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COHOMOLOGY AND
HOMOLOGY OF PAIRS OF PRESHEAVES

P. RIBENBOIM and G.SORANI

We define the cohomology of pairs of presheaves. As a particular case,
we obtain the Grothendieck cohomology of a topological space with co-
efficients in a presheaf of abelian groups.

In the final section, we introduce the resolution of a presheaf by
spreads, which gives rise to a homology of pairs of presheaves; in par-
ticular is defined the homology of a topological space with coefficients
in a given presheaf of abelian groups.

1.
Let F={Fy,p,U} be a presheaf of abelian groups (or modules over a
fixed ring) over a topological space X.

For every open set U of X, let F|U denote the presheaf restriction of
F to U; the sheaf of germs of F|U may be identified with the restriction
to U of the sheaf of germs & of F, which we denote by & |U.

Let F={Fy,p,U}, C={Cyp,y,U} be presheaves of abelian groups over
X, and let ¥ be the sheaf of germs of C.

For every open set U = X, let M ; be the abelian group of all continuous
sheaf-homomorphisms of & |U into €.

If V= U are open sets, there is a natural homomorphism

p¥: My > My,

and it follows immediately that M = {M;,u;;U} is a presheaf, and even a
sheaf over X (see [1, p. 185]).

As it is well known, for every presheaf F over X, C ~> M(F,C) is a
left-exact covariant functor.

2.
In order to define the nth cohomology presheaf of a pair of presheaves,
let us recall the concept of canonical complex of a presheaf G.

Let & be the sheaf of germs of G, let C°=C%X,@) be the presheaf of
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(not necessarily continuous) sections of ¢, with the natural restriction
mappings y,U (for V<U open sets). There is a natural X-morphism
J°: @ —» C° let Z1=C"[j°(G) be the quotient presheaf and p°: C° — Z! the
canonical X-epimorphism; hence p°04j°=0. By induction, we define the

X-homomorphism  j»: Z» -~ (Cn»
and
X-epimorphism  pn: On —» Zn+1 |
where
Zn = Cn—l/jn—l(Zn-—l), on = CO(X’Zn) .

Putting d”=j"o0 p»-1, then 6" o d*1=0 for every n=1 and we obtain the
complex of presheaves:

(1) (oL s LNy L e

Since M is a left-exact covariant functor, we have a complex of pre-
sheaves:

(2) 0225 M(F,C% -2 M(F,0Y) -2~ M(F,0?) -2 ...,

because
6"odn1 =0 implies A"oA4"1 =0
for every n> 1.

DeriniTiON 1. For every n=0 the presheaf
H™F,G) = Ker4*/ImAn-1

is called the nth cohomology presheaf of the pair (F,Q).

If #, ¥ are sheaves of abelian groups over X, we define H*(%,%)
to be the sheaf of germs of the presheaf H*(I'(¥),I(¥)), where I'(¥),
I'(%) denote respectively the presheaves of sections of #, ¥. We call
H™F, %) the ntt cohomology sheaf of the pair (F,%).

We emphasize that we have used the complex (1) (instead of an
injective resolution of @); hence, there is no reason why H*(F,G) should
be the same as Ext"(F,QR), defined in [1, p. 187]. As a matter of fact,
if X is a space consisting of only one point, then F, @ are identified with
abelian groups, and

HYF,G) = Hom(F,G),
H™F,G) =0 foreverynzx1,

for all choices of F, @. However, Ext"(F,G@)=0 for all n= 1 and all groups
F, if and only if @ is a divisible group.

The following results may be proved in straightforward manner:
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ProrositioN 1. For every presheaf F over X, the functors
Gws>M(F,G) and G-~ HYF,QG)
are isomorphic.

ProrosiTioN 2. Let F be a locally free presheaf of abelian groups over X.
To each short exact sequence & of presheaves over X,

L 06 ZsG25G" >0,
there corresponds the long exact sequence £ of cohomology presheaves,
L 0——> M(F,¢") =5 M(F,G) -2~ M(F,q") -2
A, HY(F,q") X2 HY(F,0) 2> H(F,G") -2
A HYF,Q) X HY(F,G) -2 HYF,G") -2 ... .
The functor & ~ &L is natural.

By means of standard arguments, we are reduced to establish:

Lemma 1. Let F be a locally free presheaf of abelian groups over X.
For every n=0 the sequence

0— M(F,C'™) X" M(F,C*) 2 M(F,C'"")— 0
18 exact.

Proor. By the inductive definition of the presheaves C'?, C*, C''", it
is enough to prove the lemma for the case n=0. Since M(F,-) is a left-
exact functor, we need only to show that /7° is an X-epimorphism, that
is, for every open set U<X, and for every A" e [M(F,C'°)], there
exists 1 € [M(F,(C%], such that IT,°(1)=2".

Let V be an open set (perhaps empty), V < U, such that there exists
Ay, a continuous sheaf-homomorphism from & |V into %°, such that
IT,%2,)=4"01,U, where 1,V is the natural continuous sheaf-mono-
morphism from & |V into &#|U.

Let ze U, x¢ V. We shall show that there exists an open set W,
xe W< U, and a continuous sheaf-homomorphism

w: F|W—>E°
such that
Iy p) = 2" 0 iV .

By the hypothesis on F, for every z € X there exists an open set W,
ze WcU, and there exists a family S of continuous sections of &
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over W, such that if ye W, x € &, then « is, in a unique way, a linear
combination with integral coefficients

”n
o = > my8,(y), where s, €8.
k=1

In order to define uyy, let 2" 04,,U(s;(y)) be the germ of the presheaf C'*¢
which is represented by the triple

(tlc”’ Y, Wk”) ’

where t,”" € Oy, ye W, ’<W. Since = is epic, given the section
8, W' > %", there exists some section ¢,: W, - % such that
Fot,=t,".

With above notations, we define uy(x) to be the germ of C° repre-
sented by the triple

n n

( z mk tk’ Y, n Wk") .
k=1 k=1

Clearly, uy is fiber-preserving and on each fiber it is a group-homo-
morphism. By its definition, we have

Iy pw) = f oy = 2" 0 iy U
We show now that uy is continuous. Let be given the neighbourhood
0" of up(x), defined by

n

Smpt, € Cp®, ye W'c Nw,.

k=1 k=1

Since each section s, is continuous, given the neighborhood O, .
(where f;, € Fy.) of s,(y), there exists a sufficiently small neighborhood
Vy' of y,

Voll fad 'VII n WII ,

such that for every ze V", and for every k=1,...,n, the germ s,(z) is
represented by the triple (f},z,V"’). Let O be the neighborhood of «
defined by

(‘Pgo (kE ’mkfk) € F V.,") .
pw(0) < 0"
Indeed, if B €O, it is represented by the triple

n
(%K.," (kﬁlmkf k)’ 2, Vo") ’

Then
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where ze V", so
n
B =2 mys(2)
k=1

and by definition of uy, it follows that u,,(8) is the germ represented by

n
( > myly, 2, W")
k=1

and therefore py-(8) € O”.

fed) 7’0 co

!
Yyaw

F|VnW

N4
yow

We now consider the continuous sheaf homomorphism
Yraw = Ay © thaw — tw © Paw >
which followed by #° is 700 vy, =0. So
vyow € Kerll® = ImIT'?,
hence there exists a continuous sheaf-homomorphism

Voaw: FIVAW - €0

such that

- ’

7' 0 vyaw = Vpow -
For every continuous section s € S, the restriction of v}, ;08 to VAW
is a continuous section of the sheaf €'° over VnW. Since €' is a flabby
sheaf, there exists a continuous section ¢ of ¥’® over W, whose restric-
tion to ¥nW coincides with »},;y0s. We now define a continuous
sheaf-homomorphism
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vy o FIW > €0

as follows. If x € # | W has center y € W, then

n
o= mysy),
k=1

where s, € S, m;, € Z are uniquely defined; we put
n
v (&) = 3 myo(y) -

k=1

It is obvious that »;,’ is a continuous sheaf-homomorphism. Moreover
w ’
’ 'W _ ’
Yw o lyaw = Yyaw >

since the restriction of ¢, to VnW is equal to s;. It follows that

=10, W =10, W
@vyp+pw) o tpaw = T Vpaw + Bw tyaw

_ N A 4

= Vpaw + Bw tvaw = Ay tyaw -

From this, it follows that A, and &%’ 4+ uy, have a common extension
to a continuous sheaf-homomorphism

Avyw: F|IVUW - @0,
which is defined in the obvious way. Moreover
Iy whyyw) = X' 0 iy -

The preceding considerations are the essential part in the proof of the
lemma. Indeed, let us consider the family F of all couples (V,4,) where
V is an open set, V< U, and

Ap: F|\V > B°
is a continuous sheaf-homomorphism such that
ITAp) = A 0 ipU.

This family is not empty, by taking V=¢. We order F in natural way,
by letting
(V,2p) < (V',45)
whenever
VeV and Ay =Aipoiy .

Since F is clearly inductive, by Zorn’s lemma F has a maximal element,
which in virtue of our proof must be (U,iy). Thus ITy%Ay)=A4", and
this proves the lemma.
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3

We shall show that the Grothendieck cohomology of a topological
space X, with coefficients in a presheaf G over X, may be considered
as a particular case.

For every open set U< X, let A, be the ring of continuous functions
of U into Z. If V< U let p,,U be the restriction mapping. Thus A(X)=
{Ay,opU} is a presheaf of rings over X; let &/ be the sheaf of germs
of A(X).

It is clear that for every topological space X the presheaf 4(X)is locally
free.

TaEOREM 1. Let X be a topological space, let A= A(X) be the presheaf
of abelian groups associated with X (as it was defined above). Let G be
any presheaf of abelian groups over X. Then, for every integer n = 0, there
18 a natural isomorphism

X, G) = [HYA(X),G)lx,

where h™(X,G) denotes the ntt Grothendieck cohomology group of X with
coefficients in G.

Proor. Let

(|, LN JLLNY 5L LN
be the canonical complex of G. Let
0 - I'(X,0° 2 I'(X,01) 2 I'(X,02) 2 .

be the complex of abelian groups of global continuous sections over X,
which is induced by the canonical complex of @. By definition,

X,d) = Kery?/Imyn-1.
To prove the theorem, we first define a homomorphism
pn: I'(X,C") ~ [M(4,0M)]x

in the following way. Let « € &/ be the germ represented by (f,z,U),
where U is open in X, z€ U, fe Ay. If ce I'(X,C"), we define

ec): o - E"
™(c)(x) = f(x) o(x);

the mapping ¢"(c) does not depend on the triple which represents «.
The continuity of ¢g*(c) is easily established from the definition and the
fact that ¢ is a continuous section and f is a continuous mapping. Thus

by letting
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g*(c) € [M(4,0M)]x -
It is also clear that if ¢ € Kery” then
p"(c) € Kerdy™.

Indeed, if 6»: C» —» On+, if §n: ¥n —~ €7+ is the associated sheaf-homo-
morphism, then y»: I'(X,C") - I'(X,C"*1) is such that

(y™(0))(@) = "(c(x));
hence
(Ax™(9™(©))(x) = 6(p™(c)(x))
= &"(f(x) c(x))
= f(x) é"(c(x)) = 0

for every « € &, where « is the germ represented by (f,z, U).

It is immediate that if ¢ € Imy"-! then ¢*(c) € ImA4 y*-!. Moreover,
¢™(c) sends fibers into fibers and it is additive. Thus, ¢® is a group-
homomorphism and induces a group-homomorphism

o X,R) > [H4,0)]%
defined by
D*(c+Imyn-1) = ¢g*(c) + ImA "1,

We shall now show that @» is epic. Let

b+ImAaxn-1 e [HYA,G)]x,
where
beKerdy" < [M(4,C")]x -

Let xe X and let 1,€ 4 be the germ represented by (e,z,X) where
e € A with e(y)=1 for every y € X. The mapping ¢: X - €7, defined by
c(x)=b(1,), is a section and it is continuous. Indeed, consider O, v,
U’ open, h € Cy™, which is a neighborhood of ¢(x) for z € U’. Since b is
continuous, there exists a neighborhood O, y. of 1,, with ze U”,
g € Ay., such that (0, y.) <O, y.. Thus, since 1, € 0, - then (e,z,X)
and (g,z,U") determine the germ 1, and hence g(x)=1. Since g€ Ay~
by continuity there exists a neighborhood V of z, V< U’'nU", such that
g(y)=g(x) for every ye V. Now, if ye V then 1,€0, .. since (e,y,V)
and (g,y,U’’) define the same germ, for g(y)=g(x)=1=e(y) for every
ye V. Thus, if ye V then

cy) = b(1,) € b0y y) < Oy, p- -
Moreover,
¢ € Kery®.
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Indeed,
y™e) = dn o c(x) = 0" o b(1,) = Ax"(b)(1,) = O

since b € Ker4x™. To show that @” is monic it is enough, by the above
considerations to prove that ¢” is monic, and this is immediate.
Finally,
d™c+Imyn1) = b + ImA 1.

Indeed, if « is the germ defined by (f,z, U), then
g(e)(x) = f(z) o(x) = f(x) b(1,) = b(f(=) 1) .

Now, since f is continuous there exists a neighborhood V of x such that

f@)=f(z) for every ye V. Thus (f,x,U) and (f(x)e,z,X) define the
germ «, since o, U(f)=f(x) e. Thus ¢*(c)(c)="0b(«), hence also

on(c+Imyn-1) = b+ ImA -1,

So, we have proved that @" is an isomorphism for every =, and the
theorem is proved.

The cohomological dimension of a presheaf F is defined in the usual
manner. Thus, the cohomological dimension of the topological space X
coincides with the cohomological dimension of the presheaf 4(X) canoni-
cally associated with X.

4.
Let G={G@y,0rU} be a presheaf over X, let O(X) be the collection of
open sets of X. We shall consider subsets % < 0(X) satisfying:

(*) if VeUe%, then Ve%.

For every %, we consider the families (gy)y.q Where each g, € Gy,
and if V<U e % then o, Y(gy)=9p.
Each (9y)yeq is called a spread on % and it is therefore an element of
the projective limit
I<i_m Gy .

Let &, be the set of spreads on %, let & =UY, be the set of spreads.
We note that each &, =0, since it contains at least the zero spread.
Each % is an abelian group, defining the addition as follows:

G)vea + G Vvewr = Gu+9v )vea -

For every open set U<X let
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F U= @y Y >
Ue%
direct sum of the groups &, , where % runs in the set of allowable families
of open sets containing the given open set U.
If VU, let v,,V: F; > F, be the natural inclusion (if U € %, then
Ve%). Then F={Fy,7,Y} is a presheaf over X.
For every open set U,< X, we define ¢r;,: Fy;, - Gy, as follows:

n n
Pu, ( El (gu‘”)m%) = .Elg%)o;
1= 1=

Py, is a group-homomorphism and the following diagram is commuta-
tive:

PUo N
FUO > GUo
U U
(374 evy
F - @G
Vo Pvo Vo

where V< U, are open sets of X.
Now, we prove that each mapping gy, is epic. Indeed, let g € Gy, let

Uy = {V opensetin X | V<U,};
then %, satisfies

(*) (er"@)veas € Sa
and

(on[(QVUo(g))VG%o] =g.
Thus, we have the presheaf-epimorphism
F —~ G->0,

where ¢ =(¢y,)v,cox)- This gives rise, in the usual manner to a reso-
lution of G:

0 0
N/
.. K
A h3 he h [J
s> F, 2> F, 2> Fl——»Fo———»G»O,
N/ N/
K K

2 0
7N\ 7N\
0 0 0 0
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where K,=Kerg, F; is obtained from K, in the same way as F=F,
was defined from @, K,=Kerg,, and so on. We have Imh,=Kerg,
Imh,=XKerh,, and so on. If K is any presheaf, the resolution gives
rise, by means of the tensor product, to the complex

..—>F2®K —> F,QK ——-—>F®K—->G®K—>O
DEerFintTION 2. For every n =0, the presheaf
H,(G,K) = Kerh,[Imh,

is called the mtt homology presheaf of the pair (G, K).
As we did for the cohomology, we may also define the ntt homology
sheaf of the pair (%,X") of sheaves.

Let us note that if X is a space consisting of only one point, then G
may be identified with an abelian group and the resolution (1) becomes
trivial; then

H,(G,K) = GQK ,
H,(L,K)=0 foreverynzx1,

whatever be the groups G, K. Thus, H,(#, K) is not equal to Tor, (G, K),
since Tor,, (G,K)=0 for every n =1 and for every K, if and only if @ is a
torsion-free abelian group.

For the particular case where K =A(X), the presheaf canonically as-
sociated with the topological space X, we define the ntt homology group
of X with coefficients in G as being

H,(G,X) = [H,(G,4(X))]x -

The homology groups H,(@,X) do not, in general, coincide with the
homology groups H,(X,R) defined in [3], as it is shown by the following
example, using an idea in Hilton-Wylie [2, page 360]:

Let X be the subset of the Cartesian plane consisting of the set of
points

1
(x, sin—), O<xz=s1,
x

and the set of points
(0>y)’ _léyél-

Then it is easy to show that, for any sheaf G over X,
HyG,xz) ~ @ while HyX,0) =z GR4.

It is natural to define the domain of the spread (9y)y.q 88 being
Uyeq U; it is an open set of X.
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In the collection @(X) of open sets of X, we may introduce a topology
as follows. Given U € 0(X) and z,,...,2,€ U, let

v (U)={U'€0X) | 2,...,2,€U'}.

TlyeeesZn

These sets constitute a fundamental system of neighborhoods of U for a
topology in @(X), which may be said to be of Zariski type, since the
closure of {U} is equal to {U’' € O(X) | U'> U}.

We may also define a topology on &, in the following manner. Given
(9v)veq € L and any elements z,,...,7, belonging to the domain of

(9v)vea let

‘A/:;:g,...,xn((gU)Ue%)
= {gv')veqr € L | for every i=1,...,n, there exists U,e Z n ¥’

such that z; € U, and gy, =gy} -

Again, these sets constitute a fundamental system of neighborhoods of
(9v)veq for a topology on &. It is straightforward to verify that the
mapping & — O(X) which associates with every spread its domain is a
continuous mapping.
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