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MARTINGALE CONVERGENCE AND
THE RADON-NIKODYM THEOREM IN BANACH SPACES

S. D. CHATTERJI

1. Introduction.

In recent years, several authors have considered various extensions of
the martingale convergence theorems of Doob [9] to the case where the
random variables take values in a Banach space (B-space), e.g. Chatterji
[4] [5], Scalora [18], A.I. and C. I. Tulcea [19], and Metivier [13]; the
last named author has even considered the general case of locally con-
vex topological vector spaces. Whereas certain types of convergence
theorems were shown to be valid [4] [5] for arbitrary B-spaces, a counter-
example in Chatterji [4] shows that without some condition on the
B-space concerned, some of the most important convergence theorems
of the scalar-valued case are invalid. The main purpose of this paper is
to elucidate this latter situation, by demonstrating that the validity of
almost any general theorem for martingales taking values in a B-space
is equivalent to the fact that the Radon-Nikodym theorem is valid for
set-functions taking values in such spaces. At the same time, this
paper offers self-contained proofs of almost everywhere (a.e.) conver-
gence theorems for B-space-valued martingales, theorems which are
more general than those to be found in [18], [19]. The method of proof
yields, as a by-product, several known Radon-Nikodym theorems for
B-spaces, including one due to Phillips [14].

2. Notation and preliminary remarks.

For the sake of clarity of exposition, I shall consider only the case
where the underlying measure space is a probability space S, with a
g-algebra X of measurable subsets and a o-additive positive measure P
on X with P(S)=1. Suitable generalizations to the case of an arbitrary
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measure space will be obvious to the interested reader. The letter X will
be used to denote a B-space with norm |-| and all random variables f
with values in X will be assumed to be strongly (or Bochner) measurable
functions on S with values in X. The integral of such a function, denoted
by E(f) or [f(s)P(ds) or simply by [f, will always be considered in the
Bochner sense. These and other measure-theoretic concepts and nota-
tions are to be found in Dunford and Schwartz [10] or Hille and Phillips

[12].

Given a sub-o-algebra X; of 2, there exists a well-defined linear opera-
tor of norm one, the conditional expectation operator E,; mapping
LM, X) - LYZ;, X) and satisfying

Afj:!Eif, Ades,.

Here LVZ X)={f|f is Z2-measurable, |fl,=J|fl<+o}. If f=
35-10:C4,(8), areX, A, el (Cys)=1 if sc4 and 0 if s¢A), then
E,f=3%_,P;/A,)a, where P, stands for conditional probability given X
as in Doob [9]. By a standard approximation argument, for a general f,
E,f can be easily shown to exist. This procedure is necessary since, given
an X-valued c-additive set-function x on 2 such that u(A4)=0 when-
ever P(4)=0, u is not necessarily an indefinite integral of a function
with respect to P, even though the total variation

V,(4) = sup! > ud)l | Aze X, A=A, 4, disjointy,
k=1

which is always a non-negative measure on X, is totally-finite. Thus
the standard argument for the existence of the conditional expectation
operator E, is not applicable. It is convenient to introduce at this point
the following definition.

DerFintTiON 1. The B-space X has the RN-property with respect to
(8,2, P) if every X-valued o-additive set-function u of bounded variation
(that is, V,(S) <o) which is absolutely continuous with respect to P
(that is, P(4)=0 = u(4)=0 or equivalently, ,<P) has an integral
representation, that is,

3fe LY(5,X) such that u(4) = f f(s) P(ds) VA€ Z.
A

The space X will be said to have property (D) if it has the RN-property
with respect to Lebesgue measure on the Borel sets of the unit interval.
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Bochner and Taylor [2] have defined property (D) for a B-space X
ag the property that a function of strong bounded variation on the unit
interval is (strongly) differentiable almost everywhere. It can be easily
seen from the methods of the present paper that their definition of
property (D) is equivalent to mine.

It will follow from the considerations in the next section that, if P
is not purely atomie, then X has the RN-property with respect to (8,X, P)
if and only if X has property (D). So for all practical purposes, in this
connection property (D) is what really matters. If P is purely atomic,
then any B-space X has the RN-property with respect to (S,2,P), as
can be immediately verified.

DeriniTION 2. Given a directed set (N, <) and a family of o-algebras
2,2, i e N, the system {f;,2;, ¢ € N} forms an X-valued martingale if
fi € Ll(Ei,X), i_s_j = Z.tCZj, a/nd Eiszf'i'

The following two special examples of X-valued martingales will play
special roles:

ExamprE (i). Let X;,N be as above and let fe LAMX,X). If f,=E,f
then {f;, %, i € N} is an X-valued martingale.

ExampLE (ii). Let u be an X-valued c-additive set-function and let 1
be the directed set of all partitions n={4,,4,,...,4,} of S where nx1,
A,eZ, P(4)>0, U?_ A4,=8, As disjoint. We write m, <7, if every
set in the partition 7, is contained (P-almost surely) in a set of the parti-

tion 7r;. Define (5) = w(d)PA,) if sed,.
n L i i

Then {f,,2,, n € I} is an X-valued martingale where X, is the o-algebra
generated by the sets of the partition z. For this to hold the additivity
of u is actually all that is necessary. These f, martingales have often been
used in measure theory; see e.g. Dunford and Schwarz [10, pp. 297].

As an illustration of the connection between the convergence of mar-
tingales and the RN-property, I shall state the following result which is
of an elementary nature.

TrEOREM 1. (a) Let fe LP(Z,X), that is, f is Z-measurable and ||f|F=
JIfIP<o0, 1Sp<oo. Then for any directed set N and o-algebras X, the
martingale {f;,Z;, ¢ € N} of example (i) has the property

limi“fi—foo”p = 0:

where f.,=E, f denotes the conditional expectation of f given the o-algebra
Z, generated by U, 2.
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(b) In example (ii), if u(d)=[,f(s) P(ds), f e LP(X, X), then

hmn”fn_f”p =0

(¢) In example (ii), if lim, . [If, —fmlp,=0, that is, if f, is an LP-
Cauchy sequence, then u(4)= [, f(s)P(ds) for some fe L?(X,X).

REemarks. Theorem 1(a) is a generalization to directed sets of a corre-
sponding theorem in [5] where X is the set of all positive integers. Since
the method of proof is exactly the same and in any case of utter sim-
plicity, only a bare sketch will be provided. Parts (b) and (c) were
proved slightly differently by Rennow [17] for the case p=1. Here (b)
is an immediate corollary of (a) since f,=E_f and clearly 2 =2 in this
case. As regards (c), it will be noticed that when 1 <p <o and X is the
set of complex numbers, the much weaker condition that sup,||f,ll, < +
is sufficient (and clearly always necessary) for the conclusion. This is
indeed a classical theorem of F. Riesz where the condition is expressed as

D luA)P
P 2 TP

This latter assertion (not valid even in the classical case for p=1) will
follow from the main theorem of this paper for a wide class of spaces X ;
in fact, it shows, in a sense, exactly which spaces X allow such a theorem.

Proor or THEOREM 1. (a) Assume first that fis 2 -measurable. If f
is measurable with respect to the algebra U, yZ; then E,f=f for i 21,.
Hence for this case the conclusion follows. A general f which is X_-
measurable can be approximated arbitrarily closely in Z?-norm by func-
tions measurable U; y2;. So the conclusion holds for such f. Finally,
for any fe Lr(2,X),

fi=Ef=EE.f=Ef,.

As pointed out above, (b) follows immediately.

(c) From the completeness of L?(X,X) it follows that 3f e L?(Z, X)
such that lim, ||f,—f||,=0. I shall now show that f,=F_f. Assertion (a)
then will justify the conclusion of (¢). Now given >0, 3z, such that
Ifw—Ffll,<eif #' 27,. To any =, since the set I of partitions is directed,
there is a partition z; which is finer than both z and =,, that is, 7z, 2=,
my 27, It has already been remarked that {f,,Z,, ' € I} is a martin-
gale and hence for any set 4 exn

[£.=[a-
4 A
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Now

[#- ffl = ‘ffnl— ffl < W=l < Ifag=Fllp < €
A a A i

Since ¢ is arbitrary and f, is X -measurable, E_f=f_ . This concludes
the proof. An interesting corollary, noted by Rennow [17] in the case
p=1, will be stated here for later application.

CoroLLARY. In order that an additive X-valued set function w be the
integral of a function f e LP(X,X), either one of the following two conditions
s mecessary and sufficient:

(1) For every monotone sequence m,, of partitions (that is, =, <=, ,,) the
Sunctions f, , nz1, as defined in example (ii) above are Cauchy convergent
i LP.

(2) The restriction of u to any separable o-subalgebra of X (that is, one
generated by a denumerable number of sets) has an integral representation
by means of a function from LP(X, X).

3. Discussion of the RN-property.

If P is purely atomic, that is, if there exists a sequence of disjoint sets
E, eX, P(E,)>0, PIU?,E,)=1 such that the E,’s are P-atoms in X
(that is, F € 2, F < E, implies P(F)=0 or P(%,)), then every B-space X
has the RN-property with respect to (S,2,P). Indeed given any o-addi-
tive, P-absolutely continuous, X-valued set function x4 of bounded varia-
tion, the function

f(S) = Za’nCE,,(s) with Ay, = /"(En)/P(En)
n=1
is easily seen to be an integrable function such that

w(B) =ff for all HeX.
B

Now an arbitrary probability measure can be written down, essentially
uniquely, as a convex combination

dP,+(1-d)P,, 0<d<1,

of two probability measures P,, P, where P, is purely atomic and P,
is purely nonatomic. It follows, therefore, that X will have the RN-
property with respect to (S,Z,P) if and only if it possesses the RN-
property with respect to (8,2, P,).



26 8. D. CHATTERJI

I shall assume now that P is purely nonatomic on 2. By virtue of the
corollary of the last section, X will possess the RN-property with respect
to (8,2, P) if and only if this happens with respect to (S,2,, P) for every
scparable o-subalgebra X,. Clearly, 2, can be so chosen that, when
restricted to 2, P is also purely non-atomic. For instance, 2, can be
defined to be the o-algebra generated by a sequence =z, of successively
finer partitions such that z,={4,,, 4 ..., 4.} and P(4,,)=2-" for
n= 1. This is possible since P is nonatomic. Now if 4 is any set belonging
to 2, with P(4)>0 then there exist indices » and %k such that 0<
P(AA,,) < P(A) which proves the non-existence of atoms in X,. By a
theorem of Halmos and von Neumann [11, p. 173] the measure algebra
(Z,, P) is isomorphic with the measure algebra (#,m) of the unit interval
with Lebesgue measure m on the Borel sets. It is easy to see that the
measure algebra isomorphism 7' between X, and & can be extended to
an isometry between the whole of LY(Z,, X) and LY(#,X) (considered as
equivalence classes of functions) in such a way that [,fdP=[,,Tfdm
holds. It is to be noted that 7" is to be thought of as operating on
equivalence classes of X-valued functions and that no assumption is
made concerning the possibility of inducing the measure algebra iso-
morphism 7' through a 1-1 point transformation between S and the unit
interval. Such a transformation—which may be impossible if § is
‘““pathological’’—is not necessary in the present discussion. Since any
X-valued c-additive P-absolutely continuous (m-absolutely continuous)
set function u can be lifted to the respective measure algebras 2,(%), it
is clear from the above that X has property (D) if and only if X has the
RN-property with respect to (8,2, P).

I shall now summarize the conclusions of the above discussion in the
form of a theorem:

THEOREM 2. (a) If (8,X,P) is purely atomic then every B-space has
the RN-property with respect to it.

(b) If P is not purely atomic then a B-space has the property (D) if and
only if it has the RN-property with respect to (S,2, P).

Thus we see that the RN-property is really independent of the under-

lying probability space and can be considered entirely in relation to the
unit interval.

4. Preliminary a.e. convergence theorems.

The purpose of this section is to prove a convergence theorem which
ensures a.e. convergence of the martingales of Theorem 2(a) above in
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the case of the directed set N={1,2,3,...} under the natural ordering.
No assumptions about the space X are necessary for this theorem. In
this generality, the theorem was first proved, using a deep theorem of
Banach, in Chatterji [5] and later also by. A.I. and C. I. Tulcea [19].
The proof presented here is totally elementary and depends on the
following lemma which is stated in the present form for later use.

Lemma 1. Let {f,,2,, n =1} be an X-valued martingale and let A € X
Then for any >0,

P{S € A’ Supn;len(s)l g 6} §_ 8_1 SupngN IA |fn| .

The lemma is an easy consequence of the fact that |f,| is a positive
submartingale and is, in this sense, well known; see Doob [9, p. 314].

TrEOREM 3. Let f € LY(X, X) and let f,=E,,f denote conditional expecta-
tion with respect to X,. Let X, <X, .., n=12,.... Then

hmn—»oofn = foo

exists (strongly) a.e. and f.,=E_f equals the conditional expectation of f
given 3, , the o-algebra generated by the algebra UL X, .

Proor. Since the proof is exactly the same as one of the proofs for
the scalar-valued case (see Billingsley [1] or Dunford and Schwartz [10,
p. 208]) it will be presented only briefly here. If f is measurable with
respect to UL X, then f, =f from some point on and hence the conclusion
above is immediate. If f is measurable X then, given ¢>0, 6>0, a
function g can be found, measurable UPZ,, and such that ||f—g||; < 3¢0.
By the linearity of the operators E,, one has

= |E'ng_Emg] +2 Sup'nglEnlf"g[ .
Hence

lim SUP,, nsco ]fn—fml Sk= 2sup’n%1Enlf~gI
so that

P{lim sup,,, nsoolfa—ful 26} = Plhze} < 267 f-gl < 0

by an application of Lemma 1 to the real-valued martingale Z,|f—g|.
Since 4§ is arbitrary,

P{hm Supm, n—>00 Ifn ‘—fml ;8} =0

whence, ¢ being arbitrary, the existence of lim,_,f, is demonstrated.
For a general f € L(X, X), since f,=E,f=E, f, and f_ is 2 -measurable,
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the existence of limf, is assured. The identification of the limit as f,,
follows immediately from Theorem 2(a) above.

For general reference, I shall state a theorem here for the case N =
{0,—1,—2,...} which was proved in [5], again by the afore-mentioned
theorem of Banach, and can now be proved by the method indicated
above, without any use of scalar-valued martingale theory.

THEOREM 4. Let {f,,2,,n <0} be an X-valued martingale; then
limn—>—oof n = f —00

exists strongly a.e. and also in LN(X, X), where f_ = E__ f, denotes the con-
ditional expectation of fo given X_ =, 2.

It may be appropriate to add here that generalizations of Theorems 3
and 4 to arbitrary index sets IV are not possible, even in the scalar-
valued case, without some further assumptions on the structure of the
g-algebras 2, . The first counter-example was given by Dieudonné [8].
A much simpler counter-example has recently been given by Chow [6].
I should like to point out here a more obvious way of looking at Chow’s
example. Let {g,,n 2 1} be a sequence of independent r.v.’s with E(g,)=0,
taking values in an arbitrary B-space X. Let f=3g, exist a.e. but
suppose that the series is almost surely not unconditionally convergent.
Let further fe LYX,X). Define f.=3,..9, where =z is a finite set of
positive integers. Let the n’s be ordered by inclusion. If X is the
smallest o-subalgebra with respect to which {g,, n € n} are measurable,
then clearly f,=Z%,f. Further, lim f, cannot exist almost surely since
this is equivalent to the unconditional convergence of 3¢, almost surely.
Note, however, that Theorem 2(a) implies that || f,—f|l; — 0 all the same.
A convenient way of choosing g, is to take g,=e¢,a/n where 0+a e X
and the random variables ¢, equal +1 with probability 4 and are in-
dependent. In this case, fe L*ZX,X) since E|f|?=|a|X1/n®<oc0 and
hence, by Theorem 2(a), f, converges to f in L?*ZX,X). This choice
was made by Chow [5, p. 1490], but the point made here is that no
calculation is necessary to show that limf, does not exist since the series
Y9, is blatantly not unconditionally convergent. In the real-valued case
this latter fact automatically implies that limsupf,=+o and
lim inf f, = — co. A counter-example to Theorem 4, that is, the decreasing
index case, is also possible. Consider “Riemann sums”

Jnl@) = lnil f@+Ek/n), where fe LY0,1)
M k=0
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with respect to Lebesgue measure and + denotes addition modulo 1.
Then it is easy to verify that f,=E, f is the conditional expectation of f
given X , the o-algebra of Borel-sets of the unit interval with period 1/n.
If ny|n, then X, %, . Define n,<n, if n;|n,. Then {f,,X,} is a mar-
tingale which need not converge a.e., as shown by the counter-example
in Rudin [16], even though fe L*(0,1). The analogue of Theorem 2(a),
however, shows that in all cases

1
fn—a in LY0,1), where a = ff.
0

5. A decomposition theorem for X-valued set functions.

In order to avoid interrupting the proof of the main theorem in the
next section, I shall present here a theorem concerning finitely additive
X-valued set functions. As proto-type for this theorem, in the scalar-
valued case, can be considered a theorem of Hewitt and Yosida which
states that every finitely additive (scalar) set function on an algebra
can be uniquely decomposed into the sum of a g-additive and a purely
finitely additive set function. A convenient reference is [10, pp. 163-64].
The present theorem for X-valued set functions is not as sharp as the
above theorem but is enough for my purposes.

THEOREM 5. Let P be a probability measure on (S,2) where X is only
assumed to be an algebra of sets, and let u be an X-valued finitely additive
set function of 3, of bounded total variation. Then u=oc+n where o is a
o-additive set function whose total variation V, is finite and P-absolutely
continuous while 1 s a finitely additive set function whose total variation V,
18 finite and P-singular; that is, given ¢,6 > 0 there exists an A € X such that

P4)<e and V, (4)<9,
A’ denoting the complement of A.

Proor. The method to be used is fairly standard and is incorporated
in pp. 311-13 of Dunford and Schwartz [10]. Given the space (S,X),
there is a space S; which is a compact Hausdorff space with the follow-
ing properties:

(1) 8, is totally disconnected, that is, the algebra X, of simultaneously
closed and open (clopen) sets form a basis for the topology of 8;;

(2) there is an isometric isomorphism H between B(S,ZX), the space of
bounded scalar-valued X-measurable functions on §, and C(S8,), the space
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of scalar-valued continuous functions on §,, both spaces being considered
under the uniform norm.

Let the correspondence H(C,(s))=C4(s;) (the C’s standing for
characteristic functions) induce the set algebra isomorphism v between
2 and 2, that is, define 7(4)=4,. This correspondence is such that
1(2)=2,. Now given an additive or ¢-additive (X-valued or scalar-
valued) set function @ on 2, the formula

@4, = Q(T_I(Al))

always defines a c-additive set function on 2, whether or not ¢ was
o-additive to start with. The reason for this is that the ¢-additivity
equation for @, viz.,

QI(C:JA,,) - ?QI(A,,)

if 4,2}, A,’s disjoint and U4, € X, is trivially satisfied since the
compactness of §; precludes the existence of an infinite sequence of
non-empty disjoint 4,’s € 2, such that U4, € 2| also. Clearly if @ is
of finite total variation, so is ¢, on 2. If this is so, then @, can be ex-
tended to the o-algebra X, generated by 2. If @ is scalar-valued, this is
possible by a classical theorem of Caratheodory. If @, is X-valued then
also the fact mentioned has been known for a long time; for convenient
reference, see [19, p. 119, foot-note (6)]. Now let P, u, be the transposi-
tions of the P,u of the theorem to the space (S;,2;). Let Py,u, stand
also for the extended set functions on (8,,2,). The set function y, is
then of bounded total variation on 2.

According to a theorem of Rickart [15] which generalizes the classical
Lebesgue decomposition theorem for scalar-valued set functions, u, is of
form o,+m, on the g-algebra X, where o,,7, are of bounded variation if
/1 18 so (as in this case), o, is P,-absolutely continuous, and 7, is P;-
singular. Let o,7 be the inverse images of the restrictions of ¢y,7, to 2.
Then on the given space (S,2), u = o+ 7 where V,is P-absolutely continu-
ous and V, is P-singular. The o-additivity of ¢ follows trivially from the
fact that V, is absolutely continuous with respect to a o-additive func-
tion P. Thus the decomposition theorem is completely established.

It seems likely that # should be further decomposable into a sum of
two set functions, one c-additive and P-singular and the other purely
finitely additive by which is meant that its total variation is singular
with respect to all g-additive set functions on Z. I have not been able to
prove this yet.
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6. Main theorem.

THEOREM 6. For a B-space X and a probability space (S,X, P) the fol-
lowing statements are equivalent when holding for all X-valued martingales

{fn’zn}a nzl:

(1) If sup,oqllfully < 400, then f=lim, _, f, exists strongly a.e.
(2) If supysqllfulli< +oo, then f,=lim,_, . f, exists weakly a.e., in the
sense that Af, strongly measurable such that for all y* € X*,

1iln’n-—>¢x> <fn(8)’y*> = <foo(8)’y*> fOT § ¢ NyhP(Ny*) =0.

It is enough to know that f,, is a.e. separable-valued to deduce a version of
it which is strongly measurable. See proof of the subsequent Theorem 7 for
an elucidation of this condition.

(3) If sup,-11fu(s)| <C a.e. for some C>0, then f,=lim,_, f, exists
strongly a.e.

(4) If for some C>0, sup,-,|fu(8)|<C a.e., then f,=lim,_, f, exists
weakly a.e. in the sense of statement (2).

(5) If the f,’s are wuniformly integrable (that is, limy_ o [/l Cyppysny =0
uniformly in n 2 1), then If, € LYZ, X) with lim,,_, || fo —felii=0.

(6) If sup,sillfallp<o, l<p<oo, then 3If el?(X,X) with
limn—-)oo ”fn _foo Hp =0.

(7) The space X has the RN-property with respect to (S,Z, P).

REMAREK. The reader is reminded that in view of the discussion of the
RN-property given above, the convergence properties of X-valued mar-
tingales are rather independent of the underlying probability space. If
P is purely atomic, then all the 7 statements above hold for all B-spaces
X. If P is not purely atomic and if X has one of the above 7 properties
then X has all of them with respect to any other probability space and
in particular X has property (D). I should like to remark that the equiv-
alence of (5) and (7) have also been pointed out by Rgnnow [17]. Some of
the equivalences above (e.g. (2) <= (5)) can be deduced very easily,
independently of the rest, and are listed for their possible utility and for
completeness.

Proor or THEOREM 6. The major part of the proof consists in showing
that (7) = (1). All the other implications then follow by fairly routine
arguments. So I begin with

Proor oF (7) = (1). Given the martingale {f,,X,,n=1} with the

roperty that
P P y SupnzlEInt < o,

let the X-valued set function u, be defined on X, by the formula
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inld) = [ f2(o) P(ds) .
4

Clearly, the martingale property of the f,’s is equivalent to the statement
that u, ., is an extension of u, to 2, ;22 . Hence the formula

wd) = limp,(4)

defines an X-valued set function on the algebra X =U{ZX, which is
clearly finitely additive. Let

k
V,(4) = sup} > |u(B))| | B;eZ,, B; < A, B, disjoint, 1<k< oo’
i=1
be the total variation of u for a set 4 € 2. It is easy to see that
V() = Iimjlfnl < foo.
4

In other words, u is a finitely additive set function of bounded total
variation on the algebra X,. One of the difficulties in proving (1) is that
u may not be o-additive, a difficulty which may arise even in the scalar-
valued case. I shall obviate this difficulty by using Theorem 5 of the
preceeding section. According to that theorem u=o0+# where o is
o-additive and its variation is P-absolutely continuous. By the RN-

property (that is, (7)),
od) = [g. 4eZ, geLZ.X),
4

2, being the g-algebra generated by 2. If o, is the restriction of o to
2, then clearly

o,(4) = fgn’ deX,,
A

where g,=E,g. Since, by assumption, the restriction u, of u to X, is
also an integral, the restriction %, of # to 2, must be of the form [ ,.
Indeed f,=g,+h,, and {g,,2,}, {h,,2,} are X-valued martingales.
Moreover, since ¢, =E,g, by Theorem 3, limg,=g exists strongly a.e.
I shall now show that lim 4, = 0 strongly a.e. Because of the P-singularity
of V,,given 0<¢, d<1,Icanfind 4 € 2, (and hence 4 € 2y for some N)
such that
PA)+V,(4) < §ed.
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Now
Plsup,zy byl > e} = P{A"; supnzy byl > e} + P{4; sup,zy k| > €}
< $ed + &1 supnsz |h,| P(ds) (by Lemma 1)
4

= 4ed + &1V, (4) < $ed + }0 < 0.
Hence
P{lim sup,,_,, |h,|>¢e} £ P{sup,.nlh,|>¢} < 9.

The numbers ¢, being arbitrary, it follows that lim|k,|=0 a.e. This
proves that limf, exists strongly a.e. and to some extent characterizes
the limit function.

Proor or (1) =- (5). Suppose the f,’s are uniformly integrable. Then
SUP, 1 lfxll; < oo and hence by (1) the limit limf, =f,, exists strongly a.e.
Clearly f., € L}(2,,,X) since by Fatou’s lemma

E|fol = lim|fy]l; .

Hence |f,(s)—f.(s)| as a sequence of real-valued functions is uniformly
integrable and tends to 0 a.e. Therefore

Hnln—»oo“fn_foonl = hmn—>ooE|fn _’fool =0.

Proor oF (5) = (7). By the Corollary to Theorem 1, given a P-abso-
lutely continuous X-valued o-additive function u of bounded total
variation on X, to prove that u is a P-integral, it is enough to verify that
for every sequence =z, of finer and finer partitions, the sequence of X-
valued r.v.’s f,, (denoted there by f, ) which forms a martingale {f,,2,}
(2, =c-algebra formed by =,), is such that the f,’s converge in L}(X, X).
If I can show that the f,’s are uniformly integrable, then by virtue of (5),
this latter will follow and (7) will be deduced. Because of the inequality

P(|fo]2N) = N7 fully £ N7V L(8),
given ¢>0, one can choose N so large that

P(fJ=zN) <e forall nx1.

Because V, is P-absolutely continuous, given >0, there exists an ¢>0
such that
P(4)<e implies V, (4)<d for Ae.

Hence for any >0,

Math. Scand. 22 — 3
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Ifal £ VAfilZN} < 0, n=12,...,
{Ifal2N}
if first ¢ and then N are chosen as indicated above.
This proves the uniform integrability of f,,, and hence (7).

Proor oF (2) = (5). Let {f,,2,} be a uniformly integrable X-valued
martingale. Clearly sup,.,|/f,./l; <oo; hence by (2) there exists f,, which
can be easily seen to be in LY, X), such that

hm(fn(s)’y*) = <foo(8)!y*> a.e.

for any y* € X*. Since the uniform integrability of the f,’s clearly im-
plies the same for (f,(s),y*), it follows that for every y* € X*,

{fut*) Zn 1 S0 < 00}

is a scalar-valued martingale and hence, in particular, for 4 € 2, the

relation
< [ y> = [ = [Gurr® = < [ fwy*>
A A A A

is valid for every y* € X*. Hence

anszw forall A, .
A A

In other words, f,=E,f... Theorem 1 then implies that ||f,—f.ll, = 0.
The implication (1) = (2) being trivial, the above arguments show
that (1), (2), (5), and (7) are equivalent.

Proor oF (3) = (7). If condition (3) holds for some C > 0 then clearly
it holds for all 0 < C < co. Suppose first that the X-valued set function u

is such that :
av,
dP |

which means that V (4) < NP(4) for all 4 € 2 and some integer N = 1.
Because of the corollary to Theorem 1, as in the proof of (5) = (7), it
suffices to prove that for every sequence of increasingly finer partitions
m,, the associated martingale {f,,2,} is such that the f,’s converge in
LY(Z2,X). Since V (4)<NP(A), it follows that sup,,|f.(s)| =N, and by
(3) thef,’sconverge stronglya.e. to afunction f, which is then automatically
in L{(Z, X). By the dominated convergence theorem, since |f,(s) —f. ()| <
2N a.e.,

av
< N, thatis, P}|-2<N{=1
< N, at is, {dP_ }
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”fn“foo”l -0.

Thus every X-valued set function 4 under consideration, with the above-
mentioned extra property, is representable as an integral. For a general u,
the proof now proceeds by a standard argument, which has nothing to
do with martingale theory, as follows. Let

Ay = is ﬂ‘ng}.
dP

Clearly Ay< Ay, and 2=UPAy. Let uy(B)=pu(BAy) for Be X. Then
V,y(B)=V,(BAy) and so

V,,(B) < NP(BAy) < NP(B).

By what has already been proved, it follows that

pn(B) = f fy for some fyeILXZ,X).
B

It is easily seen that fy=0 a.e. on 4, and that for N> M (4dy>Ay)

fN = fM a.e. on AM .
Hence for N> M,

so that il
Wfy—fulli >0 as M,N — .

Hence there exists an fe LY(X, X) such that

Ify—fli~0 as N —oco.
Since

#(B) = limy oo pu(BAy) = limy_o [ fy = [£()P(ds) ,
B B

(7) is proved.

The argument of (2) = (5) shows that (4) = (3) since the condition
in (3) implies uniform integrability and once it has been shown that
there exists f, such that ||f, —fll; = 0, it follows that f,=E, f,, whence
Theorem 3 leads to the conclusion of (3).

Since the implications (3) = (4) and (1) = (3) are immediate, it fol-
lows that (1), (2), (3), (4), (5), and (7) are equivalent.

As regards (6), notice first that (6) = (3) by an argument used already.
For if sup,, |f,(s)| < C a.e., then ||f,||, < C for n = 1. Therefore by (6) there
exists f, € L?(Z2,X) such that
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Ifo=follp =~ 0, l<p<oo.

It then follows that f, =E,f, and Theorem 3 does the rest.

On the other hand (5) = (6) because, given a martingale {f,,%,} with
SUP, = [l fallp <00, 1 <p < oo, it follows immediately that the f,’s are uni-
formly integrable and hence by (5), there exists f,, such that ||f, —f.|l; = 0.
This implies as before that f, =%, f,,. Further f e L?(X_,X) since by
Fatou’s lemma

[t < timy o, [1f02 < o0

by the assumption of (6). Theorem 1 now implies that |f, —f,ll, = 0.
Thus the equivalence of (1)—(7) is established.

7. Applications.

In this section the main theorem will be used to deduce some well
known Radon-Nikodym propositions for X-valued set functions. To
emphasize the simplicity of these deductions, I should like to point out
that what is needed is not the whole strength of the main theorem but
rather the following elementary version of it. Let u be an X-valued
o-additive set function of bounded total variation on the probability
space (S,2, P) and let u(A4)=0 whenever P(4)=0. Then for any sequence
of partitions s,,, n =1, which become increasingly finer, the functions
fr,(8) of Example (ii) of section (2) are uniformly integrable. The set
function u has the integral representation [, f(s)P(ds) if and only if for
every sequence z, of increasingly finer partitions the corresponding
sequence f, converges weakly a.e. (P) to a strongly measurable function
foo(8) in the sense that for all y* € X*, there is a set of P-measure zero
N, *, possibly depending on y*, such that if s ¢ N, * then lim (f,(s),y*) =
{fo(8),y*>. It is left to the interested reader to verify that the “non-
elementary’’ argument (7) => (1) of the main theorem is nowhere needed
in a proof of the above statement.

Using this statement, I shall now derive a theorem originally due to
Phillips [14]. A variety of other theorems of this sort, e.g. the Dunford-
Pettis theorem and the Dunford-Pettis—Phillips theorem (see Bourbaki
[3, p. 000]) follows effortlessly in a similar manner, without any separa-
bility assumption on the space X as was originally made, and later
removed by the use of “lifting” arguments, by A.I. and C.I. Tulcea
[20]. These and some more recent theorems of Mr. M. A. Rieffel (to be
published) and representations by means of integrals other than Bochner-
integrals will be deferred to a more systematic treatment in a later
publication.
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THEOREM 7 (see Phillips [14]). Let u be an X-valued c-additive set
Sfunction of totally bounded variation on a probability space (S,Z,P) such
that u(4)=0 whenever P(A)=0. If for every integer N =1 the set
u(A) ' lu(4)]

N =

N, P(A)>O}

1s relatively weakly compact, then

f F(s)P(ds),  where fe LY(Z,P).

Proor. I shall suppose first that for some integer N =1, |u(d4)| =
NP(4) for all A € 2. The general proof can be derived from this special
case exactly by means of the method sketched in the proof, (3) = (7),
of the main theorem. By virtue of the remarks made at the beginning
of this section, it suffices to show that if =, is an increasingly finer
sequence of partitions of S, then the corresponding functions f,, converge
weakly a.e. to a strongly measurable function f,, in the sense described
before. Actually, it is enough to know that f_ is separable-valued a.e.
to deduce its strong measurability since the limit relation

m, o {fu(8),4*) = {fo(8),y*) a.e.

(even if the null set depends on y* € X*), implies that for each y* € X*
the function {f(s),y*) is measurable with respect to the o-algebra X*,
the completion of 2’ under the probability measure P. By a known theo-
rem, (see Hille-Phillips [12]), f,, is then strongly measurable with respect
to 2*. Clearly f,, can then be changed on a set of P-measure zero, so
that the new version is X-strongly measurable and such that the weak
convergence of f,, to f, in the above sense remains unaltered.

From the definition of the f,’s it is to be seen that these finitely-
valued r.v.’s take their values in the set defined in the statement of the
theorem. Let X be the closed separable linear manifold spanned by the
values of f,(s), s€ 8, n21. Two things about X, are to be noticed.

(i) X, is automatically weakly closed, by a general theorem (see [10],
p- 422, Theorem 13);

(ii) because of the hypothesis of Theorem 7, the subset of X, con-
sisting of the values of f,(s) is relatively weakly compact.

For any point s € S, let a subsequence n;, be chosen so that f, (s) con-
verges weakly to f.(s), an element of X,. This is possible because of (i)
and (ii) above. (An application of the axiom of choice is involved in
this procedure.) Now for any y* € X* the sequence {f,(s),y*), being a
scalar-valued martingale, converges a.e. Hence
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lilnn—>00 <fn(8)’y*> = <foo(8):y*> a.e.

Since f,(s) is separable-valued, the remarks made before show that it
may be chosen to be strongly X-measurable. Hence the criterion given
at the beginning of this section ensure that x has an integral representa-
tion by means of a function from L}(X, X).

CoroLLARY. The following classes of B-spaces X have property (D) and
hence the RN-property with respect to any probability space (S,2, P):

(i) the reflexive spaces,

(ii) separable duals X of Banach spaces (that is, X is separable and there
is @ B-space Y such that Y*=X),

(iii) weakly complete spaces X with separable duals (that is, X is weakly
complete and X* is separable).

Proor. That the reflexive spaces have the property (D) follows im-
mediately from Theorem 7. For the other two classes, the property (D)
can be derived similarly. The details are omitted.

From the counter-example of the next section, it will be seen that neither
separability nor weak completeness can be left out in the description of
the classes (ii) and (iii). The classes (i)-(iii) have for some time been
known to possess property (D). I hope to discuss property (D) in greater
detail in a later publication.

8. A counter-example.

Several examples are known of X-valued set functions which are
g-additive, P-absolutely continuous, of totally bounded variation, but
not integrals. For example, if S is the unit interval (with P = Lebesgue
measure on 2'=Borel sets) and X=L' over this space, then u(4)=
C 4(x) € L' is an old instance. In Chatterji [4], a corresponding martin-
gale is constructed in the obvious way; it converges almost nowhere in
any sense. As [19] points out, this shows in particular that L! is not the
dual of any space, by virtue of (ii) of the Corollary above, a fact first
pointed out by Dieudonné. An example of a non-convergent martingale
has been recently given by Rennow [17]. I should like to present it
here in a different and very simple form and in a way which illustrates
various new features of the theory of X-valued r.v.’s. The underlying
probability space is again that of the unit interval and the B-space ¢,
involved is the space of real or complex sequences which converge to zero
with
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o] = sup;>ql2;l, * = (1,%,...).

Let y,(s) be the sequence of Rademacher functions on the unit interval,
defined in the following way: let s =2%°a,(s)2-" be the binary expansion
of 05s<1; then

Yu(8)=1-2a,(s) = +1

with probabilities 3. The Rademacher functions are known to be sto-
chastically independent under Lebesgue measure. Let

e, = (0,0,...,1,0,...) € ¢, (1 at the nth place); le,| =1, n=1.

Define
Ja8) = 2 vi8)er, = (¥1(8),74(8)s - - -5 ¥4(8),0,...) .

It is immediate that {f,, 2}, is a martingale, where X, is the o-algebra
generated by intervals of the type (k2-",(k+1)2-"), 0Sk=2"—1. Ac-
tually f,, is the sum of » independent c,-valued r.v.’s, each of which takes
two values and each of which has expected value 0. Clearly

|fn(8)| =1 and Elfn' = ”fn”l =1.

But f,(s) does not converge strongly in c,, or even in the more compre-
hensive space [, at any irrational point s. On the other hand, since
(co)* =11, and since the sequence {(f,(s),y) converges for every s, for any
y € l=(cy) *, the sequence f,(s) converges weakly but not to any element
of ¢,. Further, since {*=(l')*, it follows that a martingale f, taking
values in a space X =(Y)*, may converge to f., in the weak *-topology
of X (that is, the Y topology of X) without being strongly or weakly
convergent. The last remark is verified by noting that

foo(S) = ('}/1(3),- ) yn(s)" . )

has a non-separable range in 1.

It is to be noted, however, that for any sequence a, tending to 0,no
matter how slowly, the series Ya,y,(s)e, of c,-valued independent
r.v.’s converges everywhere unconditionally but not absolutely if
Yla,|= +oo. But E|a,y,(s)e,|?=]a,|? so that the variance series may be
chosen to diverge. Thus one may have a c,-valued sequence of inde-
pendent r.v.’s Y, which are uniformly bounded and of zero expectation
and such that XY, converges a.e. (even unconditionally) without the
variance series being convergent, in contradiction to a known theorem
in the scalar-valued case. I hope to pursue this matter further in other
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publications. The example above may also be looked at as the martin-
gale version of a counter-example of Clarkson [7, p. 414], of an [*-valued
function of bounded variation which is nowhere differentiable although
it satisfies a Lipschitz condition.

Note added in proof (received October 14, 1968).

In Section 3 the following lemma is needed to complete the discus-
sion: If (8,2, P) is a probability space and u is a ¢-additive, X-valued,
P-absolutely continuous function of bounded variation defined on a
sub-g-algebra X, then y has an extension g to X which is also ¢-addi-
tive, P-absolutely continuous and of bounded variation.

Indeed an extension j is defined by the formula

) = [ P4|Z) au

where P(A4|2,) is the conditional probability of 4 given X, and the in-
tegral with respect to u is taken in the sense of, say, [10, p. 323]. This
simple extension came out of a discussion with Professor J. Neveu; my
original one was a bit more complicated.
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