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NOTE ON WHITEHEAD PRODUCTS IN SPHERES

LEIF KRISTENSEN and IB MADSEN

1. Introduction.

The purpose of the present paper is to show that certain Whitehead
products of the form [«,,¢,] are different from zero; here «, €, ,,(S"),
and ¢, is the generator in 7, (8") represented by the identity mapping
1: 87 - 8%, The main results are contained in Theorems 1.3 and 1.8
below.

Many results in this direction have been obtained earlier (Whitehead,
Hilton, Toda, Adams, Barratt, Mahowald, etc.). Notably, [¢,,¢,1%0 for
n+1,3,7 and [t,,t,]=0 for n=1,3,7 (see Adams [1]).

For n=1, 3 and 7 we have mappings

(1) Srx 8m — 8n
of type (i,,t,)- The Hopf construction applied to (1) gives a mapping
S2n+l . §ny §n S(Sn) ,
and hence an element in m,, ,(S?t!). These elements are denoted 7,,
v, and og respectively. The suspensions of these elements are denoted
NpsVnsOn € Tpey(S8®), 1=1,3,7.
Let «,=n,, v, or o,. Then the mapping cone C, is a two-cell space
0,, = 8nU, envisl, §=13,7.
In mod2 cohomology of this space the Steenrod operation
Sqi+1: H™C,)) - H**++(C, )
is non-zero (see Steenrod [8]). We say that «,, is detected by Sg¢i+L
The determination of [«,,:,] in case «,=1n,,%,,0, has in most cases
been carried out by Mahowald [5]. Some cases still remain unsolved
(see (13) and Theorem 1.8 below). The method used here goes as fol-

lows:
Assume that [«,,:,]=0. Then there exists a mapping
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(2) Sntt x §n — Sn
of type (x,,¢,). The Hopf construction applied to (2) gives a mapping
(3) £ Semitl G4l
detected by a secondary operation
Qu(r) : H™(C)) ~ HP+i42(C)
where r=R(i+1,n+ 1) is the Adem relation
(4) R(i+1,m+1): Sgi+tSgn+l 4 Y (; 44, )Sqn+it2~i8gi = 0.
This is an immediate consequence of the following two theorems.

THEOREM 1.1. Let «, €n, ,(S%), +>0, and let [x,,:,]=0. Let
B € 7o 1411 (S™F1)

be the Hopf construction on some map S*+tx S™ —~ 8" of type (o ty)-
Then there 1s a CW-complex E of the form

E = (8nu, enti+l) y enti+l
with cup product pairing
H™(E)® Hr+i+\(E) — Hen+i+1(E)
an isomorphism. Also,
SE = Cgpyp s
where Sxvf is the mapping
Sovf: Grtitly §2n+i+l , Gnil

Hence there is a map Cp—~ SE inducing isomorphisms on cohomology in
dimensions different from n+1+1.

This theorem, we believe, is well known. A proof is given in Section 2
below. Let
(5) r: G8gntl+ 3 8gritiesdh g 358 +b =0,
be a relation in the Steenrod algebra, with excess ,d,>n+ 1 and excess

b>n+1. The element 4, ¢ appears as the middle term in the Cartan

formula for a:
A@) = TR +3 8y®8,+38"'®86 .

THEOREM 1.2. There is a secondary cohomology operation Qu(r) as-
soctated with the relation r in (5) taking the values
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0 if  degZ<mn,

Q@ =\ sar@y @) i degh=n.

This theorem is proved in [2] and in [3].

The relation 7 in (4) sometimes contains an unfactored term Sgn+i+2,
In these cases the operation Qu(r) is unstable, which means that it only
is defined in dimensions less than n+¢+2. In this range, however, it
commutes with suspension (for more details see [2]). In some of these
cases there are Adem relations r; of excess larger than »+ 1 such that
7' =r+3,7; has no unfactored term. Then

Qu(r') = Qu(r+Zr))

is a stable secondary operation, and [f] € mwa, 1441 (S™+1), defined in (3),
is detected by this operation.
If Qu(r') can be factored,

(6) Quir’) = Za;p;,

where a; € G (Steenrod’s algebra), y, is a secondary cohomology opera-
tion, and dega,>0, degy,>0, then Qu(r’) is zero in a two-cell space.
Hence we get a contradiction to the fact that Qu(r’) detects [f]. Our
assumption [«,,t,]=0 is consequently false, and we have proved that
(25 0] +0.

Information about the possibility of a factorization (6) can be obtained
from the cohomology of the Steenrod algebra Ext; * (Z,,Z,). It is a con-
sequence of results in Adams [1] that a factorization (6) exists if

Extfi’””’fz(Zz,Zz) =0,
This is the case when

n+i+2 F 2542 steZ.

Some new results in this direction are contained in Theorem 1.8 below.

In the present paper we are concerned with Whitehead products
[o¢ys b5 ], Where o, is detected by a secondary operation. The elements
we consider are (notation as in Toda [9])

Nn™ = Nps1lln € 'ﬂn+2(Sn)’ nz2,
ONp = Opi1fln € nn+8(Sn)v nzT,
vn2 = Vp43Vp € nn+6(Sn)> nz4,
(7) Gn2 = Op470n € Jtn+14(S'"), nz8,
ﬁn € 7Tn+8(Sn)7 n’g 6 ’
Wp € Tpyye(S"), n2Zl4,
én € 7'l:'n,+18(‘s'n)7 ng 12.
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The elements 75, wy,, &5 are Hopf constructions (see (3)) obtained from

5,51 = 0, [v13,05] = 0, [o33,09] = 0,
respectively.
The elements (7) are detected by stable secondary operations asso-

ciated with relations

R(2,2),

R(2,8) + R(4,6) ,

R(4,4),
(8) R(8,8),

R(4,6) + B(2,8),

R(4,14) + R(2,186) ,

R(8,12) + R(4,16) .

In the four composition cases this is well known. In the three Hopf
construction cases this follows from Theorem 1.1 and Theorem 1.2 as
explained above.

We shall show that [«,,¢,] is non-zero in a number of cases when «x,,
is one of the elements (7).

THEOREM 1.3. Let N denote the set of numbers given in Definition 1.4
below. Then we have:

2,3 (mod4),
—1 (mod4)
or n=2 (mod16),
[Pa2t,] = 0 tmplies n+9e€N or n=4,5,7 (mod8),
[0,%t,] =0 implies n+17€ N or n=9,11,15 (mod16),
[Ppst] = 0 implies n+11€N or n=—1 (mod4)
or n=—2 (mod16),
[wp,t,] = 0 tmplies n+19€ N or n=—1 (mod4)
or n=—2 (mod32),
[£,5¢,] = 0 implies n+21€N or n=—1 (mod8)
or n=—3 (mod32).

[7.2t,] = 0 implies n+5eN orn
[on,,t,] = 0 implies n+1leN or n

fom

This theorem can be strengthened by reducing the size of the set N
(see Remark 1.11 at the end of this section). Some of the results con-
tained in Theorem 1.3 have also been obtained by M. Barratt (using dif-
ferent methods).

DerinITION 1.4. By N we denote the set of positive integers of the
form 2¢4 244 2% for all triples (7,5,%k), ¢ <j <k, different from triples of
the form
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¢+ 1,k), k+it+3
(4,4,J+1),
(¢,04+2,0+2).

The proof of Theorem 1.3 is analogous to the proof in the case above.
We assume that [«,,¢,]=0 for «, one of the elements in (7). First we
shall see that the associated Hopf construction fe€ m,, ;,(S**) is de-
tected by a tertiary cohomology operation.

In Section 3 we introduce for each triple (a,b,c) of integers, with
2b>a and 2¢>b, a relation among relations,

R(G/, b,C) )

in the Steenrod algebra. These play the same role for tertiary operations
as Adem relations (4) play for secondary operations: To each sum
Y R(a,b,c) there is associated a tertiary operation. This operation might
be unstable in the sense that it is defined only in dimensions less than a
certain integer. It commutes with suspension whenever this makes sense
(for more details see L. Kristensen and I. Madsen [3]).

Let » and & be fixed integers and let

(9) R = SMa,b.j) Ra,ba+1+j), Aab,j)eZ,,

where the summation is taken over all triples (@,b,j) of non-negative
integers with a+b+j=Fk. Let

(10) r = 2A(a,b,0) R(a,b), a+b=1k,

determine a stable secondary operation (i.e. contain no unfactored term).
Then we have the following theorem which in a slightly more general
form was proved in [3].

TuEOREM 1.5. There s a tertiary operation Qu(R) associated with R in
(9) taking the following values on classes & annihilated by all primary
operations of degree ¢ with 0<it<k:

0 if deg® £ n—1,

QUBY®) = our)@)-2  if degh =

where Qu(r) is a secondary operation associated with r in (10).
It follows from Theorem 1.1 and Theorem 1.5 that the Hopf construc-

tion [f] € 7y, 4441(S™) associated with [x,,t,]=0 is detected by tertiary
operations associated with
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R(2,2n+1),

R(2,8,n+1) + R(4,6,n+1),

R(4,4,n+1),
(11) R(8,8,n+1),

R(4,6,n+1)+ R(2,8,n+1),

R(4,14,n+1) + R(2,16,n+1) ,

R(8,12,n+1) + R(4,16,n+1) ,
respectively. We shall prove Theorem 1.3 in one special case; all other
cases are similar. Let us show that

Pprtn] £ 0 for n=2 (modl6) and n+11¢& N .

We assume [#,,t,]=0. The Hopf construction [f] €7y, .o(S"*1) is, by (11),
detected by a tertiary operation associated with

(12) R = R4,6,n+1)+ R(2,8,n+1).
This operation is not stable. The reason for this is that terms of the form
Sq* 8q? Sq° are involved in (12). However,

R =R +R2,7,n+2)+ R(1,8,2+2), n=2 (modl6),

determines a stable tertiary operation Qu(R), which also detects [f] e
Ton+9(S™1). That R is stable is shown in Section 3. To complete the
proof we need only show that Qu(R) is zero in a two-cell space. Since
n+ 11 ¢ N, thisis animmediate consequence of the following two theorems.

TaEOREM 1.6. If n & N (see Definition 1.4), then
Ext}"(Zy,Z,) = 0.
This theorem is contained in Novikov [6].
THEOREM 1.7. Let
R = 3A(a,b,c) R(a,b,c), a+b+c=n, Ala,b,c)eZ,,
be a stable relation among relations, and let
Ext}"(Zy,Z,) = 0.
Then there is a factorization of the form
Qu(R) = Z8;y; ,

with a; € G, dega,; >0, and y, a tertiary operation with degy;>0, valid on
classes annihilated by all stable primary and secondary operations.

This is a generalization of a theorem on secondary operations due to
Adams [1, Theorem 3.7.1.]. See also [4].
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We now return to the case [o,,:,]. Here we have

THEOREM 1.8. The Hopf mapping o, € 7, .,(S*) has the property
[Opotal £ 0 if n=20—-7,424 or¢ n=2-5 i>5.

The proof is given in Section 2. There is (to the best of our knowledge)
still open questions in connection with [«,,t,], x,=%,, ¥, Or 6,,:

For n=2¢—3, 25, is [v,,1,]=0 or #0? Also, is [0pg,t57]=0 or #01
The following is known:

[Mpstn] = 0 for n=2,6, and for n= —1 (mod4),
[Mpstn] = 0 otherwise ,

potn] = 0 for »=5,13, and for n= —1 (mod8),
Ppstn] = 0 if m=—1 (mod8) provided n42t—3, {25,
[64st,] = 0 for =11 and for n= —1 (mod186),

[0psty] = 0 if n=—1 (mod186) provided n411,27.

(13)

In the cases
[Mstn] = n=-—1 (mod4),

0,
Ppstn] =0, nmn=-—1 (mod8),
[6ptn] = 0, m=-—1 (modl6),

the Hopf constructions
h(nn) € n2n+2(Sn+1)7 h(vn) € ﬂ2n+4(Sn+1)7 k(an) € n2n+8(Sn+l)
are detected by unstable operations associated with

qu Sqn+1 + Sqn+2 Sql + Sqn+3 =0 s
Sq4 Sq'n+l + Sq‘n+3 SqZ + Sqn+4 Sql + Sqn+5 =0 s
SqB Sqn+l + Sqn+5 Sq'l + Sqn+7 Sq2 + Sqn+8 Sql + Sqn+9 =0.

These operations cannot be stabilized in the sense described earlier. The
suspensions

Sth(n,), =1,

Sth(v,), =3,

Sth(o,), =7,

are detected by the same operations. Hence, they are different from zero.

Note that Sh(z,), S*h(»,) and Sh(c,) are detected by the same opera-
tions as the Whitehead products [t,.s,t,40]s [tntartnsal ADA [t,18, 048]
See [2] and [1'].

REMARK 1.9. If [¥5,99] =0, the Hopf construction gives an element

Bp € Tipsga(S™), n230,
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detected by a stable secondary operation associated with the relation
R(4,30) + R(2,32) .
The same methods as those used above show that
[@pst,] =0 if n+35¢N, n=—1 (mod4) and n== —2 (mod64).
If [647,t5;]1=0, the Hopf construction gives an element
Gy € 7pasa(S™), n=28,

detected by a stable secondary operation associated with the relation

R(8,28) + R(4,32).
Here we have

[Gpotn] =0 if »+37¢N, n=—1 (mod8) and n% —3 (mod64).

We conjecture that

[w,,t,] =0 if = —1 (mod4) or n=—2 (mod32),
[@p,t,] =0 if =—1 (mod4) or n=—2 (mod64),
(£t ] =0 if m=-1 (mod8) or n= -3 (mod32),
[Gpstn] =0 if n=-—1 (mod8) or n=—3 (mod64).

REMARK 1.10. The case of [7,,t,] is somewhat exceptional, since there
are two elements, o and #, in 8-stem, detected by the same secondary
operation. Hence the similar conjecture

[Pt =0 if n=-1 (mod4) or n=—2 (mod16),

is more doubtful. In fact, S. Thomeier claims a counterexample in a low
dimensional case.

REMARK 1.11. The results of Theorem 1.3 can be strengthened.
From the results in [4] it follows that a stable tertiary operation of
degree i can be factored in some cases even if Ext ™2(Z,, Z,) is different
from zero (cf. Theorem 1.7). It can be factored if the differential

dy: Extd™2(Z,,Z,) — Ext33(Z,,Z,)

of the Adams spectral sequence is injective. Using Novikov’s result [6],
we can reduce the set N (Definition 1.4) a good deal.

REMARK 1.12. There is an element y € 7, (S3!) with 2y =[tg;,¢5,], and

[Yprtn] = 0 implies 7+33eN or n=19,23,31 (mod32).
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Here y,, € 7, .3,(S™) is the suspension of y. It is detected by a secondary
operation associated with E(16,16).

The existence of y follows from the fact that h,* is a permanent cycle
in Adams’ spectral sequence (k2 is a permanent cycle if and only if
[tgi_z,t9i_1] can be halved).

We would like to thank M. Barratt and S. Thomeier for information
on the Whitehead product. We would also like to thank H. A. Salo-
monsen for the great help he gave us in connection with stabilizing
tertiary operations (see Section 3). The algebraic computations involved
were carried out on a computer. The details are contained in mimeo-
graphed notes [7].

2. Proof of Theorems 1.1 and 1.8.

Proor or THEOREM 1.1. Let T'=(X,Y; f) be a triple consisting of a
pair (X,Y) of CW-complexes and a cellular mapping

f:Y~Z
between CW-complexes. We can construct a CW-complex
WT)=W=27ZuX
from ZUuX by identifying y and f(y) for all y€ Y. Mappings
ZAWi XY
are obtained in an obvious way. A mapping between triples
9: (X, Y;f)~ (XY f)
consists of continuous mappings

gl: (_X’Y)_)(XI’YI)’ g2: Z"*Z’
with
y—{ .z

lyz

Y——Z7'

g1

commutative. A mapping g: (X,Y;f) > (X', Y’; f') induces a mapping

9: ZU X -7 up X'
such that the diagram

Math. Scand. 21 — 20
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z—sw-A.yy
lgz ly [
[ 7’ v
Z/__‘_> W’—*—‘"‘)X,/ Y’

is commutative.
Let

f: Srtix Sn—» §n
be the mapping given in Theorem 1.1. We consider the triples

T = (entitlx §n, Sn+ix 8n; f),
T1 = (en+i+ly Sn Qn+iy Sn. fl) ,
T, = (S(en++1x §%), S(8™+ x S%); 87)

where f; is obtained from f by Hopf construction,

fy: Srtingn > S8

A mapping h: T, — T, is obtained from
h’l : entitly Qn S(e’n+i+l X Sn) ,
1=h,: 88" - 88",

where h, is obtained by Hopf construction from the identity

1: enti+lx Sn 5 gnti+l x §n

We put E=W(T). 1t is easy to see that £ has the cohomology struc-
ture specified in Theorem 1.1. Also C,= W(T,), and

h: W(T,) > W(Ty) = SW(T)

induces an isomorphism on homology in dimensions different from
n+t+1. The inclusion C, — W(T') induces an isomorphism on homo-
logy except in dimension 2n+:+1. Hence there is a mapping
Cgap—~ SW(T) inducing isomorphism on homology in all dimensions.
This mapping is, consequently, a homotopy equivalence. This proves
Theorem 1.1.

Proor or THEOREM 1.8. Let r and s be the following two (stable)
relations in Steenrod’s algebra

r = R(8,20—86) + R(4,2¢—2):
Sq(8) Sq(2¢—6) + Sq(4) Sq(2¢—2) +
+ S8q(2¢—1) Sq(3) + Sq(2¢—2) Sqg(4) = 0, 24,
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s = R(8,2¢—4) + R(4,2%):
Sq(4) 8q(2°) + Sq(8) Sq(2'—4) + Sq(2%) Sq(4) +
+ Sq(2¢+2) 8q(2) = 0, 25.
According to Section 1 we have to show that secondary operations
Qu(r) and Qu(s) are zero in a two cell space. The relation r contains no

term Sq*Sq® with both a and b a power of 2. Hence there is a formula
([4] Lemma 3.3)

Qu(r) = Xa,Qu(r;), &,€G,dega;=1.

The operation Qu(s) is nothing but the Adams operation @, ,; for :>5
this can be factorized in a sum of products of secondary operations
([4, Theorem B]), and the proof is completed.

3. Steenrod’s algebra.
Let us consider symbols of the form

(14) Sq*R(b,c), R(x,0)8¢,
with a,b,c,x,f and y non-negative integers satisfying 2¢>b and 28> .
We shall say that

Sq*R(b,c)
R(x, ) Sq”

az=2b,
Bz2y.

Other elements (14) are called inadmissible. Let ¥V, (V,) be the Z,-vector
space generated by admissible (inadmissible) symbols (14). The vector
spaces V, and V, are graded by

(15) } is admissible if {

deg(Sq?R(b,c)) = a+b+c,
deg(R(x,8)8¢") = « +p + 7 .
Let F denote the free associative algebra (without unit) generated by
symbols S¢%, a=0,1,.... We define mappings
d: V,->F, v=a,,
by (cf. (4) in Section 1)
d(Sq*R(b,c)) = 8Sq*(Sq>S¢° + Z(557)8¢+~78¢) ,
d(R(x,B)8q") = (Sq*Sq’ + 2(°257) Sq+#-18¢7) S .

Let I = (44,%,. . -,%,) be a sequence of non-negative integers. The excess
of 1, excl, is defined by
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excl = max;{i;— (4;43+ 09+ ...)}.
We put
exc(Sq?R(b,c)) = exc(a,b,c),

exc(R(«x,8)Sq") = exc(«x,B,7) -

Lemma 3.1. The kernel af the mapping d: V, — F is equal to zero.

Proor. Let
(186) Y A(s,t,u) Sq® R(t,u) + 3 4(s,¢,u) B(s,t) Sq* € V,
be a homogeneous element in the kernel of d. The functions 4 and é
are defined on all triples (s,¢,%) of non-negative integers, and take values
in Z,. They have to satisfy some obvious conditions in order that (16)
belongs to V,. We order triples (s,#,u) lexicographically from the right.
Let (8q,tg, %) be the largest triple in A-1(1). The term Sg® Sq‘Sg“
appears in d(3(left)) (see (16)). Hence it must appear in a term of the
form d(R(sy+ty—y,y) Sg*°). Thus there is a y such that

O(So+to—y,y,uy) = 1.
We have s,= 2t, and 2y > s,+t,—y. Hence y>¢, and
(S0stos %) < (So+to—¥,Y %) S (S1,81,%4) 5
where (s;,¢;,%,) is the largest triple in 6-1(1). Similarly one sees that
(Sos%0s o) > (S1,85,%y) -

This implies that A=4=0, and the lemma is proved.

THEOREM 3.2. Let a, b, ¢ be non-negative integers with 2b>a, 2¢>b.
There is a unique element R e V, such that
(17) R(a,b,c) = Sq®R(b,c) + B(a,b)Sq¢° + R,
18 in the kernel of d: V=V, BV, F. All terms in B have excess larger

than or equal to c.

Proor. Uniqueness is an immediate consequence of Lemma 3.1. The
rest of the proof is omitted. One constructs R by a repeated application
of Adem relations.

An element

8 = Z8¢°(ZR(t.w)) + Z(ZR(x.p))Sq"

in V is called stable if each s and y is larger than zero.
Let a, b, n be positive integers. We say that R(a,b,n) can be stabilized
if there is a function A taking values in Z, such that
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S = R(a,b,n) + I As,t,u) B(s,t,u), (s,{u)>(a,b,n),

is stable; the ordering (s,f,n) > (a,b,n) is lexicographical from the right.
Use of a computer yields

Lemma 3.3. R(a,b,n) can be stabilized in the following cases:
Fora=4,b=4and nz5 if

n % 0,5,6 (mod8),
fora=4,b6=6 and n=6 if

n = 0 (mod4) and n = —1 (mod16),
for a=8,b=8 and n=9 if

n = 0,10,12 (mod16),
Jora=4,b=14 and n=10 if

n = 0 (mod4) and n = —1 (mod32),
for a=8, b=12 and n =11 if

n %= 0 (mod8) and n = —2 (mod32),
for a=4, b=30 and n=15 if

n %= 0 (mod4) and n = —1 (mod64),
for a=16, b=16 and n =14 if

n %= 0,20,24 (mod32) .

As mentioned in Section 1, the details are contained in [7]. As an
example, we state the results for a=4, =6 in more detail:

Lemwma 3.4, The following expressions are stable:

+R
R(4,6,n) + R

1,8,n4+1)+R(1,6,n+3) ¢ n=7 (modl6),
2,8,n)+ R(2,2,n+ 6) if n=9 (modl16),

R(4,6,n) + R(2,8,n) if n=1 (mod16),
R(4,6,n) + R(3,7,n) + R(2,8,n) if n=2 (modl16),
R(4,6,n) + R(2,8,n)+ R(2,7,n+1) +
+ R(1,8,n+1) if n=3 (mod16),
R(4,6,n) + R(2,8,n) if n=5 (mod16),
R(4,6,n) + R(3,7,n) + R(2,8,n) if n=6 (mod16),
R(4,6,n) + R(2,8,n)+ R(4,5,n+ 1)+
(
(
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R(4,6,n) + R(3,7,n)+ R(2,8,n) +

+ R(1,9,n)+ R(5,4,n+ 1)+

+ R(4,5.n+ 1)+ R(1,8,n+ 1)+

+R(3,4,n+3)+

+ R(1,6,n+3)+R(2,2,n+6) ¢ n=10 (mod16),
R(4,6,n) + R(2,8,n)+ R(2,7,n+ 1)+

+ R(1,8,n+ 1)+ R(4,4,n+2)+

+ R(2,3,n+5)+R(1,4,2+5) if n=11 (mod16),

R(4,6,n) + R(2,8,n)+ R(2,6,n+2) if n=13 (mod186),
R(4,6,n) + R(2,8,n)+ R(4,5,n+1)+

+ R(2,6,n+2) if n=14 (mod16),
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