COHOMOLOGY AND HOMOLOGY OF PAIRS OF PRESHEAVES

P. RIBENBOIM and G. SORANI

We define the cohomology of pairs of presheaves. As a particular case, we obtain the Grothendieck cohomology of a topological space with coefficients in a presheaf of abelian groups.

In the final section, we introduce the resolution of a presheaf by spreads, which gives rise to a homology of pairs of presheaves; in particular is defined the homology of a topological space with coefficients in a given presheaf of abelian groups.

1.

Let $F = \{F_U, \varphi_V^U\}$ be a presheaf of abelian groups (or modules over a fixed ring) over a topological space X.

For every open set U of X, let $F \mid U$ denote the presheaf restriction of F to U; the sheaf of germs of $F \mid U$ may be identified with the restriction to U of the sheaf of germs \mathscr{F} of F, which we denote by $\mathscr{F} \mid U$.

Let $F = \{F_U, \varphi_V^U\}$, $C = \{C_U, \gamma_V^U\}$ be presheaves of abelian groups over X, and let $\mathscr C$ be the sheaf of germs of C.

For every open set $U \subseteq X$, let M_U be the abelian group of all continuous sheaf-homomorphisms of $\mathscr{F} \mid U$ into \mathscr{C} .

If $V \subset U$ are open sets, there is a natural homomorphism

$$\mu_V^U: M_U \to M_V$$
,

and it follows immediately that $M = \{M_U, \mu_V^U\}$ is a presheaf, and even a sheaf over X (see [1, p. 185]).

As it is well known, for every presheaf F over X, $C \leadsto M(F,C)$ is a left-exact covariant functor.

2.

In order to define the n^{th} cohomology presheaf of a pair of presheaves, let us recall the concept of canonical complex of a presheaf G.

Let \mathscr{G} be the sheaf of germs of G, let $C^0 = C^0(X, G)$ be the presheaf of

Received July 1, 1966.

(not necessarily continuous) sections of \mathscr{G} , with the natural restriction mappings γ_V^U (for $V \subset U$ open sets). There is a natural X-morphism $j^0: G \to C^0$; let $Z^1 = C^0/j^0(G)$ be the quotient presheaf and $p^0: C^0 \to Z^1$ the canonical X-epimorphism; hence $p^0 \circ j^0 = 0$. By induction, we define the

X-homomorphism
$$j^n: \mathbb{Z}^n \to \mathbb{C}^n$$

and

X-epimorphism
$$p^n: C^n \to Z^{n+1}$$
,

where

$$Z^n = C^{n-1}/j^{n-1}(Z^{n-1}), \qquad C^n = C^0(X, Z^n).$$

Putting $\delta^n = j^n \circ p^{n-1}$, then $\delta^n \circ \delta^{n-1} = 0$ for every $n \ge 1$ and we obtain the complex of presheaves:

$$(1) C^0 \xrightarrow{\delta^0} C^1 \xrightarrow{\delta^1} C^2 \xrightarrow{\delta^2} \dots$$

Since M is a left-exact covariant functor, we have a complex of presheaves:

(2)
$$O \xrightarrow{\Delta^{-1}} M(F, C^0) \xrightarrow{\Delta^0} M(F, C^1) \xrightarrow{\Delta^1} M(F, C^2) \xrightarrow{\Delta^2} \dots$$

because

$$\delta^n \circ \delta^{n-1} = 0$$
 implies $\Delta^n \circ \Delta^{n-1} = 0$

for every $n \ge 1$.

Definition 1. For every $n \ge 0$ the presheaf

$$H^n(F,G) = \operatorname{Ker} \Delta^n / \operatorname{Im} \Delta^{n-1}$$

is called the n^{th} cohomology presheaf of the pair (F,G).

If \mathscr{F} , \mathscr{G} are sheaves of abelian groups over X, we define $H^n(\mathscr{F},\mathscr{G})$ to be the sheaf of germs of the presheaf $H^n(\Gamma(\mathscr{F}),\Gamma(\mathscr{G}))$, where $\Gamma(\mathscr{F})$, $\Gamma(\mathscr{G})$ denote respectively the presheaves of sections of \mathscr{F} , \mathscr{G} . We call $H^n(\mathscr{F},\mathscr{G})$ the n^{th} cohomology sheaf of the pair $(\mathscr{F},\mathscr{G})$.

We emphasize that we have used the complex (1) (instead of an injective resolution of G); hence, there is no reason why $H^n(F,G)$ should be the same as $\operatorname{Ext}^n(F,G)$, defined in [1, p. 187]. As a matter of fact, if X is a space consisting of only one point, then F, G are identified with abelian groups, and

$$\begin{split} H^0(F,G) &= \operatorname{Hom}(F,G) \,, \\ H^n(F,G) &= 0 \quad \text{for every } n \geq 1 \,, \end{split}$$

for all choices of F, G. However, $\operatorname{Ext}^n(F,G) = 0$ for all $n \ge 1$ and all groups F, if and only if G is a divisible group.

The following results may be proved in straightforward manner:

Proposition 1. For every presheaf F over X, the functors

$$G \rightsquigarrow M(F,G)$$
 and $G \rightsquigarrow H^0(F,G)$

are isomorphic.

PROPOSITION 2. Let F be a locally free presheaf of abelian groups over X. To each short exact sequence $\mathcal S$ of presheaves over X,

$$\mathcal{S}: 0 \to G' \xrightarrow{\pi'} G \xrightarrow{\pi} G'' \to 0$$

there corresponds the long exact sequence \mathcal{L} of cohomology presheaves,

$$\mathcal{L}: \ 0 \longrightarrow M(F,G') \xrightarrow{H'} M(F,G) \xrightarrow{H} M(F,G'') \xrightarrow{A^0}$$

$$\xrightarrow{A^0} H^1(F,G') \xrightarrow{H'^1} H^1(F,G) \xrightarrow{H^1} H^1(F,G'') \xrightarrow{A^1}$$

$$\xrightarrow{A^1} H^2(F,G') \xrightarrow{H'^2} H^2(F,G) \xrightarrow{H^2} H^2(F,G'') \xrightarrow{A^2} \dots$$

The functor $\mathscr{S} \leadsto \mathscr{L}$ is natural.

By means of standard arguments, we are reduced to establish:

Lemma 1. Let F be a locally free presheaf of abelian groups over X. For every $n \ge 0$ the sequence

$$0 \longrightarrow M(F,C'^n) \xrightarrow{H'^n} M(F,C^n) \xrightarrow{H^n} M(F,C''^n) \longrightarrow 0$$

is exact.

PROOF. By the inductive definition of the presheaves C'^n , C^n , C''^n , it is enough to prove the lemma for the case n=0. Since $M(F,\cdot)$ is a left-exact functor, we need only to show that Π^0 is an X-epimorphism, that is, for every open set $U \subset X$, and for every $\lambda'' \in [M(F,C''^0)]_U$ there exists $\lambda \in [M(F,C^0)]_U$ such that $\Pi_U^0(\lambda) = \lambda''$.

Let V be an open set (perhaps empty), $V \subset U$, such that there exists λ_V , a continuous sheaf-homomorphism from $\mathscr{F} \mid V$ into \mathscr{C}^0 , such that $\Pi_V{}^0(\lambda_V) = \lambda'' \circ i_V{}^U$, where $i_V{}^U$ is the natural continuous sheaf-monomorphism from $\mathscr{F} \mid V$ into $\mathscr{F} \mid U$.

Let $x \in U$, $x \notin V$. We shall show that there exists an open set W, $x \in W \subset U$, and a continuous sheaf-homomorphism

$$\mu_W: \mathcal{F} \mid W \to \mathcal{C}^0$$

such that

$$\Pi_{W}{}^{0}(\mu_{W}) = \lambda^{\prime\prime} \circ i_{W}{}^{U}.$$

By the hypothesis on F, for every $x \in X$ there exists an open set W, $x \in W \subset U$, and there exists a family S of continuous sections of \mathscr{F}

over W, such that if $y \in W$, $\alpha \in \mathcal{F}_y$, then α is, in a unique way, a linear combination with integral coefficients

$$\alpha = \sum_{k=1}^{n} m_k \, s_k(y), \quad \text{where } s_k \in S.$$

In order to define μ_W , let $\lambda'' \circ i_W^U(s_k(y))$ be the germ of the presheaf C''^0 which is represented by the triple

$$(t_k^{\prime\prime}, y, W_k^{\prime\prime})$$
,

where $t_k^{\prime\prime} \in C_{W_k^{\prime\prime}}^{\prime\prime 0}$, $y \in W_k^{\prime\prime} \subset W$. Since π is epic, given the section $t_k^{\prime\prime} \colon W_k^{\prime\prime} \to \mathscr{G}^{\prime\prime}$, there exists some section $t_k \colon W_k^{\prime\prime} \to \mathscr{G}$ such that $\bar{\pi} \circ t_k = t_k^{\prime\prime}$.

With above notations, we define $\mu_W(\alpha)$ to be the germ of C° represented by the triple

$$\left(\sum_{k=1}^n m_k t_k, y, \bigcap_{k=1}^n W_k^{\prime\prime}\right).$$

Clearly, μ_{W} is fiber-preserving and on each fiber it is a group-homomorphism. By its definition, we have

$$\Pi_W{}^0(\mu_W) = \bar{\pi} \circ \mu_W = \lambda^{\prime\prime} \circ i_W{}^U .$$

We show now that μ_W is continuous. Let be given the neighbourhood O'' of $\mu_W(\alpha)$, defined by

$$\sum_{k=1}^n m_k \, t_k \, \in \, C_{\operatorname{W}}{}^0, \qquad y \, \in \, \operatorname{W}{}'' \, \subset \, \bigcap_{k=1}^n \operatorname{W}{}_k{}'' \, .$$

Since each section s_k is continuous, given the neighborhood $O_{f_k, V''}$ (where $f_k \in F_{V''}$) of $s_k(y)$, there exists a sufficiently small neighborhood V_0'' of y,

$$V_0^{\prime\prime} \subset V^{\prime\prime} \cap W^{\prime\prime}$$
,

such that for every $z \in V_0''$, and for every k = 1, ..., n, the germ $s_k(z)$ is represented by the triple (f_k, z, V'') . Let O be the neighborhood of α defined by

$$\left(\varphi^{V''}_{V_0''}\left(\sum_{k=1}^n m_k f_k\right) \;\in\; \boldsymbol{F}_{V_0''}\right).$$

Then

$$\mu_W(0) \subset O''$$
.

Indeed, if $\beta \in O$, it is represented by the triple

$$\left(\varphi_{V_0^{\prime\prime}}^{V^{\prime\prime}}\left(\sum_{k=1}^n m_k f_k\right),\,z,\,\,{V_0}^{\prime\prime}\right),$$

where $z \in V_0^{\prime\prime}$, so

$$\beta = \sum_{k=1}^{n} m_k s_k(z)$$

and by definition of μ_W it follows that $\mu_W(\beta)$ is the germ represented by

$$\left(\sum_{k=1}^{n} m_k t_k, z, W^{\prime\prime}\right)$$

and therefore $\mu_{\Pi'}(\beta) \in O''$.

We now consider the continuous sheaf homomorphism

$$\gamma_{V \cap W} = \lambda_V \circ i_{V \cap W}^V - \mu_W \circ i_{V \cap W}^W ,$$

which followed by $\bar{\pi}^0$ is $\bar{\pi}^0 \circ \nu_{V_0 W} = 0$. So

$$v_{V \cap W} \in \operatorname{Ker} \Pi^0 = \operatorname{Im} \Pi'^0$$
,

hence there exists a continuous sheaf-homomorphism

$$\nu'_{V \cap W}: \mathcal{F} | V \cap W \rightarrow \mathcal{C}'^{0}$$

such that

$$\bar{\pi}^{\prime 0} \circ \nu_{V \cap W}^{\prime} = \nu_{V \cap W}.$$

For every continuous section $s \in S$, the restriction of $v'_{V \cap W} \circ s$ to $V \cap W$ is a continuous section of the sheaf \mathscr{C}'^0 over $V \cap W$. Since \mathscr{C}'^0 is a flabby sheaf, there exists a continuous section σ of \mathscr{C}'^0 over W, whose restriction to $V \cap W$ coincides with $v'_{V \cap W} \circ s$. We now define a continuous sheaf-homomorphism

$$\nu_W': \mathcal{F} | W \to \mathcal{C}'^0$$

as follows. If $\alpha \in \mathcal{F} \mid W$ has center $y \in W$, then

$$\alpha = \sum_{k=1}^{n} m_k s_k(y) ,$$

where $s_k \in S$, $m_k \in Z$ are uniquely defined; we put

$$v_{W}'(\alpha) = \sum_{k=1}^{n} m_k \sigma_k(y) .$$

It is obvious that v_{W}' is a continuous sheaf-homomorphism. Moreover,

$$v'_W \circ i^W_{V \cap W} = v'_{V \cap W}$$
,

since the restriction of σ_k to $V \cap W$ is equal to s_k . It follows that

$$(\bar{\pi}'^{0}v'_{W} + \mu_{W}) \circ i^{W}_{V \cap W} = \bar{\pi}'^{0}v'_{V \cap W} + \mu_{W} i^{W}_{V \cap W}$$

$$= v_{V \cap W} + \mu_{W} i^{W}_{V \cap W} = \lambda_{V} i^{V}_{V \cap W}.$$

From this, it follows that λ_V and $\bar{\pi}'^0 v_W' + \mu_W$ have a common extension to a continuous sheaf-homomorphism

$$\lambda_{V \cup W}: \mathscr{F} | V \cup W \to \mathscr{C}^0$$

which is defined in the obvious way. Moreover

$$\Pi^0_{V \cup W}(\lambda_{V \cup W}) = \lambda^{\prime\prime} \circ i^U_{V \cap W}$$
.

The preceding considerations are the essential part in the proof of the lemma. Indeed, let us consider the family F of all couples (V, λ_V) where V is an open set, $V \subseteq U$, and

$$\lambda_V: \mathcal{F} | V \to \mathcal{C}^0$$

is a continuous sheaf-homomorphism such that

$$\Pi_V{}^0(\lambda_V)\,=\,\lambda^{\prime\prime}\,\circ\,i_V{}^U\;.$$

This family is not empty, by taking $V = \emptyset$. We order F in natural way, by letting

$$(V, \lambda_V) \leq (V', \lambda_{V'})$$

whenever

$$V \subset V'$$
 and $\lambda_V = \lambda_{V'} \circ i_V^{V'}$.

Since F is clearly inductive, by Zorn's lemma F has a maximal element, which in virtue of our proof must be (U, λ_U) . Thus $\Pi_U^0(\lambda_U) = \lambda''$, and this proves the lemma.

3.

We shall show that the Grothendieck cohomology of a topological space X, with coefficients in a presheaf G over X, may be considered as a particular case.

For every open set $U \subseteq X$, let A_U be the ring of continuous functions of U into Z. If $V \subseteq U$ let ϱ_V^U be the restriction mapping. Thus $A(X) = \{A_U, \varrho_V^U\}$ is a presheaf of rings over X; let $\mathscr A$ be the sheaf of germs of A(X).

It is clear that for every topological space X the presheaf A(X) is locally free.

Theorem 1. Let X be a topological space, let A = A(X) be the presheaf of abelian groups associated with X (as it was defined above). Let G be any presheaf of abelian groups over X. Then, for every integer $n \ge 0$, there is a natural isomorphism

$$h^n(X,G) \cong [H^n(A(X),G)]_X$$

where $h^n(X,G)$ denotes the n^{th} Grothendieck cohomology group of X with coefficients in G.

PROOF. Let

$$0 \to C^0 \xrightarrow{\delta^0} C^1 \xrightarrow{\delta^1} C^2 \xrightarrow{\delta^2} \dots$$

be the canonical complex of G. Let

$$0 \to \Gamma(X, C^0) \xrightarrow{\gamma^0} \Gamma(X, C^1) \xrightarrow{\gamma^1} \Gamma(X, C^2) \xrightarrow{\gamma^2} \dots$$

be the complex of abelian groups of global continuous sections over X, which is induced by the canonical complex of G. By definition,

$$h^n(X,G) = \operatorname{Ker} \gamma^n / \operatorname{Im} \gamma^{n-1}$$
.

To prove the theorem, we first define a homomorphism

$$\varphi^n: \ \Gamma(X, C^n) \to [M(A, C^n)]_X$$

in the following way. Let $\alpha \in \mathcal{A}$ be the germ represented by (f, x, U), where U is open in X, $x \in U$, $f \in A_U$. If $c \in \Gamma(X, C^n)$, we define

$$\varphi^n(c): \mathcal{A} \to \mathcal{C}^n$$

by letting

$$\varphi^n(c)(\alpha) = f(x) \cdot c(x);$$

the mapping $\varphi^n(c)$ does not depend on the triple which represents α . The continuity of $\varphi^n(c)$ is easily established from the definition and the fact that c is a continuous section and f is a continuous mapping. Thus

$$\varphi^n(c) \in [M(A,C^n)]_X$$
.

It is also clear that if $c \in \text{Ker}\gamma^n$ then

$$\varphi^n(c) \in \operatorname{Ker} \Delta_X^n$$
.

Indeed, if $\delta^n : C^n \to C^{n+1}$, if $\bar{\delta}^n : \mathscr{C}^n \to \mathscr{C}^{n+1}$ is the associated sheaf-homomorphism, then $\gamma^n : \Gamma(X, C^n) \to \Gamma(X, C^{n+1})$ is such that

$$(\gamma^n(c))(x) = \bar{\delta}^n(c(x));$$

hence

$$(\Delta_X^n(\varphi^n(c)))(\alpha) = \bar{\delta}^n(\varphi^n(c)(\alpha))$$

$$= \bar{\delta}^n(f(x) c(x))$$

$$= f(x) \, \bar{\delta}^n(c(x)) = 0$$

for every $\alpha \in \mathcal{A}$, where α is the germ represented by (f, x, U).

It is immediate that if $c \in \operatorname{Im} \gamma^{n-1}$ then $\varphi^n(c) \in \operatorname{Im} \Delta_X^{n-1}$. Moreover, $\varphi^n(c)$ sends fibers into fibers and it is additive. Thus, φ^n is a group-homomorphism and induces a group-homomorphism

$$\Phi^n: h^n(X,G) \to [H^n(A,G)]_X$$

defined by

$$\Phi^n(c+\operatorname{Im}\gamma^{n-1}) = \varphi^n(c) + \operatorname{Im}\Delta_X^{n-1}.$$

We shall now show that Φ^n is epic. Let

$$b+\operatorname{Im}\Delta_X^{n-1}\in [H^n(A,G)]_X,$$

where

$$b\in \mathrm{Ker}\varDelta_X{}^n \subset [M(A,C^n)]_X$$
 .

Let $x \in X$ and let $1_x \in A$ be the germ represented by (e,x,X) where $e \in A$ with e(y) = 1 for every $y \in X$. The mapping $c \colon X \to \mathscr{C}^n$, defined by $c(x) = b(1_x)$, is a section and it is continuous. Indeed, consider $O_{h,U'}$, U' open, $h \in C_U^n$, which is a neighborhood of $c(\alpha)$ for $x \in U'$. Since b is continuous, there exists a neighborhood $O_{g,U''}$ of 1_x , with $x \in U''$, $g \in A_{U''}$, such that $b(O_{g,U''}) \subseteq O_{h,U'}$. Thus, since $1_x \in O_{g,U''}$ then (e,x,X) and (g,x,U'') determine the germ 1_x and hence g(x)=1. Since $g \in A_{U''}$ by continuity there exists a neighborhood V of $x, V \subset U' \cap U''$, such that g(y) = g(x) for every $y \in V$. Now, if $y \in V$ then $1_x \in O_{g,U''}$ since (e,y,V) and (g,y,U'') define the same germ, for g(y) = g(x) = 1 = e(y) for every $y \in V$. Thus, if $y \in V$ then

$$c(y) = b(1_x) \in b(O_{g, U''}) \subset O_{h, U'}.$$

Moreover,

$$c \in \operatorname{Ker} \gamma^n$$
.

Indeed,

$$\gamma^n(c) = \bar{\delta}^n \circ c(x) = \bar{\delta}^n \circ b(1_x) = \varDelta_X{}^n(b)(1_x) = 0$$

since $b \in \operatorname{Ker} \Delta_X^n$. To show that Φ^n is monic it is enough, by the above considerations to prove that φ^n is monic, and this is immediate.

Finally,

$$\Phi^n(c+\operatorname{Im}\gamma^{n-1})\,=\,b\,+\,\operatorname{Im}\Delta_X^{n-1}\,.$$

Indeed, if α is the germ defined by (f, x, U), then

$$\varphi^{n}(c)(\alpha) = f(x) c(x) = f(x) b(1_{x}) = b(f(x) 1_{x}).$$

Now, since f is continuous there exists a neighborhood V of x such that f(y)=f(x) for every $y \in V$. Thus (f,x,U) and (f(x)e,x,X) define the germ α , since $\varrho_V^{U}(f)=f(x)e$. Thus $\varphi^n(c)(\alpha)=b(\alpha)$, hence also

$$\Phi^n(c+\operatorname{Im}\gamma^{n-1}) = b + \operatorname{Im}\Delta_X^{n-1}.$$

So, we have proved that Φ^n is an isomorphism for every n, and the theorem is proved.

The cohomological dimension of a presheaf F is defined in the usual manner. Thus, the cohomological dimension of the topological space X coincides with the cohomological dimension of the presheaf A(X) canonically associated with X.

4.

Let $G = \{G_U, \varrho_V^U\}$ be a presheaf over X, let $\mathcal{O}(X)$ be the collection of open sets of X. We shall consider subsets $\mathcal{U} \subseteq \mathcal{O}(X)$ satisfying:

(*) if
$$V \subset U \in \mathcal{U}$$
, then $V \in \mathcal{U}$.

For every \mathscr{U} , we consider the families $(g_U)_{U \in \mathscr{U}}$ where each $g_U \in G_U$ and if $V \subseteq U \in \mathscr{U}$ then $\varrho_V{}^U(g_U) = g_V$.

Each $(g_U)_{U\in\mathscr{U}}$ is called a spread on \mathscr{U} and it is therefore an element of the projective limit

$$\lim_{\stackrel{\longleftarrow}{\mathscr{U}}} G_U$$
 .

Let $\mathscr{S}_{\mathscr{U}}$ be the set of spreads on \mathscr{U} , let $\mathscr{S} = \bigcup \mathscr{S}_{\mathscr{U}}$ be the set of spreads. We note that each $\mathscr{S}_{\mathscr{U}} \neq \mathscr{O}$, since it contains at least the zero spread.

Each $\mathscr{S}_{\mathscr{U}}$ is an abelian group, defining the addition as follows:

$$(g_U)_{U \in \mathcal{U}} + (g_U')_{U \in \mathcal{U}} = (g_U + g_U')_{U \in \mathcal{U}}.$$

For every open set $U \subseteq X$ let

$$F_U = \bigoplus_{U \in \mathscr{Y}} \mathscr{S}_{\mathscr{U}}$$
 ,

direct sum of the groups $\mathscr{S}_{\mathscr{U}}$, where \mathscr{U} runs in the set of allowable families of open sets containing the given open set U.

If $V \subset U$, let $\tau_V^U \colon F_U \to F_V$ be the natural inclusion (if $U \in \mathcal{U}$, then $V \in \mathcal{U}$). Then $F = \{F_U, \tau_V^U\}$ is a presheaf over X.

For every open set $U_0 \subset X$, we define $\varphi_{U_0} \colon F_{U_0} \to G_{U_0}$ as follows:

$$\varphi_{U_0}\left(\sum_{i=1}^n (g_{U}^{(i)})_{U\in\mathcal{U}_i}\right) = \sum_{i=1}^n g_{U_0}^{(i)};$$

 φ_{U_0} is a group-homomorphism and the following diagram is commutative:

where $V_0 \subset U_0$ are open sets of X.

Now, we prove that each mapping φ_{U_0} is epic. Indeed, let $g \in G_{U_0}$, let

$$\mathcal{U}_0 = \{ V \text{ open set in } X \mid V \subset U_0 \};$$

then \mathcal{U}_0 satisfies

$$(\mathfrak{g}_{V}^{U_{0}}(g))_{V \in \mathscr{U}_{0}} \in \mathscr{S}_{\mathscr{U}_{0}}$$

and

$$\varphi_{U_0}[(\varrho_V^{U_0}(g))_{V\in\mathscr{U}_0}] = g.$$

Thus, we have the presheaf-epimorphism

$$F \xrightarrow{\omega} G \rightarrow 0$$
,

where $\varphi = (\varphi_{U_0})_{U_0 \in \mathcal{O}(X)}$. This gives rise, in the usual manner to a resolution of G:

where $K_0 = \text{Ker } \varphi$, F_1 is obtained from K_0 in the same way as $F = F_0$ was defined from G, $K_1 = \text{Ker } \varphi_1$, and so on. We have $\text{Im } h_1 = \text{Ker } \varphi$, $\text{Im } h_2 = \text{Ker } h_1$, and so on. If K is any presheaf, the resolution gives rise, by means of the tensor product, to the complex

$$\ldots \to F_2 \otimes K \xrightarrow{\overline{h_2}} F_1 \otimes K \xrightarrow{\overline{h_1}} F_0 \otimes K \xrightarrow{\overline{\varphi}} G \otimes K \to 0.$$

DEFINITION 2. For every $n \ge 0$, the presheaf

$$H_n(G,K) = \operatorname{Ker} \overline{h}_n / \operatorname{Im} \overline{h}_{n+1}$$

is called the n^{th} homology presheaf of the pair (G, K).

As we did for the cohomology, we may also define the n^{th} homology sheaf of the pair $(\mathcal{G}, \mathcal{K})$ of sheaves.

Let us note that if X is a space consisting of only one point, then G may be identified with an abelian group and the resolution (1) becomes trivial; then

$$H_0(G,K) = G \otimes K$$
,
 $H_n(G,K) = 0$ for every $n \ge 1$,

whatever be the groups G, K. Thus, $H_n(G, K)$ is not equal to $\operatorname{Tor}_n(G, K)$, since $\operatorname{Tor}_n(G, K) = 0$ for every $n \ge 1$ and for every K, if and only if G is a torsion-free abelian group.

For the particular case where K = A(X), the presheaf canonically associated with the topological space X, we define the n^{th} homology group of X with coefficients in G as being

$$H_n(G,X) = [H_n(G,A(X))]_X.$$

The homology groups $H_n(G,X)$ do not, in general, coincide with the homology groups $H_n(X,G)$ defined in [3], as it is shown by the following example, using an idea in Hilton-Wylie [2, page 360]:

Let X be the subset of the Cartesian plane consisting of the set of points

$$\left(x,\sin\frac{1}{x}\right), \quad 0 < x \le 1$$
,

and the set of points

$$(0,y), \quad -1 \leq y \leq 1.$$

Then it is easy to show that, for any sheaf G over X,

$$H_0(G,x) \cong G$$
 while $H_0(X,G) \cong G \otimes G$.

It is natural to define the domain of the spread $(g_U)_{U \in \mathscr{U}}$ as being $\bigcup_{U \in \mathscr{U}} U$; it is an open set of X.

In the collection $\mathcal{O}(X)$ of open sets of X, we may introduce a topology as follows. Given $U \in \mathcal{O}(X)$ and $x_1, \ldots, x_n \in U$, let

$$\mathcal{N}_{x_1,\ldots,x_n}(U) = \{U' \in \mathcal{O}(X) \mid x_1,\ldots,x_n \in U'\}.$$

These sets constitute a fundamental system of neighborhoods of U for a topology in $\mathcal{O}(X)$, which may be said to be of Zariski type, since the closure of $\{U\}$ is equal to $\{U' \in \mathcal{O}(X) \mid U' \supset U\}$.

We may also define a topology on \mathcal{S} , in the following manner. Given $(g_U)_{U\in\mathcal{U}}\in\mathcal{S}$ and any elements x_1,\ldots,x_n belonging to the domain of $(g_U)_{U\in\mathcal{U}}$, let

$$\begin{split} \mathscr{N}_{x_1, \ldots, x_n} & ((g_U)_{U \in \mathscr{U}}) \\ &= \{ (g_{U^{'}})_{U \in \mathscr{U}^{'}} \in \mathscr{S} \mid \text{for every } i = 1, \ldots, n, \text{ there exists } U_i \in \mathscr{U} \cap \mathscr{U}' \\ & \text{such that } x_i \in U_i \text{ and } g_{U_i}' = g_{U_i} \} \; . \end{split}$$

Again, these sets constitute a fundamental system of neighborhoods of $(g_U)_{U\in\mathcal{U}}$ for a topology on \mathscr{S} . It is straightforward to verify that the mapping $\mathscr{S}\to\mathcal{O}(X)$ which associates with every spread its domain is a continuous mapping.

BIBLIOGRAPHY

- A. Grothendieck, Sur quelques points d'algèbre homologique, Tohoku Math. J. 9 (1957), 119-221.
- 2. P. Hilton and S. Wylie, Homology theory, Cambridge, 1960.
- G. Sorani and M. Vaccaro, Omologia a coefficienti in un fibrato, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 37 (1964), 387–395.

QUEEN'S UNIVERSITY, KINGSTON, ONTARIO, CANADA, NORTHEASTERN UNIVERSITY, BOSTON, MASS., U.S.A.