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FAREY TRIANGLES AND
FAREY QUADRANGLES IN THE COMPLEX PLANE

ASMUS L. SCHMIDT

1. Introduction.

An important tool in the theory of approximations of real numbers is
the well-known Farey fractions. An extensive treatment of the basic
properties of Farey fractions was given by Hurwitz [5]. Later they were
used successfully in solving both homogeneous and inhomogeneous ap-
proximation problems by Khintchine [6] and Niven [7]. In fact, as is
stressed by Niven in his interesting monograph [8], Farey fractions can
for many purposes replace the application of regular continued fractions.

Inspired by some remarks made by Hurwitz at the end of the paper [5]
mentioned above, Cassels, Ledermann and Mahler [2] studied, as a gen-
eralization of the real case, so-called Farey sections in the complex plane
for the two imaginary quadratic number fields Q(¢) and Q(7 3).

In the present paper we shall consider a generalization of Farey frac-
tions to the complex case along rather different lines. The theory of
Hurwitz and Khintchine referred to above is in fact mainly concerned
with what might be called Farey intervals, ie. closed intervals
['/a’.p"[q"] with p',p".q¢".q" €Z, ¢',¢"">0 and p"¢'—p'q” =1, and it
turns out that the proper generalization of Farey interval — at least in
the cases Q(imt), m=1,2,3,7 — are the notions of Farey triangle and
Farey quadrangle as defined in section 2. The basic properties of Farey
triangles and Farey quadrangles in Q(imi), m=1,2,3,7, are developped
in sections 3-5.

In sections 6-8 we shall apply Farey triangles and Farey quadrangles
in an investigation of the approximation spectra in the cases Q(im?),
m=1,2,3,7. Here the approximation spectrum in case Q(im!#) is the set
of all approximation constants C(£), where C(£) for any & ¢ Q(imt) is
defined as

(1) C(¢) = lim sup(lq| g5 —pD*,

the limsup being taken over all algebraic integers p,q € Q(¢mt), ¢ 0.

Received September 1, 1966.



242 ASMUS L.SCHMIDT

For Q(im?), m=1,2,3,7, we shall find all approximation constants
C(¢)<ec,,, where

¢;=180..., c,=11733, o0,=190..., ¢, =175,

the result being
3t 2t and 3%, 13% 8% and 3%,
respectively.

For each of the approximation constants, except 3% in case Q(z2t%), the
set of complex numbers having the respective approximation constant
consists of one single equivalence class of complex numbers, & being
equivalent to % in case Q(im?), when

_an+b

2 -1
(2) en+d’

where a, b, ¢, d are algebraic integers in Q(¢m?) and |ad —bc|=1.

In the case Q(i2%) the set C-1(3%) consists of two distinct equivalence
classes of complex numbers.

Each of the seven equivalence classes of complex numbers involved
above has a simple characterization in terms of Farey triangles and
Farey quadrangles.

The approximation spectra in the cases Q(imt), m=1,2,3,7, have
been studied previously by several authors.

The first case to be considered was Q(7), where the first minimum of
the spectrum was found independently by Ford [3] and Perron [9] and
was shown to be isolated by Cassels [1], however without any definite
lower bound for the second minimum.

In the case Q(¢3%) the first minimum was found by Perron [10], the
second and third minima, 2 and (3 3!)! respectively, were found and
shown to be isolated by Poitou [12], so in this case our result does not
contain anything new, the proof, however, is extremely simple.

In the cases Q(z2%) and Q(¢7¢%) the first minima were found by Perron
[11] and Hofreiter [4], but no information of the approximation spectra
beyond the first minima has been known so far. The determination of
the second (isolated) minima in these two cases thus represents the major
contribution to the theory of approximation spectra obtained in this paper.

Finally it should be mentioned that the first (isolated) minimum in the
approximation spectrum of quaternions with Hurwitz’ definition of
integral quaternions can be found by means of Farey simplices in a way
completely analogous to the case Q(i) considered in this paper. A sepa-
rate paper on the approximation of quaternions will appear later in this
journal.
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2. Farey triangles and Farey quadrangles. Unimodular homographic
maps.
In the imaginary quadratic number field Q(¢mt), m being a squarefree
positive integer, Z(im?) denotes the ring of algebraic integers, i.e.

(3) Z(im?) = {a+bw |a,be Z},
where

_ [ imd, m = 1,2 (mod4) ,
(4) @= 3(1+im?), m = 3 (mod4).

Before introducing the fundamental notions of Farey triangle and Farey
quadrangle, it will be convenient to consider the related concepts of
Farey matrices.

DEeFINITION 1. 4 2 X 3 matrix

(5) (pl y2 ps)
91 92 43
18 called a Farey matriz in Q(im?), if p;,q; € Z(imt), 1 £j<3, and
(6) |P192— P29 = P13 — P31l = |Paqs— P3| = 1.
A 2 x4 matrix
(7) (pl P2 Ps P4>
91 92 93 9a

18 called a Farey matriz in Q(imt), if p;,q; € Z(im}), 1554,

(8) P12 — P21l = |P295— D3l

= |Psqs—Palsl = |Psd1—P1%l =1,
and if
(9) 4, = |P193— Pl Ay = |P2qs— Pagsl
satisfy the requirements
(10) 4;, >0, j=1,2,

The Farey matriz (7) is said to be of type (4,,4,), and is called Ptolemaic, if
(11) A1A2 = 2 .

It should be noticed, that any permutation of the rows and columns
in a 2 x 3 Farey matrix leaves it a Farey matrix. On the other hand the
permutation of the rows but in general only those permutations of the
columns of a 2 x 4 Farey matrix, that keep or reverse the cyclic order,
will leave it a Farey matrix (of the same or the reversed type).
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Similarly multiplication of each row and each column in a Farey
matrix by a unit in Z(im?) leaves it a Farey matrix (of the same type).

DErFiNiTION 2. Two 2x3 Farey malrices (2x4 Farey mairices) in
Q(¢mt) are called associated, if one is obtained from the other by a permuta-
tion of the columns keeping or reversing the cyolic order together with a multi-
plication of each column by a unit in Z(im?).

It is easy to see, that there are only finitely many different types of
2 x 4 Farey matrices. In fact, if for example ¢, =0, then by (8), (9) and
(10)
[P1gal = |P19al = 1, 4, = |p1gs| > 0,

and since p;,q; € Z(¢mt), 1 £j <4, this means that

(12) [Pl = lgal = lgal =1, 4y, =g > 0.

Hence ¢,,95,9,+0. Using (8), (9) and (12), the triangle inequality applied
to the three points p,/q,, Ps/qs, Ps/qs in the complex plane yields the
inequality 4, < 2/|g;|, which together with (12) proves

(13) 4,4, £ 2.

However, the inequality (13) holds for any 2 x 4 Farey matrix, since it
follows immediately from (8) and (9) using Ptolemy’s inequality to the
four points p,/qy, Pa/qds, Ps/ds, Ps/ds in the complex in case g;+0,
1<j=<4. By (13) and

(14) 4; = (N(z))t, 2z eZ(mb), j=1,2,

where N(z;) =2;Z;= |2,/ denotes the norm of 2; in Q(im!), there is only
a finite number of types (4,,4,) of 2 x 4 Farey matrices.

In order to give a precise description of the Farey matrices existent
we shall make use of the group of unimodular linear maps

a9 o (2= a)(C)

of Z(imt) x Z(im?) onto itself, where a,b,c,d € Z(im?) and

(16) lad—be| = 1.

If &((n,0)) =(p,q), D((',¢"))=(p",¢'), then by (15)
pp\ _[(ab\(zan

(17 (q q’) B (c d)(e e’)’

hence by (16)
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(18) lpg’ ~p'q| = |me"—7'0| .

An immediate consequence of (18) is that a unimodular linear map of
Z(tm?) x Z(im?) onto itself in a natural way maps a 2 x 3 Farey matrix
onto a 2 x 3 Farey matrix and a 2 x 4 Farey matrix onto a 2 x 4 Farey
matrix of the same type.

Conversely we have the following important result:

THEOREM 1. Any 2 x3 Farey matriz in Q(im?) is associated with a
2 x 3 Farey matrixz of the form

(a)ora):
(¢ a)

18 a unimodular matriz over Z(im?¥).
Any 2 x 4 Farey matriz in Q(im?) is associated with a 2 x 4 Farey matriz

of the form (a b)(l 0 7 n4)
¢ d/\0 1 g5 0,/ °
(¢ a)
cd
18 a unimodular matrix over Z(imt), and where
(o %)
03 04
equals one of the following matrices:

(5) (15 = e,

1 144 11—
1 1)U 1

)
R
)

where

where

’ (Al’Az) = (1'2*): m=1,

1
G ? , (dpdy) = (1,2), dllm,
(11, I.IH.)’ (41, 4y) = (24,2}), m=1,
(clb al))’ (41, 4,) = (21,2), m=2,7.

Math, Scand. 21 — 16
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CorOLLARY. The types (4,,4,), 4,5 4,4, of 2 x 4 Farey matrices actually
occurring, are the following:

lm =1 (1,24, (1,2), (24,2},
m=21T: (1,2), (2t,2%),
(19) m = 3: (1,1), (1,34, (1,2),

m+ 1,2,3,7: (1,2).

Proor. Let the 2 x 3 Farey matrix given have the form (5). Then

(pl fpz)—l (Pl Dy Pa) - (1 0 7‘)

71 92 91 92 9s 01¢)/)’

where by definition 1 and (18) |n|=]g]=1, that is, m,0 are units in
Z(imt), and hence the Farey matrix (5) is associated with

(Pln y 214 Pa) — (Pl“ Pz@) (1 0 1) .
N7 920 93 a7 g0/ \0 11
Let the 2 x 4 Farey matrix given have the form (7). Then
P1 P2\ (D1 P2 Ps Pa (1 0z a
(20) = . )
% 9 4 93 93 s 0lege
where by definition 1 and (18)
@) ml=lel=1 lel=4y W|=4y lne'—7el=1.
Since any 2 x 4 Farey matrix is associated with a 2 x 4 Farey matrix of

type (4,,4,), 4, <4,, we may as well assume that (7) satisfies this condi-
tion.

First let 4, =1, then by (20) and (21) the Farey matrix (7) is associated
with

(Pxn P20 Ps p4QQ'_1) — (pﬂ‘ PzQ) (1 01 0‘)
G 920 9 ace’ %17 g0/ \0 11 1/)7

where, by (18), x =a-1gp'-1n’ satisfies the conditions |x|=4,, |x—1|=1,
and since 4,=4,4,<2 by (13), it follows that « =z, in one of the first
four cases listed in the theorem.

Secondly let 4,=2% then also 4,=2t by (13) and our assumption
4,=4,, and hence, by (14), m=1, 2 or 7.

m=1. By (20) and (21) the Farey matrix (7) is associated with

(Pr"‘ Peo(1—1)1 Py pw(l—z:)*‘e'—l) (pln pze(l—z:)‘l)(l o 1 ﬂ)’
Qi ga0(1—19)71 g3 guo(1—1)"1e"? ¢ 7 gao(1—4)1/\0 1 1—2 1

where, by (18), f=n"1p(1 —4)-9'-In’ satisfies the conditions |f|=2t,
[(1-2)f—1]|=1, and hence f=1+1.



FAREY TRIANGLES AND FAREY QUADRANGLES ... 247
m=2. By (20) and (21) the Farey matrix (7) is associated with

(22) (Pl" nga:)‘l D3 p496'£>"19"1) - (Pl"‘ szCT)_l) (1 01 7)

017 2007 gy geed 't B 4207 /\0 1 & 1)’
where, by (18), y=n"low~l9'-ln’ satisfies the conditions |[p|=2t,
|@y —1|=1, and hence y=w.

m="7. By (20) and (21) the Farey matrix (7) is associated with (22)
or with
(pxﬂ D200t Py p4ew‘le"‘) — (Pl” 1729‘”—1) (1 01 5)
Q17 G200t g3 gyt @17 001/ \0 1 w 1/°

In the first case y=nlpd'p'~ln’ satisfies the conditions |y|=2t,
|@y —1|=1, and hence y=w. In the second case d=n"lgw-tp'~1x’ satis-
fies the conditions |6| =2}, |wd—1|=1, and hence d=&. However, since

the Farey matrix
101 @
(Olw l)’
is associated with
® -101\ /& ~-1\/101 w
(1 0 lw)’(l 0)(01@ 1)’

the result indicated in the theorem follows in both cases.
This completes the proof of theorem 1.

The corollary, which follows immediately from theorem 4, shows the
interesting fact, that non-Ptolemaic 2 x 4 Farey matrices occur only for
m=1,3.

TrrOREM 2. In a Plolemaic 2 x 4 Farey matriz the following norm rela-
tions hold
(23) 42{N(g2) + N(g2)} = 2{N(q,) + N(gs)} »

(24) 42 {N(g,)+N(gs)} = 2{N(gs) +N(gy)} .

Proor. Of course, by the defining relation 4,4,=2 of a Ptolemaic
2 x 4 Farey matrix the two relations (23) and (24) are equivalent, so we
need only prove one of these relations.

Suppose first that for example N(g,)=0, then by (12)

N(@)+N(gy) = 2, 4,2 = N(g),
which proves (23).
Suppose next that ¢;+0, 1 <j <4, then the quadrangle in the complex
Plane with vertices p,/q;, Pa/qs> Ps/q3s Ps/qs i8 convex and inscribable in
a circle (or equals a line segment) by Ptolemy’s theorem, which is ap-
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plicable since 4,4,=2. Hence we get the following two expressions for
2 cos 4,, where 4, is the angle in this quadrangle at p,/q,:

4,°N(q,) _ ( ) _ ( ) _ _AI2N(QZ)’

1915 915!
whence (23).

DrerFiNiTION 3. 4 Farey triangle ¥T (p,/qy, P[0, Ps/qs) in the complex
plane in the case Q(imt) is the convex hull of three points p;lq;, q;+0,
1 <7 <3, such that the corresponding matriz (5) is a 2 x 3 Farey matriz in
Qlimd).

A Farey quadrangle FQ(p,/q1, Po[qs, Ps/q3: Pa/2s) in the complex plane in
the case Q(imt) is the comvex hull of four points p;lq;, ¢;+0, 1554,
such that the corresponding matriz (7) is a 2 x 4 Farey matriz in Q(im?),
and such that the polygonal line p,/q,, Ps/qs, Ps/qs> Pal9s> P1/41 i8 the fron-
tier of the convex hull (counted twice when the convex hull degenerates to a
line segment).

qs

N1 %
4

ds

@
q3

g3
4

By definitions 1, 2 and 3 a FT corresponds to a number of classes of
associated 2 x 3 Farey matrices having no zero in the second row, and
conversely every class of associated 2 x 3 Farey matrices having no zero
in the second row defines a FT.

Similarly a FQ corresponds to a number of classes of associated 2 x 4
Farey matrices having no zero in the second row. The converse holds
only partially in this case due to the convexity property posed on a FQ
(for approximation reasons that become clear in sections 6-8). However,
it should be noticed that every class of associated Ptolemaic 2 x 4 Farey

l+w
1

=8

= o
]

Fig. 1.
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matrices having no zero in the second row defines a FQ, since the con-
vexity property follows automatically in the Ptolemaic case.

We shall now point out, as was mentioned already in the introduction,
why the cases m=1,2,3,7 are of particular importance.

In figs. 1-2 the fundamental parallelograms in the complex plane
spanned by 1 and w are subdivided into 4 FI’s in the case m=1 and
into 2 FT’s in the case m =3, and hence the whole complex plane can
be subdivided into FT’s in these two cases.

72 1+3
1 1
1
1—3
0 1
1 1

Fig. 2.

Similarly in figs. 3-4 the fundamental parallelograms are subdivided
into 6 FI’s and 4 FQ’s of type (2%,2%) in the case m=2 and into 2 FT’s
and 2 FQ’s of type (2%,2%) in the case m =7, and hence the whole complex
plane can be subdivided into FT’s and FQ’s of type (2},2!) in these two
cases.

By theorem 1, any FT corresponds to a 2x 3 Farey matrix of the
form

(pl 2 p1+P2) )
G 92 91t

From definition 1, p,/q;, Ps/q2, (P1+P2)/(¢1+9;) are in lowest terms
(even in the case, where Z(im?!) is no unique factorization ring). Now
the representation in lowest terms of a number in Q as a fraction p/q with
P.q € Z(im}) is unique apart from multiplying the numerator and the
denominator by the same unit in Z(im?), especially if m=+1,3, the
only units in Z(im?) being +1, a representation in lowest terms must
have p,q € Z.
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o 1+
1 1
-1+0 2
l+w 1l—-ow
1 14w l-w
—_— 2 -
1 w
l—-w 1+w
0 1
1 1
Fig. 3.

It follows from these remarks that every FT in case Q(imi), m+1,3,
having two vertices on the real axis degenerates to a line segment.
Consequently the fundamental parallelograms cannot be subdivided into
FI’s for m+#1,3. .

Further, for m+1,2,3,7 every FQ is af type (1,2) by the corollary of
theorem 1 and hence subdivisible into two FT’s by drawing the 1-dia-
gonal. Consequently the fundamental parallelograms cannot be sub-
divided into FT’s and FQ’s for m=+1,2,3,7, since there are no sub-
divisions into FT’s.

It might be worth-while finding a substitute of FI’s and FQ’s for
m=+1,2,3,7, but we shall not make any attempt in this direction here.

The unimodular homographic map
(25) @: w = (az+b)(cz+d)?

corresponding to the unimodular linear map @ defined in (15), is a 1-1
map of the extended complex z-plane onto the extended complex w-plane.

Also, since ¢(n/p)=p[q when =,p,p,q € Z(im?) are related by (15), ¢ is
a 1-1 map of the set of irreducible fractions zn/p with =, € Z(im?) onto
itself. (¢/0, |¢|=1 is counted among the irreducible fractions.)
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® )

1 1

1+@

1]
|
e]e-
S

Lt =
bt |

Fig. 4.

Further, if ¢(1/0)=a/c, ¢+ 0 and ¢(z/o) =p[q, ¢+ 0, the following rela-
tions follow easily from (15), (16) and (25):

(26) lal = lellell=/e+dfel ,
(27) lgw—p| = loz—=l/|cz+d]
(28) lew—a| = 1f|cz+d]| .

These properties of a unimodular homographic map together with the
well-known properties of being conformal and mapping circles or straight
lines onto circles or straight lines allows one to investigate FI°s and
FQ’s by means of their inverse images by suitably chosen unimodular
homographic maps ¢, e.g. obtained in letting the corresponding Farey
matrices be of the form indicated in theorem 1.

3. Fundamental properties of Farey triangles and Farey quadrangles
in Q(imt), m=1,2,3,7.
In the first theorem to be considered we shall make use of the fact
that Z(im?t) is a principal ideal ring for m=1,2,3,7.

THEOREM 3. Let & be any complex number satisfying the inequality

[

(29 I E—'p_o = ’
) O 20/?
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where pg,qo € Z(imt), qo+0, m=1,2,3 or 7, and pyq, ts irreducidle, the
constants a,, being

(30) a, = 2%, a, = 3% a, = 2/3%, a, = 4T,

Then & belongs to

1) a Farey triangle in Q(im?) having py/q, as one of its vertices in case
m=1or 3,

2) a Farey triangle or a Farey quadrangle of type (2%,2%) in Q(im?)
having pylq, as one of its vertices in case m=2 or 7.

The constants a,,, m=1, 2, 3, or 7, in (30) are smallest possible.

REMARK. The corresponding theorem with Z(imi), a, and Farey
triangle or Farey quadrangle replaced by Z, 1 and Farey interval,
respectively, was proved by Hurwitz [5].

Since the proofs of the four cases m=1,2,3,7 are quite similar, we
shall give only the detailed proof for m=1. In this case we shall need
the following

LemMma 1. Let I be a circle in the complex plane with radius 2t and an
arbitrary centre O.

Then one can select 4, 6 or 8 points from Z(i), all of them different from O
and lying inside or on the boundary of I', such that the selected points

21=2,41:%9,. + s2,, N=4,60r8,
(with a suitable notation) satisfy the following conditions:

(1) |2ja—2l=1, 15j<n,
(ii) the polygon z,2,...2,2, i8 a rectangle with O as an interior point,
(iii) the circles through O, z;, z;.1, 1 £j S n, are inside or on the boundary
7r %441 J
of I.

Proor. Condition (iii) means that the circles through O, z;, z,,, have
diameters d; < 2%, Let «;, 0<&; <7, be the angle 2;0z,,,. Then

dj = IZj_',l—Zjl/sin“j )

hence d; = 1/sin«; if condition (i) is satisfied. Thus, in fact condition (iii)
amounts to
Insx;=3n, 1=5j)=n.

Now we distinguish between three cases according to the position of O
in the lattice Z(1):
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Fig. 5a. Fig. 5b.

a) O e Z(i), hence we have the situation in fig. 5a. The 8 points
24,29, - . ,2g indicated in this figure obviously satisfy the conditions (i)
and (ii), but also (iii) since «;=}m, 1<5<8.

b) Let O € 2, as shown in fig. 5b, where £, is bounded by circular
arcs with radius 1/2. The 4 points 2,, 2,, 23, 2, indicated in this figure
obviously satisfy the conditions (i) and (ii), but also (iii) since 7 < «; < #=,
15j<4.

Fig. 5e.
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c) Let O € 2, as shown in fig. 5¢, where 2, is bounded by circular

arcs with radius 1/2}. The 6 points 2,,2,,...,2 indicated in this figure
obviously satisfy the condition (i) and (ii), but also (iii) since {n <«; < 3,
1<j<6.

For reasons of symmetry this proves lemma 1 for any position of O in
the lattice Z(z).

PROOF OF THEOREM 3, m=1. In this case the theorem states that the
closed disc bounded by the circle C with centre at p,fq, and radius
1/(2%|g,|?) is covered by the set of all Farey triangles having p./q, as a
vertex. In fact, it will be shown that 4, 6 or 8 such Farey triangles will
suffice to cover the disc bounded by C (cf. figs. 6a, 6b, 6c).

T . .
1 4 1432
1 1
C
1
1—2
0 1
1 1
Fig. 6a. Fig. 6b.
1 1—1
2—14 125
0 1
1 1 1
2
1 1+1¢
241 1+2¢

TFig. 6e.
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Since py,q, € Z() are relatively prime and Z(7) is a principal ideal ring,
there are P,Q € Z(i) such that

(31) P@—-Pgy =1,
and we consider now the unimodular homographic map

@: w = (pyz+P)(gez+@Q)*.
By (28)
(32) Igow—pol = 1/lg02+@QI,
and hence
p(C) =T,

where I' is the circle in the z-plane with radius 2t and centre at —Q/q,.
Also by (32) the interior of C corresponds to the exterior of I'.

By lemma 1, the n closed regions J;, 1<j<n (n=4, 6 or 8) indicated
in figs. 5a, 5b, 5c¢, cover the part of the complex z-plane outside or on I
Hence the n triangles T;=¢(J7;), 1<j<n, cover the closed disc in the
w-plane bounded by C.

Finally since

D(1,0) = (po,90)> D(z5,1) = (p1qy), 15jSm,

where @ is the unimodular linear map corresponding to the unimodular
homographic map ¢, it follows from condition (i) of lemma 1 and (18)
that the triangles T;=T(po/q0, P;/9j>Dj+1/85+1), 1Sj<n, are Farey tri-
angles.

That the constant a,=2% is smallest possible is illustrated by fig. 6a.

In view of theorem 3 it is important to describe of the set of FT’s
and FQ’s of type (2},2%) containing a fixed complex number &. Inciden-
tally we know that this set is non-empty, since the subdivisions in figs.
1-4 generate tessellations of the whole complex plane into FT’s, m=1,3,
and into FT’s and FQ’s of type (2%,2}), m=2,7. The central idea in our
description is that of subdivision of a given FT (FQ) into a finite number
of FT’s (FT’s 4+ FQ’s). Here subdivision is to be taken in a combinatorial
sense rather than a geometric one. In fact, the subdivisions of a FT or
FQ we are going to consider give in general only a covering of the given
FT or FQ.

THEOREM 4. Every Farey triangle in Q(tmt), except the FT’s in the
tessellations mentioned above, s in two different ways subdivisible into
FT’s and FQ’s as follows:

m=1: 7TFD’s (¢f. fig. 8),
m=2: TFI’s+6 FQ’s of type (24,2%) (cf. fig. 10),



256 ASMUS L.SCHMIDT

m=3: 3 FT's (¢f. fig. 12),
m="7: 1 FT+3 FQ’s of type (2}, 2%) (c¢f. fig. 13).

Bvery Farey quadrangle of type (2%,2Y) in Q(imt), except the FQ’s in
the tessellations mentioned above, is in two different ways subdivisible into
FT’s and FQ’s as follows:

m=1: 4 FI’s (¢f. fig. 9),
m=2: 8 FI’s+5 FQ’s of type (2},2%) (df. fig. 11),
m="7: 2 FI’s+2 FQ’s of type (2},2%) (¢f. figs. 14a and 14b).

The vertices of each subdivision all lie on one side of the circumscribed
circle (line) of FT or FQ. Further the vertices of the two different subdivi-
sions of a FT or FQ of type (2%, 2}) lie on either side of the circumscribed circle
(line) of FT or FQ, in fact they are inverse (symmetric) with respect to this
circle (line) in all cases except the last one.

For the exceptional F1’s and FQ’s of type (2},2%) occurring in the tessella-
ttons of the complex plane generated by the subdivisions in figs. 1-4 there is
only one subdivision of the kind described above. The vertices of this sub-
division all lie inside the circumscribed circle of the FT or FQ.

o —q3lq
Fig. 7.
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3

Fig. 8. Fig. 9.

Proor. The proofs of the seven cases in theorem 4 are all based on
the subdivisions of the fundamental parallelograms in figs. 1-4, and
since the proofs are quite similar, we shall consider only the subdivisions
of a FT in the case m=1.

By theorem 1 we may suppose that the Farey triangle is of the form

FT (p1/91, P2/925 P3/95) With

(P1 y2) Pa) - (1’1 Pz) (1 0 1) .
¢ 92 93 ¢ 92/ \0 11

V

Fig. 11
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2

2 3

Fig. 12.

1

Using the properties of the unimodular homographic map

@ w = (P12+DPa)(¢12+¢2) "

and the corresponding unimodular linear map @ deduced in section 2,
the proof follows from fig. 7, which shows the image of the inner sub-
division of the Farey triangle by the map ¢-! in case Im/(—g,/q;)<O.

Note that by theorem 4 we may distinguish between inner and outer
subdivision of a non-degenerate FT or FQ of type (2%,2%), however in
the degenerate case we shall consider any of the two subdivisions as
being both inner and outer subdivisions. In figs. 8-14 only the inner
subdivisions are shown.

DEFINITION 4. A chain of FT’s and FQ’s s an infinite sequence
(33) FPO,FP®,. .., FP™, . ..

of different F1’s and FQ’s of type (2%,2%), such that
(i) FP®+D 43 one of the FT’s or FQ’s in the inner subdivision of FP®,
n=20.

Fig. 13.



FAREY TRIANGLES AND FAREY QUADRANGLES ... 259

Fig. 14a. Fig. 14b.

If in addition for a fixed complex number &
(ii) &€ FP®™ for all n20,
we say that (33) 18 a chain of FI’s and FQ’s containing &.

THEOREM 5. Every complex number & is contained in a chain of FI’s in
cases Q(imt?), m=1,3.

Every complex number & is contained in a chain of FI’s and FQ’s in cases
Q@Emt), m=2,17.

For any chain (33) containing a complex number &

N® = N(FP™) >0 as n— oo,
where
3 4
N® = N(FT®) = 3 N(q ™) or N® = NFQ®) = z N(g/m™)

J=1 J=1
according as FP®™ is a FT or a FQ.
For any chain (33) containing a complex number &,

lim'n—-mo pj(n)/QJ(n) = E: j= l; 2, 3: (4) *

Proor. For the existence proofs we shall restrict our attention to the
case m=1, in which case we shall prove, by induction, the existence of a
chain FT®, n > 0, containing ¢ and having the additional property
(34) N(FT®+D) > N(FT™) for n20.

Indeed, as FI® we may take one of the FI’s in the tessellation of the
complex plane generated by the subdivision in fig. 2. For the inductive
step assume without restriction that

N(g,™) 2 N(g;™) 2 N(gs™).
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Then from fig. 7, fig. 8 and (26), using a map ¢ as before,
N(g,'™) z max{N(g;"), N(g;™)},
N(g;'™) > max{N(g,™), N(g:™), N(gs™)}, j=2,3,
end N(g/®)> N(g™) <> A<tx.
Further by fig. 7 and fig. 8
p/™)g,® e FI®™W <« A<in.

It follows from these inequalities that all 7 FT’s in the inner subdivision
of FT™ have N(FT)> N(FT®), except for

FT = FT(p,'™[q,/™, p™[q,™, ps™[qs™)

in case A= 3n. However, if 42 3n> §n, then p,'™/q,’™ & FT™, and
consequently in any case (cf. fig. 8) a FT =FT®+D belonging to the inner
subdivision of ¥T®), satisfying N(FT)>N(FT®) and &€ FT, may be
found.

Obviously, for any positive integer n there are only finitely many
FP’s having N(FP)<n and & € FP, and hence, the FP’s in a chain (33)
being different by definition, N(FP®™) — o« for n — .

Finally, a simple calculation shows that N(FP®™) —» co implies that
diam(FP®™) — 0, thus proving the last assertion in theorem 5.

4. Linear norm relations.

In this section we shall continue the investigation of the subdivi-
sions of Farey triangles and Farey quadrangles of type (2%,2%) in Q(im?),
m=1,2,3,7, described in the preceding paragraph. The linear norm
relations connected with these subdivisions will be deduced by means of
the following

LevMmaA 2. Let .
!p(‘njigj) = (pj: qj): 1 sj)sn,

where D is a unimodular linear map of the form (15). Suppose the following
linear relations hold

n

J= =

J=1
Then the corresponding linear relations

n

zij(Pj) = zlij(%) = _Zlb,pﬂ.’l; =0
i= j=

i=1

are also valid.
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Proor. It follows from the assumptions of the lemma that

(ZUNe) Zomds ) oy bt
;9,55 Zb;N(g) by bny 7. 7

_(a b) (blnl...bnnn> ’?1 ,51 ac
“\c d/ \bjo;...b,0, ﬁé (5(7)

n n

- (4 0) Gorve) Zhm ) (2

_(ab) oo> ae\ (00
“\cd (00 (5&)“(00)’
which proves lemma 2.

Now we consider any Farey triangle or Farey quadrangle of type
(24, 2%) in Q(imt). m=1,2,3,7. Then at least one of the corresponding
Farey matrices has the form announced in theorem 1. Hence the points
p;/g; in the subdivisions of the Farey triangle or the Farey quadrangle
have the form

(pj’q;') = d)(ﬂpgj) s
where @ is a unimodular linear map of the form (15) and the (s;,0;) of
interest are listed in the tables 1-7 below, the indices being in agree-
ment with figs. 8-14.

m = 1 (FT):
J 7 0 N(m)  N(ey) 7305
1 1 0 1 0 0
2 0 1 0 1 0
3 1 1 1 1 1
1’ 1 1-—-12 1 2 1414
2/ 1+ 1 2 1 1+
3’ 7 1 1 1 7
1* 1 | ) 1 2 1-—1
2% 1—12 1 2 1 1—2
3* -1 1 1 1 -1
Table 1
m =1 (FQ):
J 7 1] N(m)  Nloy 7304
1 1 0 1 0 0
2 0 1 0
3 1 1—2 1 2 144
4 1412 1 2 1 1+
1 1 1 1 1 1
1* 7 1 1 1 )
Table 2

Math, Scand. 21 — 17
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m = 2 (FT):
J 7y (] N(m;) Ny 72403
1 1 0 1 0 0
2 0 1 0 1 0
3 1 1 1 1 1
1 l+w 2 3 4 2+ 2w
2’ 2 l-w 4 3 242w
3 -1+ ) ) 3 3 142w
1* ) 2 3 4 2 -2
2% 2 l1+w 4 3 220w
3* —-l1-w l-w 3 3 1-2w
« w 1+ 2 3 24w
B l1-w -0 3 2 24w
y 1+ 1 3 1 14w
é [} 1 2 1 )
n 1 - 1 2 w
¢ 1 l-ow 1 3 l+w
Table 3
m = 2 (FQ):
J £ o N(m)  Nley) 7504
1 1 0 1 0 0
2 0 1 0 1 0
3 1 ) 1 2 w
4 (7] 1 2 1 [}
1’ l1-w ) 3 2 24w
2’ ® l+ow 2 3 24w
3 l+o 2 3 4 242w
4’ 2 l-w 4 3 2420
1* 1+ - 3 2 -2+
2% 7] | ) 2 3 —240
3* -1+ 2 3 4 —-2420
4% -2 1+w 4 3 -2 420
« 1 1 1 1 1
B l1+ow 1 3 1 l+ow
Table 4
m = 3 (FT):
J £ o N(m)  Nley) 7385
1 1 0 1 0 0
2 0 1 0 1 0
3 1 1 1 1 1
1 o 1 1 1 w
1* l-w 1 1 1 l-w
Table 5
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m =1 (FT):
J 7 0 N(m)  Niey) 7304
1 1 0 1 0 0
2 0 1 0 1 0
3 1 1 1 1 1
| ) 1 2 1 [
2’ 1 @ 1 2 ]
3’ —® w 2 2 l+w
1* @ 1 2 1 @
2% 1 %) 1 2 @
3* ) @ 2 2 1+
Table 6
m =1 (FQ):
J ] o N(my) Ny mes
1 1 0 1 0 0
2 0 1 0 1 0
3 1 @ 1 2 w
4 w 1 2 1 w
3 1 1 1 1 1
B —-D @ 2 2 l+ow
é -1 7} 1 2 —-®
Table 7a
J s o N(m)  Nlgy) 7305
1 1 0 1 0 0
2 0 1 0 1 0
3 1 @ 1 2 w
4 ] 1 2 1 [}
* —-@® 1 2 1 —-®
B -1 © 1 2 -
y 1 1 1 1 1
) —-® w 2 2 l+o
Table 7b

263

Alternatively the primes and asterisks in tables 1-6 should be inter-
changed, the last six lines in table 3 replaced by their complex conju-

gates, and the last two lines in table 4 replaced by the following

J 7y 0 N(ny) Nley) 7304
« -1 1 1 1 -1
B S 1 3 1 14w
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From tables 1-7 or the alternative ones the following linear norm rela-
tions connected with the subdivisions in figs. 8-14 are deduced by means
of lemma 2

m =1 (FT):

(35) N +N* — 4N,
(36) N, +N,/ =N, +N,/ =N, +N;,
(37) N, +N* = N, +N,* = N; +N,*,

m = 1 (FQ):

(38) Ny +N* =N,
(39) N, +N; =N, +N,,

m = 2 (FT):

(40) N' +N* = 10N,

(41) N, +N, =N, +N, = N; +N;,

(42) N, +N;* = N, +Np* = N3 +Ny*,

(43) N, +N;, =N;, +N, =N, +N, =N, +N/,
(44) Na _Nﬂ = Vg ‘_N1:

(45) —Nd = N3 '_N2:

(46) Ny -N, =N; —N,,

m = 2 (FQ):

(47) N’ +N* =8N,
(48) N1’—N1 =N2"‘Nz =N3' ~N; =N/ -N,,
(49) Nl*_Nl =N2*‘N2 =N3*"Ns =N4*'“N4,
(50) N, +N, =N, +N,,

(51) Ny +Ny =Ny +N/,

(562) N*+Ng* = Ny*+N*,

(53) N, -N, = N,-N,,

(54) N, +N; =N, +N/,

m = 3 (FT):
(55) Ny/+N* =N,

m = 7 (FT):

(56) N +N* = 5N,

(67) Ny -N, =N, -N, =Ny Ny,
(58) N1*"N1 = Ny*—N, =N3*"N3»
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m =7 (FQ):

(59) N, +N, +N, +N, =4}N,
(60) Ny, +N; =N, +N,,

(61a) N,-N;, =N, —-N,,

(61b) N, —N, =N, —N,,

(62a) N, -N, =N, —-N,,
(62b) N, -N, =N, —-N,.

Y
In these relations N; means N(g;), while

3 4
(63) N=3DN;, and N =3 N;
J=1 J=1

for Farey triangles and Farey quadrangles respectively.

Of course, by lemma 2 all the norm relations above are valid with
N;=N(p,) as well.

It should be noticed that a great number of the norm relations listed
above are just the norm relation (23) in theorem 2, since this relation has
the particularly simple form

(64) Ni+Ny; = N,+N,

for a Farey quadrangle of type (2%,2}).

Finally the number of linearly independant norm relations listed above
in each case equals the number of points involved minus four, which is
the maximal number of linearly independant relations obtainable by
means of lemma 2, since R x R x C is a 4-dimensional vector space over R.

Now, given a Farey triangle or a Farey quadrangle of type (2},2%) in
Q(im?), m=1,2,3,7, only three independant norms are given by (64),
and hence there is one norm relation missing in each case in order that
the N; in the subdivisions should be determined. It follows from the
definition of a Farey triangle and a Farey quadrangle of type (2},2%)
that once all the N; in the subdivisions are known the points p;/q; them-
selves are determined geometrically.

5. Angular relations. Non-linear norm relations.

It was pointed out in the preceding section that given a Farey
triangle or a Farey quadrangle of type (2,2%) in Q(imt), m=1,2,3,7,
the inner and outer subdivisions are not completely determined by the
linear norm relations found in that section, but that there is one
norm relation missing in each case. It was also motivated that this
norm relation must be non-linear.
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In this section we shall show that the missing non-linear norm rela-
tions originate from the angular relations already indicated in figs. 8-14,
where the angle u, in figs. 13 and 14 is given by 0 <wuy<m, cosu,=1/8%,

The angular relations in figs. 8-14 all follow from the conformal prop-
erty of the unimodular homographic maps ¢ considered in section 3,
e.g. the angular relation in fig. 12 is an immediate consequence of fig. 15
below. In this particular case, however, the angular relation is well-
known, since the points p,’/q,", p*[/q,* are just the inner and outer
isodynamic points of the Farey triangle.

Fig. 15.

From these angular relations the following non-linear norm relations
may be deduced

m = 1 (FT):

(65) N’ = 2N + 3(N2—2N®)t,

m =1 (FQ):

(66) Ny = iN + (})}(2N2—5N@—2(N, N+ N,N,))t,
m = 2 (FT):

(67) N’ = 5N + 6(2)}(N2—2N®@)t

m = 2 (FQ):

(68) N' = 3N + 4(2N?—5N®—2(N,Ny+ N, N},
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m = 3 (FT):
(69) N, = N + $3H(N2-2N@),
m = 17 (FT):
(70) N’ =N + §7H(N2—-2N®@)},
m =7 [FQ):

(1) N, + N, = N + (3)}(2N2—5N® —2(N, Ny+ N, N,))t .

In these formulas we have used the notation

3 4
(72) N® =3 N? and N® =3 N2

j=1 J=1

for Farey triangles and Farey quadrangles respectively.

The non-linear norm relations (65)-(71) all follow from the angular
relations in figs. 8-14 in the same manner, so we shall only give the
deduction of, say, (69) from the angular relation in fig. 12. In fact, it
follows from fig. 12 that

N,+N,— N,
COS(A +%ﬂ) = %(m—i
24'3
and
cosd = Yot Na— 2y
2NN

whence by the relation
cos(A +3n) = } cosd —3}3tsind

N,+N,—-N,/  N,+N,-N, (N2 2N@®)}

T AR Ty 0% AT AT 25 A

Now formula (69) follows by reduction.

6. Approximation lemmas.

In this section we shall deduce a number of important approxima-
tion lemmas of a purely geometric nature, however formulated by means
of complex numbers. The degree of approximation of a quotient p/q of
complex numbers to a complex number &+ p/g will in these lemmas be
measured by means of the real number ¢ defined by

(73) ¢ = (lql lgg—pN*.
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Lemwma 3. Let 9, p”, ¢, q¢'' be complex numbers, q',q"' 40, such that

(74) 4 = |p'¢"-p"¢| >0,
and
(75) f=ld"ld1 z 1.

Further let & be any complex number different from p'lq" and p''[q"". The
real numbers ¢’ and ¢"’ are given by (73), and the angle w, 0 Su =, 18 the
angle pI/qI Ep"/q”'

Suppose f2fo21, uZuy2 i, then

(76) max (¢',c”) = (fo2+ 1/fo2—2 cosug)t/4 ,
where the equality sign occurs if and only if simultaneously

f=fo u=uy |¢6=2l[1g"6-2"] = fy,
in which case
¢’ =¢" = (fo? + 1/fo? — 2 cosug)}/4 .

Proor. Let & be restricted to the two circular arcs y and 9’ from which
the segment from p’/q’ to p"’[q"’ is seen under the angle » 2 3= (fig. 16).
By symmetry we need only consider £€y. As £ moves continuously
from p’[q" to p''[q’" along y, ¢’ decreases strictly and continuously from
+ oo to f/4 by (73), (74) and (75) and the assumption =}z, while ¢”
increases strictly and continuously from 1/(f4) to +oo.

Fig. 16.

Consequently max (¢’,¢’’) attains its minimum in exactly one point of y,
determined by ¢’ =c"’, that is, |¢’4 —p’|[|¢"’& — p"'| =f, or with the notation
of fig. 16
(77) alb = f2.

Further by (74) and fig. 16
(78) d = 4/l¢q"!.
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From (78) and (73) we obtain in this extreme case

d2 A2

79 -—-—=——_.._=A2"'=Alz= '12.
79) @ = gFaygEs - 400 = e =4
Now since
926 a®+ b2 —d2 a+b dz
08U = = o ——,
ab b a ab

we get by applying (77) and (79)

2 cosu = f241/f2—(4c’')? = f2+1[f2—(dc")?,
whence
¢ =c¢" = (f2+1/f2—2 cosu)t/d .

So far we have proved that
max;.,... (¢’,¢”') = (f2+1/f2—2 cosu)/4 = F(f,u),

with equality if and only if ¢'=0¢"" or equivalently |¢'é —p’|/|lq"’'é—p"|=f.
However, the function F(f,u), f2fy=1, u=wuy=4n, is a strictly in-
creasing function of each of the two variables, the other being kept
fixed.

This proves lemma 3.

Lemma 4. Let p', p”, ¢', q'' be complex numbers, q',q" +0, such that

A _ Iplq’l_pllqll > 0’
and

f=1" z1.

Further let & be any complex number different from p'lq" and p”[q’" and
lying on the segment from p'lq’ to p”'[q".
Suppose f=f,=21. Then

(80) max (c¢’,¢"’) = (fo+1/fo)/4 ,

where the equality sign occurs if and only if simultaneously

f=f and |¢6-p'l[lg"E=D"| = fo,
¢ =c = (fo+1/fo)/A .

Proor. Lemma 3 with u=wuy=um.

in which case

Lemma 5. Let py, py, D5, @1, 9a» 93 be complex numbers, 1,95, 93+0,
such that

(81) |P1@s—Pata] = |P1s— D3| = [Pads—DPsdal = 1.
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Further let & be any complex number different from p,[q;, Ps/qs, Ps/9s and
lying in the closed triangle T =T(py|q:,Ds/qs Pslqs) with vertices py[qy,
D2/95, Pslgs- Then

(82) max (¢;,Cy,¢5) = 3t

with strict inequality unless T is equilateral and & is its centre, in which
oase 0y =Cy=Cy=23%

Proor. Let u;, 0<u;<m, be the angle p,/q; & p/q;, where (j,k,1) is
any permutation of (1,2,3). If u;> %n, then max(c;,c;) > 3% by lemma 3
with

4 =1, f=max(g/allg/al) 2fo=1  w >u = ir.
If uy=uy=wuz= 3z and f=max(|g:/q)l,|q/q:!) > 1, then max(c;,¢)> 3t by
lemma 3 with
Ad=1 f>fo=1 u=u,=§x.
In the remaining case |g,| =19,| = |¢s|, that is, T is equilateral by (81), and
Uy = Uy = Uy = §7r, that is, & is the centre of 7'. Evidently ¢,=c,=c;=3}
in this case.

Lemma 6. Let py, Dg, P3> Pas 915 92> 935 94 be complex numbers, q;,q,,
43,94+ 0, such that

(83) [P12a—DP2th] = P28 — D302 = [P30a—Pa%s| = |Psti—P1] = 1,

and such that the closed quadrangle Q=Q(D1/q1,Ds/qs P3/q3Palqs) with
vertices P./qy, Dalds, Ps/qs, Pa/qs 18 convex. Further let & be any complex
number different from py/q,, Palts, s/dss Pulds and ying in Q. Then

(84) max (y,Cy,C3,64) Z 2}
with strict inequality unless @ is a square and & is its centre, in which case

€y =0Cy=Cy=0C4= 2%,

Proor. Let u; ;, 0<u; , <m, be the angle p;/q; & p/q;, where (j,k) is
(1,2), (2,3), (3,4) or (4,1). If u; ;> }m, then max(c;,c;) > 2t by lemma 3
with

4=1 f=max(lg/ail, lg/a;)) 2 fo =1,  up > u=Im.

It Uy, g ="Up 3="Uy 4 =Wy 1= 37T and f=ma'x(|qj/9k|: |Qk/91|)> 1, then

!
by lemma 3 with max (c;,¢x) > 2

A=1 f>fo=1  u,=1u,= .

In the remaining cases |g,|=|g.] =|¢5/ =|q4|, that is, @ is a rhombus by
(83), and w; 5 =1us 3="s 4=Uy, 1=, that is, & is the centre of . From
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lemma 3 it follows that max(c,,c,) > 2}, unless |¢,& — p,| = |g,& — p,|, that
is, @ is a square. Evidently ¢, =c,=c5=c,=2% in this particular case.

LemMa 7. Let py, Py, Ps, q1> G925 93 be complex numbers, ¢,,45,95% 0,
such that

(85) |P1g2—DPatil = |P2@3— D50l = 1,  |P18s—Paqs| = 4,
0<A4g 2t
and let
f = max(|q,/qsl, |9s/¢4]) -

Further let & be any complex number different from pi[qy, Ds/qs, Psles and
lying in the closed triangle T =T(p;1/q;,Ps/q5, Pslqs) with wvertices p,/q,,

Po[2> Ds/ds-
Suppose f2fo=1, then

(86) max (¢;,6,,¢3) 2 min ((2(fo+ 1/fo) —4%)}, 2) .

ReMARK. It is possible though complicated to formulate a more gen-
eral result than lemma 7, in which there are no restrictions on 4 and the
constant 2 under the min sign does not occur. But since we shall have
occasion only to apply lemma 7 for 4=1 or 2} and for max (c,,¢,,¢5) < 2,
we shall stick to the present formulation of the lemma and thereby
profit from a considerable simplification of the proof.

Proor. Since max(c,,¢,,¢;) is a continuous function of & on the set
T\{p1/91, D[22, P3/25} and ¢; > + oo as & - p;/q;, 1 £j <3, there exists in
this set a complex number &, where max (c,,c,,¢;) attains its least value.
Hence in order to prove the lemma it suffices to establish the inequality

(87) max (¢;,5,05) 2 min ((2(f+1/f)—42)4,2) ,

when £, has this property.

Suppose first that &, is an interior point of 7'. Then ¢,=c,=c;, since
otherwise there would exist a complex number & € T\{p./q;, P2/q3, Ps/qs}
near &, with a smaller value of max(c,,c¢,,¢C3).

An easy calculation shows that u,, u,, 43 and ¢=c,=c,=c; satisfy the
system of equations
cosu; = ${Ny/Ny+Ny/Ny—c?},
cosuy = }{N,/Ny+Ny/N,—(de)*},
cosus = H{Ny/Ny+Ny/N,—c?},

Uy + Uy +u; = 27,

(88)

where as usual N;=|g;|? and u;=p/q; & p,/q- Hence ¢ is determined
by the equation
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(89)  Arccos}{Ny/Ny+ N3/N,—c?}+ Arccos }{N,/N3+ N3/N, — (dc)?} +
+ Arccos 3{N,/Ny+ Ny/N,—c?} = 2.

If ¢=2, (87) is trivially satisfied; consequently we may suppose in the
following that c<2. By (88)

H{Ny/N3+ N[Ny — (de)?} = H{f2+1[f>—(de)*} = 1,
and since ¢ < 2 this implies

(f+1/f)2 £ 44 (do)? < 44442 < (2+42)2,
whence
(90) F+lf—a2 < 2.

We consider now the function
G(x,y) = Arccos}{x/N3+ Nyjx—y}+ Arccos }{N,/N3+ N/N, — A%y} +

+ Arccos }{z/N, + N, [x—y} .
We know from (89) that

(91) G(N,e?) = 27,
but also
(92) G,V 2(f+1/f) - 4) = 2,

since by (90) and the inequalities 4 £2% and f=1

-2 < A-(f+1/f) £ 0,
and hence
2 Arccos 3{42— (f+ 1/f)} + Arccos }{(f+ 1/f — A4%)2 - 2}
=24+ (2r—24) = 2xn.
Since G(z,y) is defined at the points ((IV,N,)}, 2(f+1/f)—4?) and
(N, ¢?), G(x,y) is obviously defined on the broken line joining the points
(N N 2(f+1/f) = 4%), ((N1Ng), *),  (Ny0?) .
Now
G, (,y) = —H1—}@/Ny+Nofx —y)*)H(1/Ny— Ny/2?) —
—§(1 - H(x/Ny+ Ny Jz—y)?) (1N, - N,[2?),
and hence an easy calculation shows that
Q@ (x,c®) > 0 for Ny<z<(N,N;)* in case Ny< (NN,
Q' (z,c?) < 0 for (N,N,)t<xz<N, incase Ny>(N,Nj)t.

Evidently G,/(x,y) >0 wherever defined. Thus, considering the function
G(z,y) along the broken line defined above and using (91) and (92), it
results that
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& 2 2Af+1f)- 4,

which proves (87) when &; is an interior point of 7'.
If &, belongs to one of the segments from p,/q; to p,/q, or from p,/q,
to P3/gs, max(c;,¢,) = 2 or max (¢y,¢5) = 2 by lemma 4 with A=1 and f,=1.
If finally &, belongs to the segment from p,/q, to ps/qs,

max(e;,¢5) 2 (f+1/f)/4 = (2(F+1/f) - 4%}
by lemma 4 with fy=f and the inequality
((f+1UN/AP=2F+1/f)+ 4% = ((f+1/f)]A-4)* z 0.

Thus (87) has been established in all cases. This proves lemma 7.

7. Evaluation of some important approximation constants.

Let & ¢ Q(¢m?), m=1,2,3,7, be contained in a chain of Farey triangles
FT(p,™[q:™, p®[q5™, ps™[qs™), n2 0. By theorem 1 we may suppose
that the corresponding 2 x 3 Farey matrices are of the form

P1™ P ps™\ _ 101
(93) T = (!h(") 7™ g™/ Lo o11) "

Further suppose that

v

0.

(94) T+l = gm(n)@(n)((l) (1) i), n=0,
or equivalently by (93)
(95) Me+D) = MSH, >0,

where &™), >0, is a unimodular matrix over Z(¢m?) obtainable from
one of the tables 1, 3, 5, 6 or the alternative ones when T®+D is given
in terms of ™. By (95)

(96) Mn+D) = PROSOSDL, ., ™, 720.

We consider now the important special case, where the sequence
GO, eW, .. is periodic with period . Then by (94) and (96)

(97) FTroti) — grroGk ((1) (1) :), k=0,
with
(98) S = GroGmtd | GrotD |
and

mo _ (% Yo =(a b).
(99) RO — (co do)’ e=(*"
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By theorem 5

(100) ]imn_,ij(")/qj(”) =¢, j=12,3.
Hence we find by (93), (97), (99) and (100), that
a b\* r 8

101 — 1 7 ) >
( O ) (c d) (rk(l_*_akl) sk(1+6ku) ’ kZO’
where
(102) ].imk_,wak' = limk_>°°6k" = 0 >
and
(103) & = (agn+Dbo)(con+dp) .
From (101)

( T, Sen? ) - (rk(a’?’*' b(1+6,)) s{an+b(1 +6k")))

Tr+1(14+0541) Saa(l+044) ren+d(1+8,)) sp(en+d(L+6,"")))’

and hence by (102)
(104) n = (an+0)(en+d)*,

so that # is one of the roots of the quadratic form
(105) f(@y) = ca®+([@d—a)zy—by? .

By a well-known argument of Perron [9], [10], [11] the approximation
constant (cf. (1))

(108) Cn) = VIDllw,
where

(107) D = (d—a)2+4bc
and

(108) n = inflf(x’y)l ’

the infimum being taken over all (z,y)+(0,0), z,y € Z(¢m?). Further, by
(99) and (103)

and consequently by a simple and well-known argument
(110) C(e) = Ct) .

We shall give four particularly simple examples of chains of Farey
triangles, one in each of the cases Q(imt), m=1,2,3,7. Each of these
examples plays an important role in the investigation of the respective
approximation spectra to be presented in the next section.

ExampLe 1. Q(¢). Let £ ¢ Q(¢) be contained in a chain of Farey tri-
angles FT(p,™/[q,™, p™[q,™, ps™[qs™), n 2 0, such that (cf. fig. 8)
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FT (p 0+ g, (»+D, p, 4D g (n4D), g (n41) g (n+D)
= FT (pl'(n)/ql'(n), pz'(‘n)/qz'(’n)’ pa'(m/%’(n))
for all n=n,.
Then by table 1 or the alternative one the corresponding chain of
2 x 3 Farey matrices is of the form (or associated with) (94), where

1 —1+%
1-7 ¢

1 —-1-¢

@) —
e - ( Li -

)=@' or @(m=( )=@*

for n=mn,y. Since

&Gt = &*¢ = -G,

€ being the unity matrix, ™ is of the form (97) with A=1 and 8= &'
or ©=G*. In both cases ¢ is equivalent with one of the roots of the
quadratic form

(111) flx,y) = a®—zy+y°

by (104), (105) and (109), and since the two roots of the form (111) are
equivalent, we have proved that

(112) &~ $(141231),

By (111), (107) and (108), D= —3 and u=1, hence it follows from (106)
and (110) that

(113) C(¢) s 38t

An easy calculation based on the norm relations (36) and (65) shows
that (cf. fig. 17)

(114) lim, _, ., (lg;™|lg/™€ —p™@|)* = 8}, j=1,2,3,

on)

1. 3m
Fig. 17.
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which together with (113) shows that
(115) C(&) = 38t.

In addition it follows by lemma 5, applied to the Farey triangles in the
chain, that the inequality

(116) (Ig;™1lg;"é—p™|)* > 8%, j=1,20r3,
has infinitely many solutions (p,™,q;™).

ExampLE 2. Q(:2%). Let £ ¢ Q(72%) be contained in a chain of Farey
triangles FT (p,™/g,™, p,™[q:™, ps™[q5™), n2 0, such that (cf. fig. 10)

FT (p,+Dg,(2+D, p+D [ 04D p (D) [ (n+1))
= FT(p,'™[q,"™, po'™/q5"", 25" [g5'™)
for all nzn,. Then by table 3 or the alternative one the corresponding

chain of 2x 3 Farey matrices is of the form (or associated with) (94),
where

em — (l+w -2

"
2 —-l4ow =@

)=@' or @(")=(1_w -2 )

2 ~l-w
for nzn,. Since

&'C* = &*¢' = —C,

T™ is of the form (97) with =1 and =&’ or ©=&*. In both cases &
is equivalent with one of the roots of the quadratic form

(117) f(x,y) = a®—ay+y?

by (104), (105) and (109), and since the two roots of the form (117) are
equivalent, we have proved that

(118) &~ 31+i3h).

By (117), (107) and (108), D= —3 and u=1, hence it follows from (106)
and (110) that
(119) C(§) = 3t.

An easy calculation based on the norm relations (41) and (67) shows that
(cf. fig. 18)
(120) lim,, (I, lg;™é—p"])* = 8%, j=1,2,3,

which together with (119) shows that
(121) O(&) = 3t.
As in example 1, the inequality (116) has infinitely many solutions.
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o(n)

Y

1 3(n)
Fig. 18.

ExampLE 3. Q(¢7}). Let & ¢ Q(i7¥) be contained in a chain of Farey
triangles FT (p,™/q,™, p,™/[q,™, ps™[q5™), n = 0, such that (cf. fig. 13)

FT (p,+D)q,m+D, pn+D]q 4D g 4D g (1))
= FT (p,'™[q,/ ™, p,'™[q,' ™, ps'®[q,"™)

for all n=mn,. Then by table 6 or the alternative one the corresponding
chain of 2 x 3 Farey matrices is of the form (or associated with) (94),
where

o —1

Gm = (C: _}) =@ or G™= (

—w

)- =

l —w
for n=mn,. Since

e'e* = 6*¢' = €,
T™ js of the form (97) with A=1 and S=&' or &= &*. In both cases
¢ is equivalent with one of the roots of the quadratic form
(122) f@,y) = 2*—ay+y?
by (104), (105) and (109), and since the two roots of the form (122) are
equivalent, we have proved that
(123) E~ 3(1+33Y).

By (122), (107) and (108), D= —3 and u=1, hence it follows from (106)
and (110) that
(124) C(¢) < 3t.

An easy calculation based on the norm relations (57) and (70) shows that
(cf. fig. 19)
(125) lim,, (g™ lg;”é—p™|)* = 3}, j=1,2,3,

Math. Scand. 21 — 18
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o(n)

1) gm
Fig. 19.

which together with (124) shows that
(126) C) = 3t.
As in example 1 the inequality (116) has infinitely many solutions.

ExawmprLE 4. Q(231). Let £ ¢ Q(i3?) be contained in a chain of Farey
triangles FT (p,™[q,™, ps™[q,™, ps™[q5™), n 2 0, such that (cf. fig. 12)

FT (p,®+D /91(n+1)’ PpmtD /92("+1), pn+D /93(n+1))
= FT(ps"™[:™, ps™[3:", 21’ ™ [91"™)

and
Na(n) = Nz(") P Nl(n)

for all n2n,. Then by table 5 or the alternative one the corresponding
chain of 2 x 3 Farey matrices is of the form (or associated with) (94),
where

@<n>=( 0 “’)=@' or @<n>=(° 1“")=@*

l-0 w wl—w

for nzn,. Since

and pl(‘n)/ql(n) is not a vertex of F'T (pl(n+2) /q 1(n+2), P 2(n+2) /qz(n+2)’p3(n+2) /q3(n+2))
for n=zn,, T™ is of the form (97) with =1 and €=8&" or €=G*.
Hence £ is equivalent with a root of one of the two quadratic forms
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(127) Ni@,y) = (1-w)2? + ory — wy?,
(128) fo(@,y) = wa?+ (1 - w)ry— (1 - w)y?

by (104), (105) and (109), and since the four roots of the forms (127)
and (128) are equivalent, we have proved that

—w+(3+ )t
(129) I

By (127), (107) and (108), D;=3+w and u,;=1, hence it follows from
(106) and (110) that

(130) C(§) s 13t,

An easy calculation based on the norm relation (69) shows that (cf. fig. 20)

3 = 2n+1)

3(n+1)
2(m) — 1(n+1) 1=
Fig. 20.

(131) im, ., (1g;™|1g;™& —p™)* = 18}, j=1,2,3,
which together with (130) shows that
(132) C(§) = 13%.
It follows by (69) that
(133) lim oo Ny®/N,® = lim, o Ny®/N,® = F,

and hence, by (55), F > 1 satisfies the equation

(134) FA—F3—_F2—F+4+1=0,
80 that
(135) F+1/F = §(1+13%).

In addition it may be shown that
(136) N®[N,® > F?
for infinitely many n, and hence by (135), (136) and lemma 7 with 4=1
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and f>f,=F applied to the corresponding Farey triangles in the chain,
the inequality
(137) (I2/™]1g;™& —p/»)* > 13}, j=1,20r3,

has infinitely many solutions (p;™,q;,™).

In the following three examples £ ¢ Q(im?), m=2,7, is contained in
a chain of Farey quadrangles of type (21,2%),

FQ (p,™/¢,™, 2™ [0, 2™ g™, p™[q™), n=0.

By theorem 1 we may suppose, that the corresponding 2 x4 Farey
matrices are of the form

M) g M) 5 (M) p @) 101 w
138 (n) — pl p2 p3 p‘l ) — (n)( ) >
(138) & (ql(n) 2™ g™ g™ s 0la 1) nz0,

and hence the apparatus used in describing chains of Farey triangles
can be applied to chains of Farey quadrangles as well.

ExampLE 5. Q(¢2t). Let & ¢ Q(:2!) be contained in a chain of Farey

quadrangles of type (2,2%), FQ(p,™/q,™, ps™[q™, 0™ [q5™, p™]q,™),
n 20, such that (cf. fig. 11)

FQ(p,»+D /91(n+1)’ P. 2(n +1) /q Z D, p D) /q3(n+1), pmtD /q4("+1))
= FQ(p,'™/q,'™, ps'™[gs'™, ps'™[q5'™, py ™ [q,'™)
for all n=n,. Then by table 4 or the alternative one the corresponding

chain of 2 x 4 Farey matrices is of the form (or associated with) (138),
where (95) holds and

= &*

Sm = (-—1+w ® )

—1l-0w w
= & (n) —
) l+w € or & ( )

w l—w

for n=n,. Since

G'C* = 6*¢' = €,

0™ is of the form (97) with A=1 and €=&' or &= &*, formula (97)
being modified so as to become applicable to 2x4 Farey matrices.
In both cases & is equivalent with one of the roots of the quadratic form

(139) fx,y) = 2*—wzy—y*

by (104), (105) and (109), and since the two roots of the form (139) are
equivalent, we have proved that

(140) £~ $2t+w.
By (139), (107) and (108), D=2 and x=1, hence (106) and (110) imply
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on) 3(n)
9(n+1) 3(n+1)
&.
1(n+1 4(n+1)
1tm 4
Fig. 21.
(141) o) < 2.

An easy calculation based on the norm relations (48) and (68) shows
that (cf. fig. 21)

(142) lim,, , (lg;71g;™&—p™|)-t = 2}, j=1,2,3,4,
which together with (141) shows that
(143) C() = 2.

In addition it follows by lemma 6 applied to the Farey quadrangles in
the chain, that the inequality

(144) (1g] g™~ p™) > 2, j=1,2,3,4,
has infinitely many solutions (p;™,q;™).

ExampLE 6. Q(i2%). Let & ¢ Q(¢2%) be contained in a chain of Farey

quadrangles of type (2%,2}), FQ(p,™/q,™, ps™/q:™, D™ [q5™, Dd™[24™),
n 20, such that (cf. figs. 11 and 12)

FQ (p1<n+1)/q1(’n+1), p2('n+1)/q2(’ﬂ+1), p3(‘n+1)/q3(’n+1), p4(n+1)/q4(n+1))
= FQ (1" ™/gy'™, ™[0, 1™ |0, 25" |25™)
for all n=n,. Then by table 4 or the alternative one the corresponding

chain of 2 x 4 Farey matrices is of the form (or associated with) (138),
where (95) holds and

en=('20 )= o em= (10 ) -

-0 -1 -0 —1
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for n2n,. Since

—1l—0 o

—1l1+0 o )
-2 l+ow ’

6'2=( 2 l-w

) and ©*2 =(

and, by fig. 11, p,’™[q,’™ is not a vertex of
FQ(p,n+2 /q 1(n+2)’ Pt /q o+, p nt2) /93(n+2): P+ /q4(n +2)
for nzn,, O™ is of the form (97) (modified) with =2 and

3+w 2—-w)

6=6’6*=( foi-o

Hence £ is equivalent with one of the roots of the quadratic form

(145) f(@,y) = 02 + (2—w)zy — (1+w)y?
by (104), (105) and (109), and since the two roots of the form (145) are
equivalent, we have proved that
(146) £~ 31+3)+10.
By (145), (107) and (108), D= —6 and u=2% Indeed
f@y) = o@@®—zy—y?) + 20y — 4

does not represent + 1, for otherwise in turn f(z,y) =1 (mod?2), f(x,y)=1
(modw), y=1 (modw), y>=1 (mod2) and finally 2~z —1=0 (modw),
which is impossible. Consequently u=2% Hence it follows from (106)
and (110) that

(147) C¢) £ 3.

An easy calculation based on the norm relations (48), (53), (54) and
(68) shows that (cf. fig. 22)

(148) lim,, ., (1g;"]1g;"—p®))"! = 3%, j=1,3,
(149) lim,, ., (19,1, —p®) = 28, j=2,4,
which together with (147) shows that

(150) C(&) = 3t.

ExamrLE 7. Q(¢7}). Let & ¢ Q(:7%) be contained in a chain of Farey
quadrangles of type (2,2%), FQ(p,™/g,™,ps"/q:™, ps™ 95", D™ [24™);
n= 0, such that (cf. figs. 14a and 23)

FQ(p,n+0]q, 4D, pntD]g (4D g (4D [g (4D p (4D [q (n+D)
= FQ(p,"/g.™, p5™/g5™, 2™ |24, ™ ]01™)
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1) — 3(n+1)

2 J & "
KA

3m
Fig. 22.

for all n>n,. Then by table 7a the corresponding chain of 2 x 4 Farey
matrices is of the form (or associated with) (138), where (95) holds and

o= (19

for all n 2 ny. Consequently Q™ is of the form (97) (modified) with A=1

and -
&= (1 )

Hence ¢ is equivalent with one of the roots of the quadratic form
(151) f@,y) = 22— (1+ o)y — dy?

by (104), (105) and (109), and since the two roots of the form (151) are
equivalent, we have proved that

(152) £~ Hlt+o+(B-o)).

By (151), (107) and (108), D=3 —w and u =1, hence it follows from (106)
and (110) that
(153) C(&) = st.

An easy calculation based on the norm relations (61a), (60) and (71)
yields (cf. fig. 23)

(154) lim, ., (g™ lg/™E—p™)" = 8%, j=1,3,4,
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2(n)
1) = 4(n+1)
9n+1)
4n) — Jn+1) BRI
Fig. 23.
(155) limn-)oo (‘%(n)l |q2(n)g—p2(n)|)_1 = 2* )

which together with (153) shows that

(156) C() = 8t.

It follows from (61a), (60) and (71) that

(157) lim, N ®/N,® = F?,
(158) lim,,_,, N, ®/Nm™ = F+1/F—1,

n—»co

where F >1 is determined by

(159) F+1/F = 1+2¢.
In addition it may be shown that

(160) N®|Nm > F2

for infinitely many n, and hence, by (159), (160) and lemma 7 with
A=2% and f>f,=F applied to the corresponding Farey quadrangles in

the chain, the inequality
(161) (1] lg;™& ~p@N)* > 8%, j=1,3,4,

has infinitely many solutions (p,™,q,™).

8. Approximation spectra in cases Q(im?), m = 1,2,3,7.
In this section we shall give a detailed investigation of the approxi-
mation spectra in the cases Q(im?), m=1,2,3,7, by means of the theory

of Farey triangles and Farey quadrangles developed.
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m=1.
THEOREM 6. Let £ & Q(i) have the approximation constant
O(¢) < (2(2t+2-1)—1)F = 1.8007... .
Then & has the approximation properties described in example 1, especially

E~ }(1+143Y) and C(&) = 3t.

Proor. Let FT(p,™[q,™, p,™[q,™, ps™[qs™), Ns® 2 Nyw 2 N, 020,
be a chain of Farey triangles containing &. Since

C&) < (2(2t+2-H) 1),
there exists a positive integer n,, such that
(162) NMIN®™ < 2 forall n 2 n,

by lemma 7 with 4=1 and f,= 2%
For a FT(p;/q1,05/95,Ps/95) with N3= N, 2N, and N,/N, <2 we have
N <N, <N, by (36), and hence by (36) and (65)
Nj[Ny 2 N[Ny = (Ng'+N;)[N3— 1
= §(N'+N)/N; -1
= (N + (2= 2NN, 1
> (N +(N2-2(}+ {5+ )N /(3N) ~ 1 = 2

for j=1,2,3 and £=1,2,3. From this result and (162)

(163) N/®[N,® > 2 for j =1,2,3 and k = 1,2,3
and for all n = n,.

Now recall that by definition 4 and theorem 4, the p,®+D[g,®+D are a
selection of the p,™/g,™ and the p;/®™/[q;/ ™. Then (163) and the fact
that (162) is valid for n+ 1 instead of n shows (cf. fig. 8) that only one
selection is possible, i.e.

FT (pl(n'l-l) /q 1(n+1)’ P 2(1!«-!-1) /qz(n+1), P 3(7L+1) /qs(n-l-l))
=¥T (p 3’(’”,)/ q3'(n)’ P 2I(n)/ QZ,(n)3 D 1’(n)/ qll(n))
for all n> Ng.
This proves theorem 6.

An examination of the proof of theorem 6 shows that it may be modi-
fied so as to prove the same result with a somewhat weaker condition
on C(£). However, the simple method used here is obviously insufficient
to find the second minimum of the approximation spectrum.
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m=3.
THEOREM 7. Let & ¢ Q(¢3%) have the approximation constant
C(§) < (2(3t+3-4)—1)t = 1.9023... .
Then & has the approximation properties described in example 4, especially

—w+(3+ o)t
g ZOTBTON i 0@ = 13t = 1.8988. .. .
22w

Proor. Consider a FT(p,/q;,,P5/qs,P3/qs) With N3= N, = N, and angles
A=A,z A4,. Suppose Az 37, then Ny/N, 2 3, since

Ng\? ind in24
(1—\;:—;) i i L= 2cosd, = 2cosin = 3t.
1

" gind, ~ sind,
Now let FT (p,™/q,™, ps™[q™, ps™[gs™), Ni® = N®>N,®, n>0, be a
chain of Farey triangles containing &. Since

C(§) < (2(34+3-H)—1),

there exists a positive integer n, such that
(164) NM™IN™ < 3 forall nzn,
by lemma 7 with 4=1 and f,=3% Hence by the argument above
(165) In £ A™ < %n forall n=mn,.

Next we apply the angular relation of the subdivision of FT (p,™/q,™,
D™ g™, P [g™) (fig. 12):
A™ = 4™+ 3, n20,

which together with (165) yields

(166) tgn £ AW <z forall nzn,.
By (166) and the argument above

(167) N/®IN® > 3 forall nzn,.

By definition 4 and theorem 4 (cf. fig. 12), the p»+V[qm+D, 1<5<3,
are p,/™[g,"™ together with two of the /g™, 1<j=<3. Hence by
(167) and by (164) with n+1 instead of n only one possibility remains:

FT (pl(n+1) /q 1(n+1)’ P 2(n+1) /q 2(n+1), pgm+D /qs(n-(—l))
= FT (py"/95™, ps™ 357 21" [0,"™)

for all n2mn,. This proves theorem 7.
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m=2.

The investigation of the approximation spectrum in this case is deeper
and much more complicated than in the previous cases. In order to
present the decisive steps of this investigation as simple as possible we
shall need two preliminary lemmas.

Lemma 8. Let FQ(P1/q1,D0/q2 Ps/23: Pa[24) of type (21,2}) have

(168) N,2Ny;2N,2N;, NyNyg=A, NyN,=12,
and

Suppose A=<2y<3+8 and AL A,<3+8L Then
(170) k= 3{1+(84/(A+1)2+84/(A+1)2—2)}},
and
(171) k2 3{14(84o/(Ao+1)2+82/(2+1)2—2)t} .
Proor. By (50), (63) and (168)
4 N A N 1 N 1 N
172 == = =t T N, =— = Ny=———,
W) M=g5y Y=y Neaae Yo

and by (48), (68) and (169)
kN = }N + (2N2-5N®—2(N, N3+ DN,N,))t,

whence (170) by insertion using (72) and (172).
The inequality (171) follows from (170) since f(x)=8xz/(x+1)% is a
decreasing function of z for z=1 and f(3+8%)=1.

Lemma 9. Let FQ(p1/q1, Po/des Ps/es: Palda) of type (24, 24) have the nota-
tion (168), (169) of lemma 8 and further

N/IN, = A".
Then (with the motation of fig. 11):
(173) N)IN, =1+ 2k(1+47Y),
(174) N[N, =1 + 2k(14+271),
(175) NNy =1 + 2k(1+4),
(176) N/IN,=1 + 2k(1+2),

-1

(177) A =1 4

T T oA+’
(A-1)(A+1)

(178) NN, < NN, =1+ Ho+D) + b — dAd-DjA+1D)
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Proor. By (169)
N/|N; = (N;+kN)/N; = 1+kN/N;, 1=j<4,
and hence (173)-(176) follow from (172). Similarly, by (169) and (172)

A=t A Moy 2=
Ny N+iv YW ey T iiekd+)

Finally, by (53), (168) and a norm relation analogous to (53),

N,-N;=N,—N, £ N,—-N;=N,-N,,
and hence
NNy, < N,N,.
Now by norm relations analogous to (53) and (54)
N,—Ny,=N,—-N, and N_+N;= N,+N,,
whence
N, (Ny+N,)+(N,—N;) 1 2(N,—Ny)

-2

N, Wt Ny)— (NV1—Ny) (Nat Ny)— (N, —Ny)’

and hence (178) follows from (168) and (169).
This proves lemma 9.

The result of the investigation of the approximation spectrum is now
described in the following two theorems.

THEOREM 8. Let & & Q(i2}) have the approximation constant C(&) <1,
and suppose that & is contained only in a finite number of Farey triangles.
Then etther (i) & has the approximation properties described in example 5,
especially

E~ 320410 and C(§) = 2%,

or (ii) & has the approximation properties described in example 6, especially
£~ 31+3Y)+iw and C(f) = 3t

Proor. By the assumption of the theorem, £ is contained only in a

finite number of Farey triangles, and hence let FQ (P1™]q, ™, ps™ g™,

Ps™[gs™, pM[q, ™), N,®2 Nm>N,®>N,™ nz0, be a chain of Farey
quadrangles of type (2},2%) containing £. Since

C(&) < 7 < (2(2.045+1/2.045)—2)t = 1.751 ...,

there exists a positive integer n,, such that
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(179) A® = N®IN®™ < 2.045%2 < 4.2 for all n=n,
by lemma 7 with 4=2% and f;=2.045 applied to the two triangles
T (p2™[,™, ™ g™, ps®[gs™)  and T (p™]g,™, ™ g™, ps™ g ™) .
By (179) and the inequality (171) of lemma 8
(180) k™ z 3{1+(2x8x4.2x5.2-2-2)}} > 0.84 forall n2n,,

whence by (175) and (176)

Ny®[N® 2 N/®[N® = 14 2%m(1 4 A™)
Z 1+4k®
> 14+4x0.84 = 4.36 > 4.2

for all n=n,. This together with (179) (cf. fig. 11) shows that
FQ(p 1(n+1) /q 1(n+1), P 2(n+1) /q 2(n+1), ps(n+1) /qs(n+l)’ p4(n+1) /q4(n+l))

cannot have p,™/[g;™ or p,™[q,™ as vertices for n2n,. Further by (177),
(179) and (180)
3.2

A'™ < 1+ :
14+2x0.84x%x5.2

<% forall nzny,

and hence by (171)

E® > H1+(2x8x4x () 2-2)} > 1.19 forall nzmn,.
Consequently by (173)—(176)

N/®N/® > 142x1.19x (1+§) > 5.1 > 4.2, 15554,

for all n 2 n,, and hence if for some n=n,

FQ(p 1(n+1) /q 1(n+1), P. 2(% +1 /q 2(n+1), 293("+1) /q 3<n+1), P, 4(n+1) /q 4<n+1))
= FQ(p,/™/qy'™, 2" ™[g5'™, ps"™a5"™, P/ ®[4"™) »
we must have case (i) in theorem 8.

In the continuation we shall suppose that case (i) is not present, and
hence by the arguments above

(181 ) FT (pl(n+1) /q 1(n+1), P 2(n+1) /q 2(n+1)’ 1’3("+1) IQ3("+1): P, 4(n+1) /q 4(n +1))

has p,™[q,® or p,M[q,™ as a vertex for all n=n,.
In both cases it follows from (178), (179) and (180) that
.3

(182) An+D < ——l-—l-—?’——’——,—, < 1.6 forall n2n,,
$+0.84—-% 5



290 ASMUS L.SCHMIDT

and hence by (171), (179) and (182)
(183)  k®+D > {1+ (8x4.2x5.224+8x1.6%x2.6"2—-2)1} > 1

for all nzn,. Now, if p,™[q,™ is a vertex of (181),

(184) A®HD = 14 2k™(1 4+ AW7) > 142(14+1.6-1) > 4.2

for all n2ny+1, by (174), (182) and (183). By (179) and (184), p,™/g,™
can be a vertex of (181) only for n=mn,, and consequently we must have
cage (ii) in theorem 8.

This proves theorem 8.

THEOREM 9. Let & ¢ Q(12%) have the approximation constant C(£)<
1.733, and suppose that & is contained in an infinite number of Farey tri-
angles. Then & has the approximation properties described in example 2,
especially

En~ }1+13Y) and C(§) = 3.

Proor. Since
C(¢) < 1.733 < (2(1.0414+ 1/1.0414)—-1)* = 1.7330007...,

there exists a positive integer n, such that any ¥FT(p,/q1,0s/92 Ps/qs),
N;2N,2>N,, with NV = n, and containing &, satisfies the inequalities

(185) ¢; = (Nd(j,8) < 1738 for 15j<3,

where d(j,&)=|p;/q;—&|, and hence

by lemma 7 with A=1 and f,=1.0414. Further, since & is contained in an
infinite number of Farey triangles, there exists a FT (p,/q;, Ds/qs, 5/45),
NgzN,zN,, with N=n, and containing £ For any Farey triangle
having those properties
N’ 2 5N +6(2N2—4(A2+2)(A+2)"2N2)t
> N{5+6(2—4(1.0852+2)3.085-2){} > 9.8 N

by (67), (72) and (186). Hence by (41) and (186)

N[Ny = (N3’ +N3)[Ny—1 = }(N'+N)[Ny— 1
> 3.6N/(1.085N/3.085) — 1 > 9.2,

whence
(187) (3N4/Ny')t < #.
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Now from (18), table 3, (187), the inequalities N;= N,= N, and the cor-
responding inequalities N;' < N, < N,’ arising from (41) we deduce
d(1,2') = d(1,8) = (3/(N, Ny )t < N, 7,
d(2,1') = d(2,8) = (3/(N Vo)) < 4N,
d(3,1') £ d(3,2) = (3/(NsNy))t < 4Ny,
where d(j,k') = |p)/a;—pi'[2:'l, T +E.
It follows from these inequalities and from (185) (cf. fig. 10) that ¢
is an interior point of ¥T(p,' /gy, P (9,5’ [¢5'), and since N'>9.8N >
N =z n,, it follows by induction that £ is contained in a chain of Farey

triangles
FT (p,™[q,™, ps™ (25", ps™[q5™), nZ0,

beginning with ¥T (p,/q,, p/q2, Ps/gs) and having

FT (p,n+V[g D, p,a+D) g™ +D, pam+D) [g5™+D)

= FT(ps'™[q5'™, p'™[q,'™, p,'™g,"™)
for all 0.
This proves theorem 9.

m="17.

The result of the investigation of the approximation spectrum is
described in the following two theorems.

TreEOREM 10. Let & & Q(17%) have the approximation constant
C(E) < (2Tt —2)t = 1.8142...,

and suppose that & is contained only in a finite number of Farey triangles.
Then & has the approximation properties described in example 7, especially

£~ Hl+o+(B-w)}) and COF) = 8.

Proor. By the assumption of the theorem, & is contained only in a
finite number of Farey triangles, and hence let FQ (p,™/q,™, p,™/gq,™,
Ps™[gs™, p,P[q, ™), N®W = N™= N,™M= N,®, n>0, be a chain of Farey
quadrangles of type (2}, 2t) containing £. Since

O(8) < (2-TH—2)F = (2(4(TH+ 39 + (T —34) - 28,
there exists a positive integer n, such that
(188) A® = N ®[Nm™ < }(T¥+34)2 = }(5+21F) = 4,

for all n=n, by lemma 7 with 4=2% and f,=3(7t+3!) applied to the
two triangles
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T (p1(")/91("),172(")/‘12("),2’3(")/913(”)) and T(Pl(n)/%(n)’p4(")/94("):Z’s(")/%(n)) .

Now we distinguish between the two cases a) and b) according as the
subdivision of FQ(p,;™/q,™, p,™ /g™, ps™[qs™, p™[q,™) is as in fig. 14a
or as in fig. 14b. For reasons of simplicity we shall leave out the index
(n) in these considerations.

a) Let N,/N,=4, then by (71), (72) and (172)

(189) N, +N, = IN{3+ TH{4A(A+1)2+4A(A+1)-2—1)}} ,
and by (61a) and (172)
A4 1

190 — = - _ (=
(190) N,-N,=N,-N, (/1+1 m)

N
—2—0
By (189), (190), two concavity inequalities, and 114 =< 4,,
(191) N, = IN{3+3TH(4A(A+1)2+42(A+1)2 1)} +
+A)(A+1)=1/(+1)}
2 N min[{$+373(84(A+1)2=1)t+ (A-1)/(A+1)},
{#+37H(4A(A+ 1))+ 4[(A+1) - 3}]
2 }N min[§+ 374, §+4;214,24+211]
= IN(2+321%),

Hence by (172) and (188)
N,/N, > 3N(2+3218)[(3NA/(4,+1)) = }(11-21%) = 1.60... .

Since & is contained in one of the two Farey quadrangles (cf. fig.
148) FQ(P./9.P5/95 Pal90P1/71) OF FQ (P[40 Dol Ps/3:D2l22); We have
N,/N, < 4, by (188), and hence
A = NoNy = (N |N,)(No/N,)
s (N /N)NyN,)
< §(5+219)/(3(11 - 21¥))
= 4(38+8-21}) = 2.98... < 3.

Consequently, since 1<3, we obtain by (191), (188), two concavity
inequalities, and 1243, A£454,,

N, z N min[{§+37H(44(A+1)2)i + A[(A+1) -4},
(B +37T(4A(A+1) 2=+ A/(A+1) - ]
2 N min{$+37,5+ 4213, 2+ } 144,74 1184+ 4218}
so that
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(192) N, =z INGE+317).
Also, since 1< 3, we obtain by (189), (190) and (188)

2Ny > N{§+}7H(440( Ao+ 1) 2= )i+ {1 - Ao/(4o+ 1))},
so that

(193) 2N, > N(1-421%) = Nx0.836... .
Now by (172) and (188)
(194) 2N, = NAJ)(A+1)

< NAy/(Ay+1)
= N(}+421}) = Nx0.827...,
and hence by (193) and (194)
(195) N, > N,.
b) By (189) and (188)
Na+Nﬁ > N{% + %7}(8/10(/10-'-1)‘2— 1)“} = N ’
and by (61b), (172) and (188)
Ng—N, = Np—N,; = IN(A/(A+1)=A[(A+1))
> %N(%—AO/(AO"' 1)) )
so that the inequality (193) is valid in this case also. However, since the
inequality (194) holds in both cases, the inequality (195) is also valid in
this case.

From the validity of (195) in both cases a) and b) we conclude that
in any case

P1("+l)/91(”+1) = Pa(")/%m): Pz(n+l)/92("+1) = pﬂ(’n) /gﬁ(n)

for all n=n,y, and hence figs. 14a and 14b show that the subdivision of
FQ (1, ™[q,™, 2™[q5™, ps™[q5™, p™[q,™) is as in fig. 14a for all n = my+ 1.
Consequently by (192) and (172)

Am+D = N oD N ) > N ®[N,® > IN(3+37)/(IN) = 3+37
for all n=2ny+ 1. On the other hand, by (192), (172) and (188)

N D[N @D > IN(§+37)/(3NAe/(Ae+1)) = §(3+T74)(7—21}),
for all n=n,, and hence

N“(n+1) /N 3('n. +1) (N“(n+1) /Nl(n+l))(N 1(‘n+1) /Na(n+1))
> R(B+THHT—21F) = 4.81... > 4, = 4.79...

for all n=mn,+1. By (188) this implies (cf. fig. 14a) that

Math. Scand. 21 — 19
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FQ ( P 1(n+1) /ql(n +1), P 2(n+1) /q 2(n+1)’ P, 3(n+1) /q3("‘+1), P, 4(n+1) /q 4(n+1.)
= FQ(p,™[q,™, 0™ [q,™, ps™[q,™, p,™[q,™)
for all n=ny+2.
This proves theorem 10.

TrEOREM 11. Let & ¢ Q(i7}) have the approximation constant C(&) <7,
and suppose that & is contained in an infinite number of Farey triangles.
Then & has the approximation properties described in example 3, especially

£~ 3(1+143Y) and C(&) = 3%.
Proor. Since
C(&) <1< (2(2.045+1/2.045) —2)t = 1.751 ... ,

there exists a positive integer n, such that any Farey quadrangle of
type (24,2}), FQ(p1/q1, Do/q2 D5/, Ps/4s); N1ZNyz Ny2 Ny, with Nz,
and containing &, satisfies the inequality

(196) Ap = NyJN, < 2.045% < 4.2
by lemma 7 with 4= 2% and f,=2.045 applied to the two triangles

T(p1/91, Pol92-P5/9s)  and  T(py/qy, Pa/d4, P3/d5) -
Similarly, since

C&) <i<(2V3+V3) -1 = 1L755...,

ny may be chosen, such that also any Farey triangle ¥'T (p,/q;, Ps/q5, Ps/45),
Ny;=zN,=N,, with N =n, and containing &, satisfies the inequality
(197) Ap = Ny[N, < }

by lemma 7 with A=1 and f,=V3.
Further, since & is contained in an infinite number of Farey triangles,

there exists a FT (p1/qy,02/q2Ps/q5), N3s=Ny= N, with N=n, and con-
taining & For any Farey triangle having those properties

N’ z §N + §TH(N2—2(A,2+2)(Ap +2)2N2)}
> NE+37H(1-2((32+2)(3+2)%)#} > 4.6N
by (70), (72) and (197). Hence by (57) and (197)
N/|N; = (N;/ =N;)/N; +1 = }N'=N)/N; + 1
> L2N/(3N/4) + 1 = 4.2

for j=1,2. From this result, the inequalities N3= N,>= N, and the cor-
responding inequalities N,' = N, 2 N,’ arising from (57) we deduce
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(198) Ng|N, > 4.2, Ng|N, > 4.2, N,/|N; > 4.2.

It follows from (196) and (198) (cf. fig. 13) that £ is an interior point of
FT(p, g1, 05 [45',0s'[g5"), and since N’ > 4.6N > n,, it follows by induction
that & is contained in the chain of Farey triangles beginning with

FT(p1/q1, Pa/25 P3/45)-
This proves theorem 11,
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