EXTENSION DE
QUELQUES THÉORÈMES CLASSIQUES
SUR LES APPLICATIONS DIFFÉRENTIABLES ET
LES VARIÉTÉS DIFFÉRENTIABLES
AU CAS P-ADIQUE

KNUD LØNSTED

Le but de cet article est essentiellement de démontrer que la classification des variétés analytiques compactes p-adiques, faite par J. P. Serre [3], est valable si on ne suppose que la différentiabilité des variétés. A cette fin il faudra d’abord démontrer l’analogue p-adique du théorème classique sur le changement de variables dans une intégrale multiple, dont l’existence dans le cas analytique a été signalée pour la première fois par A. Weil [5, pp. 15–16]. Ensuite nous démontrerons le théorème de plongement d’une variété différentiable fait par Whitney dans le cas réel, puis un théorème d’immersion et d’autres encore.

L’article sera divisé en trois parties. La première, inclue pour la convenance du lecteur, contient des notions et résultats bien connus utilisés dans les parties suivantes. La seconde partie est consacrée aux applications différentiables p-adiques, et la dernière contient les théorèmes sur les variétés.

Finalement je vais remercier M. J. P. Serre pour des corrections et pour ses conseils indispensables.

1. Préliminaires.

Désignons par k un corps de caractéristique zéro, localement compact pour une valeur absolue réelle, ultramétrique et non triviale, notée $|x|$ si $x \in k$. Le corps k ne sera pas supposé commutatif au début. On supposera que la valeur absolue est normalisée, c’est-à-dire $|x| = \text{mod}_k(x)$, et le groupe des valeurs absolues devient le groupe monogène engendré par q^{-1}, où q est le nombre d’éléments du corps résiduel de k, A/m, A étant l’anneau des entiers de k et m son idéal maximal. (Voir Bourbaki [1, § 1], et [2, § 3, 5, 6, 9] pour les détails.)
Munissons pour tout \(n \in \mathbb{N} \) le produit \(k^n \) de la structure canonique d'espace vectoriel à gauche sur \(k \) et définissons \(|(x_1, \ldots, x_n)| = \max_i |x_i| \). Cela donne une valeur absolue ultramétrique sur \(k^n \), induisant la même topologie produit. En particulier \(k^n \) est un groupe additif localement compact et possède ainsi une mesure de Haar. Nous la normalisons en exigeant

\[
\int_{A^n} dx = 1
\]

et la mesure normalisée sur \(k^n \) est le produit des mesures normalisées sur \(k \). Comme tribu des ensembles mesurables on prendra celle des ensembles de Borel, qui coïncide avec la plus petite qui contient les ensembles compacts.

Définition 1. Un polydiscque dans \(k^n \) de centre \(x \) et de rayon \(r \) est défini par

\[
P(x, r) = \{y \in k^n \mid |y - x| \leq r\},
\]

et si \(r = \min \{s \in \mathbb{R} \mid P(x, s) = P(x, r)\} \), \(r \) est appelé le rayon strict de \(P(x, r) \). Sauf mention expresse du contraire \(r \) dans \(P(x, r) \) sera toujours le rayon strict du polydiscque.

L'espace \(k^n \) étant localement compact comme produit fini d'espaces localement compacts, il existe un polydiscque compact. Puisque deux polydisques quelconques sont homéomorphes, tout polydiscque est compact.

On voit immédiatement que \(P((x_1, \ldots, x_n), r) = P(x_1, r) \times \ldots \times P(x_n, r) \). Puisque un disque \(P(x, r) \subset k \) de rayon strict \(r \) s'obtient à partir de \(A \) par une homothétie de rapport \(y \) tel que \(|y| = r \), suivie de la translation par \(x \), la mesure de \(P(x, r) \) est \(r \) par définition de \(\text{mod}_k \) et d’après l'invariance de la mesure par translation. Par conséquent la mesure de \(P(x, r) \subset k^n \) est \(r^n \).

Définition 2. Une application \(f: U \to k^n \) d’un ouvert \(U \subset k^m \) est dite différentiable au point \(x \in U \), s’il existe une application linéaire \(L_x: k^m \to k^n \) telle que

\[
\lim_{h \to 0} \frac{1}{|h|} |f(x + h) - f(x) - L_x(h)| = 0.
\]

On dira que \(f \) est différentiable dans \(U \), si elle est différentiable en chaque point de \(U \). L'application \(L_x \) est notée par \(Df(x) \).

L'identification de l'espace des applications linéaires de \(k^m \) dans \(k^n \),
\(\mathcal{L}(k^m, k^n) \), avec \(k^{mn} \), de la manière habituelle, l’organise comme espace vectoriel normé sur \(k \), et la norme d’un élément \(f \) est donnée par
\[
|f| = \max_{|x| \leq 1} |f(x)|.
\]

Une application différentiable \(f: U \to k^n \), \(U \subseteq k^m \), ouvert, donne lieu à une application \(Df: U \to \mathcal{L}(k^m, k^n) \), et si celle-ci est continue, nous dirons que \(f \) est continûment différentiable, ou encore de classe \(C^1 \).

Si \(Df \) est de classe \(C^1 \), \(f \) est dite de classe \(C^2 \) et ainsi de suite. Nous avons donc introduit la notion d’application de classe \(C^k \) pour \(k \) entier, \(k = 0 \) sera interprété comme la continuité, et si \(f \) est de classe \(C^k \) pour tout \(k \), \(f \) est dite de classe \(C^\infty \). Pour finir nous énoncerons quelques propositions dont la démonstration ou bien découle immédiatement d’après les définitions, ou bien suit les trajets classiques.

Proposition 1. Si \(f: U \to k^n \) est différentiable au point \(x \), alors \(f \) satisfait à une condition lipschitzienne au point \(x \), la constante de Lipschitz pouvant être choisie égale à \(1 + |Df(x)| \).

Proposition 2. Soient \(U \subseteq k^m \) et \(V \subseteq k^n \) des ouverts. Si \(f: U \to V \) est différentiable au point \(x \), et \(g: V \to k^p \) différentiable au point \(f(x) \), alors \(gf \) est différentiable au point \(x \). Si \(f \) et \(g \) sont différentiables de classe \(C^r \), \(gf \) est de classe \(C^r \) et on a
\[
D(gf) = (Dg)(Df).
\]

Lemme 1. Si \(x, y \in k^n \) et \(|x| + |y| \), on a \(|x \pm y| = \max(|x|, |y|) \).

Corollaire 1. Pour tout \(y \in P(x, r) \) on a \(P(y, r) = P(x, r) \), c’est-à-dire tout point d’un polydisque en est un centre.

Corollaire 2. Deux polydiscques sont ou bien disjoints ou bien l’un contient l’autre.

Lemme 2. A tout sous-espace à la fois ouvert et fermé \(F \) d’un polydisque \(P(x, r) \) on peut associer un nombre réel positif \(s_0 < r \), tel que pour tout \(s \leq s_0 \) positif, \(F \) est la somme finie disjointe de polydiscques de rayon \(s \). On peut déterminer \(s_0 \) de façon qu’à faire tous ces recouvrements plus fins qu’un recouvrement ouvert de \(P(x, r) \) donné à l’avance.

Lemme 3. Soient \(S \) un espace topologique et \(f: S \to k^n \) une application continue, qui ne prend pas la valeur zéro. Alors la composée
\[
S \xrightarrow{f} k^n \xrightarrow{||\cdot||} \mathbb{R}
\]
est localement constante.
2. Étude des difféomorphismes.

Dans la suite on appellera difféomorphisme (de classe $C^r, r > 0$) entre deux ouverts de k^n, une bijection qui est continûment différentiable (de classe C^r) ainsi que son inverse. En particulier, un difféomorphisme est un homéomorphisme.

Proposition 3. Soient U et V deux ouverts compacts dans k et $f : U \to V$ un difféomorphisme. La mesure de V se calcule alors comme

$$
\mu(V) = \int_U |Df(x)| \, dx.
$$

Démonstration. Une application linéaire g est continûment différentiable avec $Dg = g$. Si f est un difféomorphisme, prenant $Id = ff^{-1}$, on a $D(f^{-1}) = (Df)^{-1}$ en vertu de la proposition 2. Si on associe à f le scalaire $a(x)$, tel que

$$
Df(x)(h) = h a(x),
$$
on voit qu'à Df^{-1} est associé $a(x)^{-1}$. En particulier $a(x)$ est toujours non nul et d’après le lemme 3, U peut être réparti en ouverts compacts, tels que la restriction de $|a(x)|$ à chacun soit constante. Nous pouvons donc supposer que $|a(x)|$ est constant sur U, égal à a. La formule à montrer est alors

$$
\mu(V) = a \mu(U).
$$

Fixons $x \in U$ un instant. Le fait que

$$
\lim_{h \to 0} \frac{1}{|h|} |f(x+h) - f(x) - Df(x)(h)| = \lim_{h \to 0} |h^{-1}(f(x+h) - f(x)) - a(x)| = 0
$$

montre qu'il existe un disque P de centre zéro tel que $x + P \subset U$ et qu'il existe une application continue $\varphi : P \to k$ définie par

$$
\varphi(h) = \begin{cases} h^{-1}(f(x+h) - f(x)) & \text{si } h \neq 0, \\ a(x) & \text{si } h = 0, \end{cases}
$$
et si P est assez petit, $|\varphi(h)| = a$ pour tout h dans P, d’après le lemme 3. Soit $(P_x)_{x \in U}$ un recouvrement ouvert de U obtenu de cette manière en associant à chaque x le disque $P_x = x + P$. Si $(Q_{y})_{y \in V}$ est un recouvrement analogue de V, on aurait pu se le donner le premier et définir celui de U de façon que $f(P_x) \subseteq Q_{f(x)}$, ce que nous allons supposer.

Le lemme 2 nous assure l'existence d'une partition finie de U en polydisques de rayon δ, $(K_i)_{i \in I}$, plus fine que le recouvrement $(P_x)_{x \in U}$, telle qu’existent des $x_i \in K_i$ vérifiant, si l'on pose $x_i' = f(x_i)$, $K'_i = f(K_i)$ et $\eta = a\delta$,
\[(2) \quad |h| \leq \delta \Rightarrow |f(x_i + h) - x_i'| = a|h|,\]
\[(3) \quad |h'| \leq \eta \Rightarrow |f^{-1}(x_i' + h') - x_i| = |h'|/a.\]

Il en résulte que \(K_i' = P(x_i', \eta)\):

\(K_i' \subseteq P(x_i', \eta)\) car \(x \in K_i\) entraîne \(|f(x) - x_i'| = a|x - x_i| \leq \eta,\)

\(K_i' \supseteq P(x_i', \eta)\) car cela est équivalent à \(K_i \supseteq f^{-1}(P(x_i', \eta))\), et pour \(y \in P(x_i', \eta)\) on a

\[|f^{-1}(y) - x_i| = |y - x_i|/a \leq \delta.\]

Il en suit que \((K_i')_{i \in I}\) est une partition finie de \(V\) en polydisques de rayon \(\eta\), donc

\[\mu(V) = \sum_i \mu(K_i') = \sum_i \eta = a \sum_i \delta = a \mu(U).\]

Cette démonstration a montré aussi qu’un difféomorphisme applique localement disque sur disque dans le cas d’une variable, tout à fait comme un homéomorphisme réel. Nous allons généraliser ceci au cas de plusieurs variables, mais d’abord énoncer:

Corollaire 3. Soit \(\varphi : V \to \mathbb{R}\) une fonction réelle continue d’un ouvert compact \(V \subseteq \mathbb{R}\), et \(U \to f, V\) un difféomorphisme entre un ouvert \(U\) et \(V\). Pour tout ensemble mesurable \(A \subseteq V\), \(f^{-1}(A)\) est mesurable dans \(U\), et on a

\[\int_{f^{-1}(A)} (\varphi \circ f)(x) \, |Df(x)| \, dx = \int_A \varphi \, dx.\]

Démonstration. Puisque \(A\) est limite de compacts ouverts, il suffit de montrer la formule pour \(A\) compact ouvert, donc \(A = V\). Puis cela suit immédiatement de la proposition précédente, qui dit en effet que l’image de la mesure \(dx\) est la mesure \(|Df(x)| \, dx\).

Dès maintenant nous allons supposer que \(k\) est commutatif, car pour généraliser la proposition 3 et son corollaire au cas de plusieurs variables il est utile d’introduire la théorie des déterminants.

Une fois les bases choisies dans \(k^m\) et \(k^n\), une application linéaire \(f : k^m \to k^n\) est caractérisée par la donnée d’une matrice, et si \(m = n\) le déterminant de celle-ci est bien déterminé, noté par \(D_f\). \(D_f\) est un élément de \(k\) et non nul si et seulement si \(f\) est bijective. A la composition de deux applications linéaires correspond la multiplication des déterminants. Nous prenons toujours les matrices par rapport aux bases canoniques.

De même nous définissons le jacobien (déterminant fonctionnel) d’une application différentiable \(f : U \to k^n\), \(U \subseteq k^n\) ouvert, de la manière habi-
tuelle. Puisque le jacobien de \(f \) est égal à \(D_f \), si \(f \) est linéaire, il n’y aura pas de confusion si l’on note par \(D_f \) le jacobien d’une application différentiable quelconque.

Avant d’aller au résultat le plus général, nous énonçons un résultat intermédiaire :

Proposition 4. Si \(f: k^n \to k^n \) est un automorphisme linéaire, on a pour tout ensemble mesurable \(A \) que \(f(A) \) est mesurable et

\[
\mu(f(A)) = |D_f| \mu(A).
\]

Démonstration. La proposition est équivalente à la proposition 15 à la page 34 du [1]. Si on préfère une démonstration indépendante de Bourbaki, on peut copier la démonstration par récurrence du cas classique, le cas \(n=1 \) étant celui de la proposition 3.

Théorème 1. Si \(f: U \to V \) est un difféomorphisme entre deux ouverts compacts de \(k^n \), \(k \) étant commutatif, la mesure de \(V \) est donnée par

\[
\mu(V) = \int_U |D_f(x)| \, dx.
\]

Démonstration. L’application \(x \to D_f(x) \) est continue et non nulle puisque \(D_f(x)^{-1} = D_{f^{-1}}(x) \), et nous pouvons par conséquent supposer que \(|D_f(x)| \) est constante égale à \(c \) sur \(U \).

Faisons la convention de noter \(f(x) \) par \(y \) toute fois que \(x \in U \), et inversement \(f^{-1}(y) \) par \(x \), si \(y \in V \). Alors en prenant

\[
M \geq 1 + \sup_{x \in U} |Df^{-1}(x)|,
\]

il existe un recouvrement \((P(x, s_x))_{x \in U} \) tel que pour tout \(x \in U \),

\[
z \in P(x, s_x) \Rightarrow |z-x| \leq M|f(z)-y|.
\]

Soit maintenant \(\varepsilon \) quelconque tel que \(0 < \varepsilon < 1/M \).

Il existe un recouvrement \((P(y, r_y))_{y \in V} \) de \(V \) qui vérifie :

(i) il est plus fin que \((f(P(x, s_x)))_{x \in U} \),

(ii) \(z \in f^{-1}(P(y, r_y)) \Rightarrow |f(z)-y-Df(x)(z-x)| \leq \varepsilon |z-x|,
\]

et on peut en tirer une partition finie de \(V \), \((K_i)_{i \in I} \), où \(K_i = P(f(x_i), r_i) \).

Posons \(K_i' = f^{-1}(K_i) \) et soit \(F_i: K_i' \to k^n \) l’application affine définie par

\[
F_i(x) = f(x_i) + Df(x_i)(x-x_i).
\]

Si \(x \in K_i' \) on a \(|f(x) - F_i(x)| \leq \varepsilon |x-x_i| \) d’après (2), d’où
\[|f(x_i) - F_i(x)| \leq \max (r_i, e|x - x_i|) = r_i \]

ce qui exprime que \(F_i(K'_i) \subseteq K'_i \), puisque \(F_i(x_i) = f(x_i) \). On a \(\mu(F_i(K'_i)) = c \mu(K'_i) \) d'après la proposition 4, et en vertu de la proposition 3 et l'invariance de la mesure par translation on a

\[
\int_U |D_f(x)| \, dx = \sum_i c \mu(K'_i) = \sum_i \mu(F_i(K'_i)) \leq \sum_i \mu(K_i) = \mu(V)
\]

ce qui s'écrit

\[c \mu(U) \leq \mu(V). \]

En renversant les rôles de \(f \) et \(f^{-1} \) on obtient \(c^{-1} \mu(V) \leq \mu(U) \), d'où l'égalité qui est (5).

Il est enfin possible de tirer une conséquence intéressante sur \(f \) de la démonstration précédente, dès que nous savons que le théorème est vrai. Si nous posons

\[V' = \bigcup_i F_i(K'_i), \]

nous avons

\[V' \subseteq V \quad \text{et} \quad \mu(V') = \mu(V) \]

selon la proposition 3 et le théorème 1, donc \(V \setminus V' \) est ouvert et de mesure zéro, c'est-à-dire vide. Cela s'énonce:

Proposition 5. Avec les mêmes notations que dans le théorème 1 il existe une partition finie de \(U \) en polydisques, \((P(x_j, r_j))_{j \in J}\), telle que les images de \(P(x_j, r_j) \) par \(f(x_j) + Df(x_j) \) et \(f \) coïncident.

On a une proposition analogue en se donnant à l'avance le centre d'un disque.

Corollaire 3bis. Méme énoncé que le corollaire 3 avec \(k \) remplacé par \(k^n \).

Une application \(f: U \to k^n \), où \(U \subseteq k^m \) est ouvert, sera dite analytique, si elle est développable en série entière au voisinage de chaque point de \(U \). Une application analytique dans ce sens a les propriétés classique élémentaires des fonctions analytiques connues de l'analyse complexe, elle est différentiable de classe \(C^\infty \), les séries entières locales sont uniques et correspondent à un développement de Taylor. (Voir Serre [4] pour des détails.)

Par un isomorphisme analytique nous comprenons une application bijective qui est analytique ainsi que son inverse. Les applications affines \(f(x_j) + Df(x_j) \) dans la proposition 5 se recollent en un isomorphisme analytique entre \(U \) et \(V \). En élaborant un peu là dessus on obtient un théorème d'approximation pour les difféomorphismes:
Théorème 2. Soit \(f : U \to V \) un difféomorphisme entre deux ouverts de \(k^n \). Il existe une suite d'isomorphismes analytiques \((f_n)_{n \in \mathbb{N}} \) entre \(U \) et \(V \), telle que \((f_n) \) et la suite dérivée \((Df_n) \) convergent respectivement vers \(f \) et \(Df \), uniformément sur chaque compact de \(U \).

Démonstration. Supposons d'abord \(U \) est compact. Nous allons définir par récurrence sur \(n = 1, 2, \ldots \), une partition finie \(\mathcal{R}_n \) de \(U \) en polydisques, un sous-ensemble fini \(X_n \) de \(U \) comprenant un centre de chaque polydisque \(K \) de \(\mathcal{R}_n \), et un isomorphisme analytique \(f_n : U \to V \), tel que:

(i) Le rayon d'un \(K \) dans \(\mathcal{R}_n \) est au plus \(1/n \).
(ii) \(X_{n-1} \subseteq X_n \).
(iii) La restriction \(f_n|K \) est une application affine pour tout \(K \) dans \(\mathcal{R}_n \) avec même image que \(f|K \).
(iv) Pour tout \(x \in X_n \) on a \(f_n(x) = f(x) \).

Soient \(\mathcal{R}_{n-1} \), \(X_{n-1} \) et \(f_{n-1} \) déjà définis. \((X_0 = \emptyset, \mathcal{R}_0 = U, f_0 = f) \)
Si \(x \in X_{n-1} \) est le centre de \(K \in \mathcal{R}_{n-1} \) de rayon \(r \), on désignera par \(K' \) le polydisque de centre \(x \) et de rayon \(r' \leq \max(r/2, 1/n) \). L'ensemble des \(K' \) ainsi définis se note \(\mathcal{R}'_n \) et on pose
\[
U' = U \setminus \bigcup_{K' \in \mathcal{R}'_n} K' = \bigcup_{K' \in \mathcal{R}_{n-1}} (K \setminus K'),
\]
où la première expression montre que \(U' \) est compact, la seconde qu'il est ouvert. D'après la proposition 5 il existe une partition finie de \(U' \) en polydisques, \(\mathcal{R}_{n-}'' \), qui peut être choisie telle que le rayon de chaque polydisque ne dépasse pas \(1/n \), et de plus on a un isomorphisme analytique \(F : U' \to f(U') \) qui vérifie:

(a) Pour tout \(K'' \) dans \(\mathcal{R}_{n-}''' \), \(F|K'' \) est affine et \(F(K'') = f(K'') \).
(b) Dans tout \(K'' \) il y a un point \(x'' \), tel que \(F(x'') = f(x''), f(x'') \) étant la constante de l'application affine.

Notons l'ensemble des \(x'' \) ainsi définis par \(X' \), prenons
\[
X_n = X_{n-1} \cup X', \quad \mathcal{R}_n = \mathcal{R}'_n \cup \mathcal{R}''_n.
\]
L'application \(f : U \to V \) se définit par ses restrictions:
\[
f_n|U' = F, \quad f_n|U \setminus U' = f_{n-1}|U \setminus U'.
\]
Il est facile à voir que les conditions (1)–(4) sont vérifiées.
L'ensemble \(X = \bigcup_n X_n \) est un sous-ensemble dénombrable, dense dans \(U \), et la suite \((f_n)_{n \in \mathbb{N}} \) est une suite de Cauchy uniforme, car \(M = 1 + \sup |Df| \) est une constante de Lipschitz pour \(f \) et tout \(f_n \), puisque
1 + \sup |Df_n| = 1 + \sup_{x \in X_n} |Df(x)| \leq M.

Alors pour \(\varepsilon > 0 \) donné on choisit \(n_0 \geq M/\varepsilon \). A chaque \(y \in U \) on associe \(x \in X_{n_0} \) tel que \(x \) soit centre d’un \(K \) dans \(\mathcal{R}_{n_0} \) contenant \(y \). Pour tous \(m, n \geq n_0 \), nous avons

\[
|f_n(y) - f_m(y)| \leq \max(|f_n(y) - f_n(x)|, |f_m(x) - f_m(y)|) \leq M \frac{\varepsilon}{M} = \varepsilon,
\]

car \(f_n(x) = f_m(x) = f_{n_0}(x) \).

\(V \) étant complet comme fermé d’un espace complet, \((f_n) \) converge uniformément vers une application \(g: U \to V \). Elle est continue et puisque \(g | X = f | X, \) on a \(g = f \).

\(Df \) est uniformément continue sur \(U \), donc pour tout \(\varepsilon > 0 \) il existe \(d > 0 \) tel que pour \(x, y \) dans \(U \) on ait

\[
|x - y| < d \Rightarrow |Df(x) - Df(y)| < \varepsilon.
\]

Alors si \(n \geq 1/d \) on a \(|Df_n(x) - Df(x)| < \varepsilon \) pour tout \(x \) dans \(U \), ce qui montre que \((Df_n) \) converge uniformément vers \(Df \).

Si \(U \) n’est pas compact, il existe une partition de \(U \) en polydiscs, et la suite \((f_n) \) se définit par la donnée de sa restriction à chaque polydisque. Le recollement des applications ainsi trouvées donne bien des isomorphismes analytiques.

La convergence des deux suites est uniforme sur un compact de \(U \). En effet un compact est contenu dans une somme finie disjoints de polydiscs dans \(U \), et la restriction de \((f_n) \) (resp. \((Df_n) \)) à un polydisque converge uniformément.

3. Les variétés différentiables.

Une variété différentiable de classe \(C^r \) sur \(k, r \in \mathbb{N} \) ou \(r = \infty \), est par définition un espace topologique \(X \), recollement d’ouverts de \(k^n \) par des difféomorphismes de classe \(C^r \). Si les applications de recollement sont des isomorphismes analytiques, \(X \) s’appelle une variété analytique ou de classe \(C^\infty \).

Il est possible de définir de la manière habituelle les notions élémentaires de la géométrie différentielle, en particulier celles de dimension dans le voisinage d’un point, l’espace tangent en un point, et les formes différentielles à coefficients dans \(k \).

Ici nous ne considérons que des variétés paracompactes (donc séparées) et non vides. Une boule dans une variété \(X \) de classe \(C^r \), plus précisément une \(C^r \)-boule, sera un ouvert \(B \subseteq X \), difféomorphe de classe \(C^r \) à un polydisque.

Serre [4], [3] a démontré les théorèmes suivants:
Théorème 3. Une variété analytique sur k est paracompacte si et seulement si elle est la somme disjointe de boules.

Théorème 4. Une variété analytique compacte de dimension $n \geq 1$ est isomorphe à la somme disjointe de p boules, où p est déterminé modulo $q-1$, q étant le nombre d'éléments dans le corps résiduel de k.

Dans la démonstration du théorème 3 n'entrent que les propriétés topologiques de X, et elle reste vraie même pour les variétés topologiques. M. Serre avait supposé que la dimension de X était fixe, pour des raisons de commodité, et en décomposant X en ses composantes dimensionnelles on voit que le théorème reste valable dans le cas général.

Dans Serre [3] on trouve une démonstration élégante du théorème 4, que l'on peut copier pour une variété différentiable, dès qui l'on connaît l'existence d'une intégration invariante des formes différentielles $|\omega|$, obtenues à partir des formes ω en remplaçant leur représentation locale $f dx^1 \ldots \wedge dx^n$, où f est une fonction de classe C^r et (x^1, \ldots, x^n) un système de coordonnées locales, par $|f| dx^1 \ldots \wedge dx^n$. L'existence de cette intégration invariante s'exprime peut-être mieux en disant que $|\omega|$ détermine une mesure sur X (voir Weil [5, pg. 13–14]), et elle est assurée par le corollaire 3bis, ce qui nous permettra d'énoncer:

Théorème 3bis. Une variété différentiable de classe C^r, $r \geq 0$, est paracompacte si et seulement si elle est la somme disjointe de C^r-boules.

Théorème 4bis. Une variété compacte de classe C^r, $r > 0$, de dimension $n \geq 1$ est difféomorphe de classe C^r à une somme disjointe de p boules, où l'entier p est uniquement déterminé modulo $q-1$, q étant le nombre d'éléments dans le corps résiduel de k.

Les résultats de Serre sur les formes différentielles analytiques se transportent aussi au cas différentiables, mais ici nous allons seulement tirer quelques conséquences globales des théorèmes mentionnés. Notons par $\dim X \to \mathbb{N}$, l'application qui au point x fait correspondre la dimension de X dans le voisinage de x, X étant supposée de classe C^r, $r > 0$, non vide et paracompacte. Alors on a

Proposition 6. Si $\dim X \to \mathbb{N}$ est bornée et $m = \max_{x \in X} \dim(x)$, il existe une immersion $\Phi : X \to k^m$ de même classe que X.

Démonstration. D'abord on écrit X comme une somme disjointe de C^r-boules, $X = \bigcup_i B_i$, et si $f : B_i \to A^n$ est un difféomorphisme de classe C^r on a $f(x) = (f_1(x), \ldots, f_n(x))$ et on pose

$\Phi_1(x) = f_1(x)$, \ldots, $\Phi_n(x) = f_n(x)$, $\Phi_{n+1}(x) = \ldots = \Phi_m(x) = f_n(x)$.
Il est bien évident que \(\Phi(x) = (\Phi_1(x), \ldots, \Phi_m(x)) \) nous donne une immersion.

Proposition 7. Si \(X \) est compacte et de dimension \(m \), \(X \) est difféomorphe de classe \(C^r \) à un ouvert compact de \(k^m \).

Démonstration. Une somme disjointe de \(p \) boules de classe \(C^r \) peut être réalisée dans \(k^m \).

Proposition 8. Deux variétés analytiques sont isomorphes si elles sont difféomorphes.

Démonstration. Soient \(f : X \rightarrow Y \) un difféomorphisme entre deux variétés analytiques et \((B_i)_{i \in I} \) une décomposition de \(X \) en boules analytiques. Alors \((B'_i)_{i \in I}, B'_i = f(B_i) \), est une partition de \(Y \) en \(C^r \)-boules, si \(f \) est de classe \(C^r \). Il va suffir de montrer que chaque \(B'_i \) est aussi une boule analytique, car alors l'isomorphisme entre \(B_i \) et \(B'_i \) donnera lieu à un isomorphisme entre \(X \) et \(Y \).

\(B'_i \) est ouvert et compact, donc la structure induite par celle de \(Y \) en fait une variété compacte analytique. \(B'_i \) est par conséquent isomorphe à une somme finie \(pA^n \), mais puisque \(B'_i \) est \(C^r \)-difféomorphe à un polydisque, on a \(p \equiv 1 \mod(q-1) \). \(B'_i \) est donc bien isomorphe à un polydisque, ce qui achève la démonstration.

Théorème 5. Toute variété para-compacte \(X \) de classe \(C^r \) est \(C^r \)-difféomorphe à une variété analytique \(X' \), qui est déterminée à un isomorphisme près quand \(r > 0 \).

Si \(X \) est de dimension \(n \) et dénombrable à l'infinité, \(X' \) peut être choisie comme une sous-variété ouverte analytique de \(k^n \).

Démonstration. La première assertion suit immédiatement du théorème 3bis et la proposition 8. Pour voir la dernière, on construit une partition dénombrable de \(X \) en ouverts compacts en partant d'un recouvrement dénombrable par des compacts, et puis on les plonge un par un dans \(k^n \).

La dimension topologique d'un espace topologique a été définie de manière à donner à l'espace numérique \(\mathbb{R}^n \) la dimension \(n \), et avec cette définition la dimension de toute variété sur \(k \) est zéro, \(k^n \) étant totalement discontinu. Si la variété \(X \) est différentiable nous avons défini la dimension sur \(k \) en un point, notion qui se conserve par des difféomorphismes. Il reste à savoir si cette dimension est invariante par des homéomorphismes, comme est le cas pour les variétés réelles. Je ne connais pas la réponse à cette question, mais si elle est affirmative, un
ouvert de k^n admet n comme invariant topologique et on a trouvé encore une analogie entre le corps des réels et celui des nombres p-adiques.

BIBLIOGRAPHIE

UNIVERSITÉ DE COPENHAGUE, DANEMARK