state of 4.
Since A is ultra-weakly dense in A", there is exactly one normal exten-
sion of f (again denoted f) to 4”’. Since B is ultra-weakly dense in pA4’'p,
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f is uniquely determined on p4’p as the normal extension of f, and
Ff(p)=limf(u,)=1. But fhas norm 1 so that f(1—p)=0, and hence for
any a € 4 we have

fla) = f(pap) = limf(uau,) .

THEOREM 1.3. The restriction to B of an irreducible representation n of A
on the Hilbert space H is irreducible on the closed subspace n(B)H.

Proor. We set K =z(B)H, and consider the restriction of z to B on K.
For any pair of vectors &1 e K with £40 there exists @ € 4 such that
n(a)é=7. Since m extends to a normal homomorphism of 4", we have
7(u,;) converging strongly up to =(p) and K=mn(p)H. Finally we have
wau, € B and

llre(usares —wsap)ll + llow(wa)n — 7l
el lle(uz)é — &l + llm(uz)n —nll - 0.

[l(ugaw)é —nl| =
<

It follows that =(B) acts topologically, hence algebraically irreducibly
on K, and hence K =n(B)H.

CoRrROLLARY 1.4, The restriction to B of a pure state of A is a multiple
of a pure state (possibly 0).

Proor. If fis pure on 4, then there exists an irreducible representation
7 of A on H, and a vector £ € H such that f(a) =(n(a)s, E) forac 4. If y
is the projection of & on the subspace =(B)H, then f(b)=(n(b)y,n) for
b € B. Since therefore the restriction of f is associated with an irreducible
representation of B, it must be pure.

CoROLLARY 1.5. The sum of a maximal, closed left ideal L and a closed
right ideal R is closed in A.

Proor. The set B=R*NR is an order-related C* subalgebra, and by
2 in [5], the difference space 4 —L is a Hilbert space in the quotient
norm. Now the left regular representation of 4 on 4 — L is irreducible,
hence B acts irreducibly on the closed subspace B(4 —L). However, the
counter image of B(4 —L) in A is BA + L, and is therefore closed. Now
B4 is dense in R and we have the inclusions

BA+L < R+L < BA+L =BA+L.
Hence R+ L is closed in A. (Notice that we do not assert that B4 =R.)

Math. Scand. 22 — 5
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THEOREM 1.6. The map o: (n,H) - (x| B,n(B)H) induces a homeo-
morphism between A\ hull B and B.

Proor. By theorem 1.3, ¢ is a mapping from Irr4 \ hull B into Irr B,
and since any irreducible representation of a C* subalgebra is the re-
striction of an irreducible representation of 4 to a subspace (2.10.2 in
[2]), ¢ is onto. If (#,H) and (n',H’) from Irr4 \ hull B have equivalent
restrictions, then by changing, if necessary, (n,H) into an equivalent
representation, we may assume o(z,H)=p(n',H').

Any vector state g on B associated with a unit vector in n(B)H =
n'(B)H' is pure and has via = and #’ extensions f and f' to 4 which are
also pure. However, by theorem 1.2 the extension of g is unique, and so
f=f'. Since therefore » and =’ are associated with one and the same
pure state, they are equivalent. It follows that p induces a map g from
AN hull B onto B which is one-to-one.

To prove that § is a homeomorphism, let F be a set in 4 \ hull B such
that g (F) is closed. If = belongs to the closure of F, then ker F < kerx,
and so

kerFnB < kernn B,

that is, kerp(F)<kerg(n). But then §(n) €g(F), and so ne F.

Conversely if F is closed in A\ hullB, and we have z € 4\ hullB,
with g(n) in the closure of §(F'), then as before ker FnB <keranB. By
theorem 1.1 there is a left ideal L such that B=L*nL, and ae L iff
a*a € B+, It follows that

kerFnL < kernn L.

Since kerz is a primitive ideal, it is also prime, and so ker F <kerxz or
L<ckern. Since by assumption the latter possibility is ruled out, we
have ker F <kers, and so n € F, that is, g (F) is closed.

2. C* integrals.

If 4 is a commutative C* algebra without unit, that is, of the form
Co(T') with T locally compact Hausdorff, then the order-related C* sub-
algebras of 4 are no other than the closed ideals of 4, and the elements
in X correspond to the open sets in 7'.

Hence for a non-commutative C* algebra 4 without unit the subset

Y={peX|3Jdacd: pga}

becomes of particular interest since its elements are the non-commutative
analogues of open sets in the underlying space, with compact closure.
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For pe Y let B(p) be the corresponding order-related C* subalgebra
of operators from 4 with range projections below p, and let K be the
smallest order-related *subalgebra of 4 containing all B(p). Then
[4, Theorem 1.3] K is a dense, order-related, two-sided ideal in 4, minimal
among all such.

If M is a subset of A+, we let Conv.M denote the convex hull of M.
Since we want not only convex sets, but also sets which have the here-
ditary property that with an element they contain all elements below,
we introduce the set

h-ConvM = {a€ A+ | 3be ConvM: a<b}.

(Notice that since A does not satisfy the Riesz decomposition property,
Conv M may not have the hereditary property even if M has it.)
Furthermore we introduce the set

SymM = Conv U{6M | 6€C, |0|=1}
and for e>0
M, ={ae | Jaj<e}.

In this notation we have
K = Sym h-Conv U{B(p)*| pe Y}.

Let U denote the group of unitary operators in the C* algebra ob-
tained by adjoining an identity to A. For we U the map p — u*pu is
clearly an automorphism of Y, and so U introduces an equivalence rela-
tion in ¥. We let ¥ be the set of equivalence classes with elements

p = {u*pu |ue U}.

The set of maps from ¥ into the (strictly) positive real numbers is
denoted 4, and for 6 € 4 define

E,* = h-Conv U{B(p)§; | pe Y}
and
E; = SymE,*.

Clearly the sets E,+ and E, are convex, absorbing sets in K+ and K,
respectively. Moreover E, is symmetric and (E,)+=E,*.

A vector space topology on K is called locally hereditary-convex if it
has a basis of symmetric, convex neighbourhoods around 0 whose posi-
tive parts satisfy the hereditary property.

TaeoreM 2.1. The sets E,, § € A, and their translates form a basis for a
locally hereditary-convex topology T on K. It is the strongest locally heredsi-
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tary-convex topology in which multiplication is jointly continuous, uniformly
over normbounded sets, and in which all injections from the O* algebras
B(p), pe Y, into K are continuous.

Proor. Clearly the sets E, constitute a basis for a locally hereditary-
convex topology on K in which all injections B(p) -~ K are continuous.
To prove that multiplication is uniformly continuous over norm-bounded
sets, it suffices to show that E;4, < F,,.

To this end we pick a € E;t, be A;. Then

3
ab = 1 > in(1—i"b)*a(l —imb) .
N=0
Each element 1—14"b has norm less than 2, and thus has a representation
as a sum of 4 elements from U. But

(U + U + g+ Ug)* @ (g + Uy + U5+ 2y)
= d(u*aug + uy*au, + ugtaug +ufan,),

and since by definition E,* is invariant under unitary transformations,
we conclude that for each n

(1—3mb)*a(1—1i"b) € 16 K,*
and thus ab € B,;. Finally
E;A, = Sym(E;*)4, < Sym(E;*4,) <« SymE g = Hygy .

If E is a neighbourhood around 0 in another topology o of the above
mentioned type, there is, since multiplication is uniformly continuous
over norm-bounded sets, another neighbourhood E’ in ¢ such that
w*E'y < E for any u € U. Since the injections B(p) - K are g-continuous,
there exists for each pe ¥ an ¢(p)>0 such that B(p)f,<E’. Hence
for any function 6 € 4 such that 6(p)=¢(p) for some p € p we have

U{u*B(p)jzu | weU} = E.

Since we may suppose E hereditary-convex and symmetric, we conclude
that B, E, and thus, 7 is stronger than .

The elements of the dual of (K, 7) are called the C* integrals of 4. If
le A, then also 1€ Y, and so K=4, and 7 coincides with the norm
topology. Hence the C* integrals of A are just the elements of the dual
of 4.

If 1 ¢4 and 4 is commutative, that is, 4 =Cy(T), then 7 will just be
the inductive limit topology on K(7') induced by the mappings Cy(p) —~
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K(T), where p ranges over the relatively compact open subsets of 7.
By the theorem of F. Riesz the C* integrals of 4 are then the Radon
measures on 7'.

Returning to the non-commutative case, we call a functional f on K
unitarily bounded, if for all a € K

sup {|f(u*au)| | ue U} < o .

THEOREM 2.2. The positive C* integrals of A are exactly the unitarily
bounded, positive functionals on K.

Proor. Since the neighbourhoods E; are invariant under unitary
transformations, any C* integral will be unitarily bounded. Conversely,
if fis a positive functional on K, then it is bounded on each of the C*
algebras B(p) with a norm ||f||,. And if f is also unitarily bounded, then

Ifll; = sup {Ifll, | €D} < oo
and so for a d € 4, with 6(13)”]‘”1; <1lforall pe ¥, we have

|f(Bo)| = f(Es*) = Conv {f(B(P);'(i)) |peY} <1,

and f is t-continuous.

THEOREM 2.3. Any C* integral can be decomposed as a linear combina-
tion of at most four positive C* integrals.

Proor. If f is a C* integral, then the complex conjugate function is
also a C* integral, and we have the usual decomposition of f in real and
imaginary parts. So we may as well assume that f is a real valued, con-
tinuous functional on (K%, 7). (For any *algebra B, we write BE for the
self-adjoint elements in B.)

Now let S; denote the set of positive linear functionals on 4 different
from 0, and with norm less than or equal 1. Then 8, is a locally compact
Hausdorff space in the weak* topology, and we have an isometric injec-
tion of A% into Cy®(S,). We identify A® with its image in Cy® (8;), and
define for a e K+, e A4:

F(a) = {x € Co’(S,y) | || 2a},
F =U{F(a) |ac K*},
Fy=U{F(a) | a € Eyt}.

Then F is a real vector space, and the sets F, and their translates form a
basis for a locally convex topology on F. For each d € 4 we have
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ER c F,n KR < EE

so that the restriction of the topology in F to the subspace KE gives the
topology 7 on KE,

Let F, be a neighbourhood of 0 in F such that |f(F,nKE)|<1. The
Minkowski functional @ defined by

D(z) = inf (x>0 | 'z € Fy}

is a norm on F, and |f(x)| < ®(x) for x € KE. Let f be a Hahn-Banach
extension of f from KZ to F, with respect to the norm @. If we can
prove that f is relatively bounded on F, then since F is a vector lattice,
we know [1, Chap. II, § 2, Théoréme 1] that f splits into the difference of
positive parts.

Since for any chosen x € F+ there is a constant « such that ax € F,*,
we may as well assume x € Fy*. But then any y € F' with |y| s« will
also belong to F;, and it follows that

h(x) = sup {|f(®)] | ly|<a} = 1.

By the above mentioned theorem there exist two positive functionals f;
and f, with f=f,—f, and k=f,+f,. Since a € E,* implies u*au € B+
for all u € U, we conclude that

sup {h(u*au) |ue U} £ 1

so that the restrictions of f; and f, to K% are unitarily bounded positive
functionals, and hence, by theorem 2.2, C* integrals.

If A is the algebra By(H) of compact operators on the Hilbert space H,
then K consists of the operators of finite rank, X contains all projections
on H, and Y is the set of finite dimensional projections. The set of equiv-
alence classes ¥ is therefore isomorphic to N, and neighbourhoods around
0 in 7 are given by sets of the form

Sym h-Conv U {a € K+ | dima =, |ja|| <4, }

for various sequences {6,}. By elementary calculations this system is
proved to be equivalent to the well-known system of neighbourhoods

{ae K | tr(a*a)t<e}
for various e.

The positive C* integrals were determined in [4, Theorem 3.8] by an
isomorphism with B+(H), and by theorem 2.3 we now have (K, 7)* iso-
morphic to B(H), where the integral f and the operator b € B(H) are
linked by the formula f(a)=tr(ba) for all a € K.
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3. An example.

Let A be the C* algebra generated by two projections p and ¢ on a
Hilbert space H. We put a=pgp and have 0sa=<1. We are going to
show that, apart from minor modifications, A is completely determined
up to *isomorphisms by Sp(a). The situation should be compared with
the well-known result in the converse direction: To any operator a on a
Hilbert space H with 0<a =<1 there exist projections p and ¢ on a larger
space H’ such that pgp=a on H=pH'.

Our first step is to find the structure of the (not necessarily proper)
closed two-sided ideal A, the closure of the set of all polynomials in p
and ¢ with no first degree terms. For this purpose we introduce the
notations

Sp’(a) = Sp(a)\ {0} and Sp”(a) = Sp’(a)\{1}.

TeEEOREM 3.1. [1\0 ts homeomorphic to Sp’(a). The representation corre-
sponding to 1 (if 1 € Sp’(a)) is one-dimensional, while the remaining ele-
ments of A, are two-dimensional.

Proor. The order-related C* subalgebra p4,p is the closure of the set
of polynomials in @ and hence pdyp=Cy(Sp’(a)). By theorem 1.6 we
have Sp’(a) homeomorphic to A,\ hull(pd,p), but since 7 € hull (p4yp)
implies 7(pg) =0 hence n(A4,)=0, we conclude that hull(p4,p)=02.

The order-related C* subalgebra (1 —p)A4y(1—p) is the closure of the
set of polynomials in (1—p)g(1—p), so that (1—p)A4,(1—p) is also com-
mutative. Since for any b € 4,* we have

b = 2(pbp+(1-p)b(1-p)),

and since the restriction to pA,p or (1—p)4,(1—p) of an irreducible
representation of 4, is one-dimensional, we conclude that A, consists of
at most two-dimensional representations.

Thus if 7, is the element in A, corresponding to « € Sp’(a), we have

7@ = (5 o)-

Since all 7z, extend canonically to representations of A4 on the same
space, we conclude that apart from unitary equivalence the only possible
images for =, (p) and = (g) are

wio) = (g o) 70 = (e G)

From this the theorem follows.
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For any b € 4, we define complex functions b, 1,j=1,2, on Sp(a) by
the definitions
b;(0) =0,
byj(x) = m,(b);; for & €Sp”(a),
bu(1) = m(b) if 1e8p(a),
b;(1) = 0 for ¢,5 + 1,1.

The following equations are immediate:

amy(x) = a™py(a), (Pq)™35(x) = o™ (pg)s(x)
It follows that when & runs through all polynomials in p and ¢, then b,,
in turn gives all polynomials in «, b,, and b,, give all polynomials in «
including those with constant terms, but all multiplied by a factor
(0c — o2)}, and b,, gives all polynomials in « multiplied by 1 —«.
For all b € A, we have by 3.3.6 in [2]

[Brall = [l but byl = [Ipb(1 —p)l|

and similar expressions for other choices of 4,4, so that a net of operators
converges iff the corresponding four nets of functions converge. An
application of the Stone-Weierstrass theorem now yields the following

THEOREM 3.2.
A = (CO(SP'(“)) CO(SP"(a)))
© 7 \Cy(Sp” (@) Co(Sp"(@))/"

For any operator b let [b] denote the range projection of 5. We can
then state the following

LeMMa 3.3.
p—I[pgpl Lq and q—[gpq] L p.

Proor. p—[pgp] is the lower strong limit of polynomials (p— pgp)"
and hence

q(p—[peprl)q = q(p—pIP)"q
= gpq(q —q9p9)™ —~ qpq(q—I[qprq]) = 0.

We are now able to give the precise description of 4:

THEOREM 3.4. For 0 ¢ Sp’(a) we have

(1) 4 =4, for [pgp] = p and [qpq] = q,
(2 A=4,06C if either [pgp] + p or [gpq]l * q,
(B) A=4,6C®C if both [pgp] + p and [gpq] + q .
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For 0 e Sp’ (a) we have (regardless of [pgp] and [qpq])

_ (C(Sp(a)) Cy(Sp”(a)
4= (CO(SP"(a)) Co(Sp(a)\{l}))'

Proor. If 0 is isolated in Sp(a), then since Sp’(pgp)=Sp’(¢pg), O is
isolated in Sp(¢pg) and we have [pgp] € 4, and [gpq] € 4,. An applica-
tion of the lemma now proves the first three cases.

If 0 is a limit point in Sp(a), then neither [pgp] nor [gpq] belongs to
A,. It follows that the C* algebra generated by these two projections is
*isomorphic to 4, and thus we may as well assume p=[pgp] and ¢=
[opq].

If we think of all z,, « € Sp’’(a), as representations on one and the
same two-dimensional Hilbert space, then their weak limit as « — 0 is
also a representation s, for which

(4)

m(de) = 0, mlp) = (o o) 7@ = (g 1):

It follows that we can define functions p;; and g;; on Sp(a) such that
Py, and ¢y, are non-vanishing for « =0, which proves the theorem.

Clearly 7, can be decomposed into two complex homomorphisms 7,
and 7,, and since 4/4,=C@®C, these are the only representations in
hull4,. Hence we have the following

CoROLLARY 3.5. In case (4), 4 is homeomorphic to Sp’(a)u {x,}u{x,},
where both m, and m, are limit points when x — 0.

Since 4, is a C* algebra with continuous trace (in fact every element
has continuous trace) we infer from [4, Theorem 1.5] that K(A4,) consists
of those b € 4, for which b;; vanishes in a neighbourhood of 0 for all 7,j.

If we turn to 4 and consider only the interesting case (4), then 4 is a
CCR algebra with compact, but non-Hausdorff structure space, and we
have no general theorems about K(4). However by definition p,q € K(4),
and since K(A) is an ideal, we also have bpc € K(4) for all b,c € A. But

by1€41 byqC
bpe)y; = ( 1111 011 12),
(el bg111 b21012
hence ApA=A4,+pC and K(4)=A.
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