A COVERING PROPERTY OF SIMPLEXES

KY FAN

1.

A classical result of Sperner [4] (see also [3]) states that if an n-simplex $S = v_0 v_1 \dots v_n$ is covered by n+1 closed sets A_i , $0 \le i \le n$, such that for each i, A_i is disjoint from $v_0 v_1 \dots v_{i-1} v_{i+1} \dots v_n$, then $\bigcap_{i=0}^n A_i \ne \emptyset$. This can be formulated as follows: If an n-simplex $S = v_0 v_1 \dots v_n$ is covered by n+1 closed sets A_i , $0 \le i \le n$, such that $v_0 v_1 \dots v_{i-1} v_{i+1} \dots v_n \subseteq A_i$ for each i, then $\bigcap_{i=0}^n A_i \ne \emptyset$. Each of these two statements can be easily derived from the other. More precise than the second statement is the following result.

Theorem 1. Let A_0, A_1, \ldots, A_n be n+1 closed subsets of an n-simple $S = v_0 v_1 \ldots v_n$ such that $v_0 v_1 \ldots v_{i-1} v_{i+1} \ldots v_n \subset A_i$ for $0 \le i \le n$, an $\bigcap_{i=0}^n A_i = \emptyset$. If B is a closed set such that $B \cup (\bigcup_{i=0}^n A_i) = S$, then for ever non-empty subset I of $\{0, 1, \ldots, n\}$, we have

$$\begin{array}{ll} (1) & B \cap \left(\bigcap_{i \notin I} A_i\right) \cap \left(\bigcap_{i \in I} A_{i^{'}}\right) \, \neq \, \emptyset \; , \\ where \; A_{i}{'} = S \smallsetminus A_{i} \; . \end{array}$$

The assertion amounts to say that

(2)
$$\left(\bigcap_{i \in I} A_i\right) \cap \left(\bigcap_{i \in I} A_{i'}\right) \; \in \; \operatorname{Int} \; \bigcup_{i=0}^{n} A_i$$

for every non-empty subset I of $\{0,1,\ldots,n\}$. Here Int denotes the interior relative to S. A closely related result is the following one.

Theorem 2. Let $T = v_0 v_1 \dots v_p$ be a p-simplex, and let S denote the n-face $v_0 v_1 \dots v_n$ of T, where $0 \le n < p$. Let f be a continuous mapping from S into the n-skeleton of T and having the following two properties:

- (3) For each i = 0, 1, ..., n and for every point x in the (n-1)-face $v_0v_1 ... v_{i-1}v_{i+1} ... v_n$ of S, f(x) is in a face of T not containing the vertex v_i .
- (4) f(S) is disjoint from the face $v_{n+1}v_{n+2}...v_p$ of T.

Received September 18, 1966.

Work supported in part by the National Science Foundation Grant GP-5578.

18 KY FAN

Then for every continuous mapping g from S into S, there exists a point $x \in S$ such that f(x) = g(x). In particular: $S \subseteq f(S)$, and f has a fixed point.

We recall that the n-skeleton of T is the union of all n-faces of T. Theorem 2 specializes to the Brouwer fixed point theorem when we take the identity mapping of S as f.

2.

We first prove Theorem 2, which will be used in the proof of Theorem 1.

PROOF OF THEOREM 2. For $x \in S$, write

$$f(x) = \sum_{j=0}^{p} \alpha_j(x) v_j, \qquad g(x) = \sum_{i=0}^{n} \beta_i(x) v_i,$$

where $\alpha_j(x) \ge 0$, $0 \le j \le p$, $\sum_{j=0}^p \alpha_j(x) = 1$ and $\beta_i(x) \ge 0$, $0 \le i \le n$, $\sum_{i=0}^n \beta_i(x) = 1$. For $0 \le i \le n$, let A_i denote the set of all $x \in S$ satisfying

(5)
$$\alpha_i(x) \left[1 + \sum_{j=n+1}^p \alpha_j(x) \right] \leq \beta_i(x) \left[1 - \sum_{j=n+1}^p \alpha_j(x) \right].$$

By property (3) of f, we have $\alpha_i(x) = 0$ for $x \in v_0 v_1 \dots v_{i-1} v_{i+1} \dots v_n$, $0 \le i \le n$. Thus $v_0 v_1 \dots v_{i-1} v_{i+1} \dots v_n \subset A_i$ for $0 \le i \le n$. For each $x \in S$, f(x) is in the n-skeleton of T, so at least p-n of $\alpha_j(x)$, $0 \le j \le p$, are 0. If $\alpha_{n+1}(x), \alpha_{n+2}(x), \dots, \alpha_p(x)$ are not all 0, then there is an index h such that $0 \le h \le n$ and $\alpha_h(x) = 0$, so $x \in A_h$. On the other hand, if $\alpha_{n+1}(x) = \alpha_{n+2}(x) = \dots = \alpha_p(x) = 0$, then $\sum_{i=0}^n \alpha_i(x) = \sum_{i=0}^n \beta_i(x) = 1$, so there is an index k such that $0 \le k \le n$ and $\alpha_k(x) \le \beta_k(x)$. Then $x \in A_k$. This shows that $\bigcup_{i=0}^n A_i = S$. By Sperner's result, it follows that $\bigcap_{i=0}^n A_i \ne \emptyset$.

Consider a point $x_0 \in \bigcap_{i=0}^n A_i$. Summing (5) over i = 0, 1, ..., n, we obtain

(6)
$$\left[1 - \sum_{j=n+1}^{p} \alpha_j(x_0)\right] \left[1 + \sum_{j=n+1}^{p} \alpha_j(x_0)\right] \leq 1 - \sum_{j=n+1}^{p} \alpha_j(x_0).$$

Since $f(x_0) \notin v_{n+1}v_{n+2} \dots v_p$ by (4), we have $\sum_{j=n+1}^p \alpha_j(x_0) < 1$. Therefore (6) implies $\alpha_j(x_0) = 0$ for $n+1 \le j \le p$. Then $\sum_{i=0}^n \alpha_i(x_0) = \sum_{i=0}^n \beta_i(x_0) = 1$, and (5) becomes $\alpha_i(x_0) \le \beta_i(x_0)$, $0 \le i \le n$. Hence $\alpha_i(x_0) = \beta_i(x_0)$, $0 \le i \le n$, and $f(x_0) = g(x_0)$.

By considering those g which map S to a single point of S, we conclude that $S \subseteq f(S)$. On the other hand, if we take the identity mapping of S as g, then the existence of a fixed point of f follows.

PROOF OF THEOREM 1. We regard $S = v_0 v_1 \dots v_n$ as a face of an (n+1)-simplex $T = v_0 v_1 \dots v_n v_{n+1}$. For $x \in S$, let $\delta_i(x)$ denote the distance from

x to A_i , $0 \le i \le n$, and let $\delta_{n+1}(x)$ denote the distance from x to B. Since $\bigcap_{i=0}^n A_i = \emptyset$, we have $\sum_{i=0}^n \delta_i(x) > 0$ for all $x \in S$. Let

$$f(x) \, = \, \left(\sum_{j=0}^{n+1} \delta_j(x) \right)^{-1} \, \sum_{i=0}^{n+1} \delta_i(x) v_i \, , \qquad x \in S \, \, .$$

The relation $B \cup (\bigcup_{i=0}^n A_i) = S$ means that for every $x \in S$, at least one of $\delta_0(x), \delta_1(x), \ldots, \delta_{n+1}(x)$ is 0. Thus f is a continuous mapping from S into the n-skeleton of T. If $0 \le i \le n$ and $x \in v_0 v_1 \ldots v_{i-1} v_{i+1} \ldots v_n$, then $\delta_i(x) = 0$ and therefore $f(x) \in v_0 v_1 \ldots v_{i-1} v_{i+1} \ldots v_n v_{n+1}$. As $\bigcap_{i=0}^n A_i = \emptyset$, v_{n+1} is not in f(S).

By Theorem 2, we have $S \subseteq f(S)$. Therefore for any n+1 non-negative numbers $\gamma_i \ge 0$, $0 \le i \le n$, with $\sum_{i=0}^{n} \gamma_i = 1$, there is a point $x \in S$ for which

(7)
$$\delta_i(x) = \gamma_i \sum_{j=0}^n \delta_j(x) \quad \text{for} \quad 0 \le i \le n, \quad \delta_{n+1}(x) = 0.$$

In particular, for any non-empty subset I of $\{0,1,\ldots,n\}$, if the γ 's are so chosen that $\gamma_i > 0$ for $i \in I$ and $\gamma_i = 0$ for $i \notin I$, then every point x satisfying (7) is in the intersection

$$B \cap \left(\bigcap_{i \notin I} A_i\right) \cap \left(\bigcap_{i \in I} A_{i'}\right).$$

3.

A theorem of Ghouila-Houri [2] on a combinatorial property of convex sets extends a result of Berge [1] and has other interesting corollaries. As an application of Theorem 1, the following result sharpens Ghouila-Houri's theorem.

COROLLARY 1. In a topological vector space E, let C_1, C_2, \ldots, C_n be n closed convex sets such that $\bigcap_{i=1}^n C_i = \emptyset$, and let $u_j \in \bigcap_{i \neq j} C_i$ for each $j = 1, 2, \ldots, n$. If D is a closed set in E such that $D \cup (\bigcup_{i=1}^n C_i)$ contains the convex hull of $\{u_1, u_2, \ldots, u_n\}$, then for every non-empty subset I of $\{1, 2, \ldots, n\}$, we have

(8)
$$D \cap \left(\bigcap_{i \neq I} C_i\right) \cap \left(\bigcap_{i \in I} C_i'\right) \neq \emptyset,$$

where $C_i' = E \setminus C_i$.

This specializes to Ghouila-Houri's theorem when I contains only one index.

20 KY FAN

PROOF. Consider an (n-1)-simplex $S=v_1v_2\ldots v_n$ and define a continuous mapping f from S into $D\cup (\bigcup_{i=1}^n C_i)$ by $f(\sum_{j=1}^n \alpha_j v_j) = \sum_{j=1}^n \alpha_j u_j$ for $\alpha_j \geq 0$, $1 \leq j \leq n$, with $\sum_{j=1}^n \alpha_j = 1$. Let $A_i = f^{-1}(C_i)$, $1 \leq i \leq n$, and $B = f^{-1}(D)$. Then $B\cup (\bigcup_{i=1}^n A_i) = S$. Since $u_j \in C_i$ for $i \neq j$ and C_i is convex, we have $f(x) \in C_i$ for $x \in v_1v_2 \ldots v_{i-1}v_{i+1} \ldots v_n$. In other words, $v_1v_2 \ldots v_{i-1}v_{i+1} \ldots v_n \subset A_i$ for $1 \leq i \leq n$. We have also $\bigcap_{i=1}^n A_i = \emptyset$, because $\bigcap_{i=1}^n C_i = \emptyset$. Applying Theorem 1, we obtain (1) and therefore (8) for every nonempty subset I of $\{1, 2, \ldots, n\}$.

Corollary 2. Let f_0, f_1, \ldots, f_n be n+1 real-valued continuous functions defined on an n-simplex $S = v_0 v_1 \ldots v_n$ such that for each $i = 0, 1, \ldots, n$, $f_i(x) \leq 0$ for $x \in v_0 v_1 \ldots v_{i-1} v_{i+1} \ldots v_n$. Then either there exists a point $x \in S$ satisfying $f_i(x) \leq 0$ for all i; or for every non-empty subset I of $\{0, 1, \ldots, n\}$, there exists an $x \in S$ such that $f_i(x) > 0$ for $i \in I$ and $f_i(x) = 0$ for $i \notin I$.

PROOF. This follows immediately from Theorem 1 by considering the sets $A_i = \{x \in S : f_i(x) \le 0\}, 0 \le i \le n$, and $B = \{x \in S : f_i(x) \ge 0 \text{ for all } i\}.$

EXAMPLE. Consider a real $n \times n$ matrix $M = (a_{ij})$ such that $a_{ij} \leq 0$ for $i \neq j$ and $\sum_{i=1}^n a_{ij} \geq 0$ for $1 \leq j \leq n$. Define functions f_i , $1 \leq i \leq n$, by $f_i(x) = \sum_{j=1}^n a_{ij}x_j$ for $x = (x_1, x_2, \ldots, x_n)$ with $x_j \geq 0$, $1 \leq j \leq n$, and $\sum_{j=1}^n x_j = 1$. Then an application of Corollary 2 yields the following well-known fact: If M is singular, there exist n non-negative numbers x_j , $1 \leq j \leq n$, not all zero, such that $\sum_{j=1}^n a_{ij}x_j = 0$ for $1 \leq i \leq n$. If M is non-singular, then all elements of M^{-1} are non-negative.

REFERENCES

- C. Berge, Sur une propriété combinatoire des ensembles convexes, C. R. Acad. Sci. Paris 248 (1959), 2698-2699.
- A. Ghouila-Houri, Sur l'étude combinatoire des familles de convexes, C. R. Acad. Sci. Paris 252 (1961), 494–496.
- B. Knaster, C. Kuratowski und S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe, Fund. Math. 14 (1929), 132-137.
- E. Sperner, Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes, Abh. Math. Sem. Univ. Hamburg 6 (1928), 265-272.