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THE DECISION PROBLEM FOR
SEGREGATED FORMULAS IN FIRST-ORDER LOGIC

M. R. KROM

1. Introduction.

We consider the decision problem for satisfiability for certain first-
order prenex conjunctive formulas which we call segregated because each
disjunction has only negated atomic formulas or only unnegated atomic
formulas.

Let € be a given first-order predicate calculus without equality and
let I be the set of positive integers. We use v, A, and — for the propo-
sitional connectives disjunction, conjunction, and negation, respectively;
we use 1 and V for the existential and universal quantification operators,
respectively; we let P,Q,,Q,,. .. be arbitrary (possibly empty) strings of
quantifiers; and we let «,;, o;;, and §;;, for ¢, j € I, be variables over the
set of atomic formulas. For any k € I we let S} be the set of formulas

of the form n i)
P[AV s AV =g

t=1 j=1 r=1s8=1

and we let S; be the set of formulas of the form

[K{(}“zﬂ‘/\v—'ﬂn]’

t=1 j=1 r=1¢8=1

where m, n € I and t € I'. We show here that if & has predicate letters of
arbitrarily great rank then S3nS; and S§nS; are reduction classes for
satisfiability (cf. page 32 of [9]). In addition we provide a decision proce-
dure for satisfiability for the formulas of 8tusSy. Thus, in particular,
S} is a solvable class while 8} is a reduction class. Our decision proce-
dure is a generalization of a result of J. Herbrand given on pages 44 and
45 of [4] and listed as case V' on page 256 of [2]. The result of J. Her-
brand is a decision procedure for satisfiability for formulas in S} nSy.

2. Reduction classes.

We first describe a simple procedure for replacing a prenex conjunc-
tive formula with a formula of S§nS; that is equivalent to it with
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respect to satisfiability. Let X be a formula of any pure first-order
language without equality and without function symbols of the form

Q [[Mlv Mz]/\iéNi]

where n € I and M,, M, and N, are disjunctions of negated and unnegated
atomic formulas. Let F be a predicate letter of rank at least as great
as the number of individual variables occurring in M, and such that F
has no occurrence in X. Let F be an atomic formula obtained from F
by attaching the individual variables that occur in M, to its argument
places. We say that

X = Q[[MlvF]A[ﬂFszlAAI“i]

is obtained from X by a subdivision of a disjunction. We observe that X
and X are equivalent with respect to satisfiability.

Suppose M is a model of X (cf. page 51 of [8]). We expand I to a
model 9}’ for X by introducing a relation & for the predicate letter F
in a suitable way. We include in the relation § only those ordered sets
of individuals which correspond to an assignment of individuals to the
free variables of F for which M, is not satisfied over 9. It follows that
any assignment of individuals of I and M’ to the individual variables
of M,vM, which satisfies M,v.M, over I also satisfies

[M,v F]A[—F v M,]

over M'. Thus any assignment of individuals of I and M’ to the indivi-
dual variables of the matrix H of X which satisfies H over IR is an as-
signment to the individual variables of the matrix H of X which satisfies
H over 3¢, and we conclude that M’ is a model of X. Conversely, sup-
pose X’ is a model of X and let X be the structure obtained from X’ by
deleting the relation corresponding to the predicate letter F. The matri-
ces H and H contain the same individual variables and by comparing
their truth values over X and X', respectively, for assignments to these
individual variables we see that X is a model of X.

THEOREM 1. There exists an effective procedure for obtaining, for any
first-order prenex conjunctive formula X without equality and without func-
tion symbols, a prenex formula X with the same prefix as X such that
X €8:n8S; and X is equivalent to X with respect to satisfiability.
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Proor. The procedure consists of successively subdividing disjunctions
first to reduce to ternary disjunction and then to introduce segregation,
and the justification for the procedure is explained above.

TreEOREM 2. The class of first-order formulas without equality, without
function symbols, and without free individual variables, in which exactly
two predicate letters occur, both binary which have the form

YaVbVodd,...3d,M,

where M is a matrix in conjunctive normal form in which one disjunction
has three terms and all other disjunctions have two terms, is a reduction class
for satisfiability.

Proor. We start with a known reduction class R consisting of all first-
order formulas without equality, without function symbols, and without
free individual variables, in which exactly one predicate letter occurs, a
binary one, which have the form YaVbVc3d,...3d, M where M is a
matrix in conjunctive normal form, cf. the first item in the list of reduction
classes for validity which begins on page 278 of [2]. Let F be a binary
predicate letter which does not occur in the formulas of f and let

Y =VaVbVcIdAe[[-Fabv —Fbcv Fac] A [Faa v Faa] A
A [*—;Fde v ——1Fde]] .

Notice that any structure X is a model of Y iff its interpretation for F
is a relation which is reflexive and transitive on its domain and which
does not hold for some two, necessarily distinct, elements.

For any formula X in the known reduction class it we will show how
to obtain a formula X* which is equivalent to X with respect to satis-
fiability and which has all of the properties specified in the description
of the class given in the statement of the theorem. For any X e i we
first determine whether it is satisfiable in a one element structure (cf.
problem 3, page 70, of [8]). If X is satisfiable in a one element structure
we let X* be Ya Vb Vc[Faav—Faa]. For any X € R which is not satisfi-
able in a one element structure we first obtain a formula X by replacing
each of its conjuncts which are disjunctions of the form N,v...vN,
with corresponding formulas of the form

Jey...3e, o [[Nyv Fees] A[Nyv Fegeg]A ... AN, v Feyey ] A
A[—Fesery v —Fesep]] -

Then we let X* be the result of exporting quantifiers from Xa Y so that
X* is logically equivalent to XA Y and so that X* has a prefix of the
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form YaVbVc3d,...3d,. Thus X* will belong to the class of formulas
described in the theorem; the only ternary disjunction of X* will be
that conjunct of ¥ which defines transitivity. For any X € R such that
X has no one element models, if 9t is a model of X let M’ be any structure
obtained from I by introducing a new relation for the predicate letter
F which is reflexive and transitive on the domain of 9 and which does
not hold for some two elements. Then IR’ will be a model of X*. Con-
versely, for any X € R such that X has no one element models, if I is a
model of X* then the structure obtained from IR by deleting the rela-
tion corresponding to the predicate letter F is a model of X. The proce-
dure we use here to simplify disjunctions is exactly the method presented
in Theorem 1.4 on page 319 of [1], cf. also the last paragraph on page
320 of [1].

THEOREM 3. For any first-order predicate language without equality,
without function symbols but with predicate letters of arbitrarily great rank,
the classes S§n S5 and 8NS5 are reduction classes for satisfiability.

Proor. Any formula in the reduction class described in Theorem 2
above can be transformed into a formula in S{nS; (in S;jnS7) by
successively subdividing its disjunctions as described in the first para-
graph of this section. Note that a formula obtained by such a trans-
formation will still have a prefix of the form described in Theorem 2
and it will have exactly one ternary disjunction.

Although it is known that a ternary disjunction is necessary to define
transitivity, cf. [6], it is not known whether a ternary disjunction is
necessary in these reduction classes. Thus it is not known whether
83n 83 is a reduction class for satisfiability. However, by properties of
the negation of formula (1) on page 233 of [2], it is known that the decision
problem for satisfiability for SfnS; is not finitely reducible, cf. page
69 of [7]. In [5] a decision procedure is provided for a class of formulas
in which all disjunctions are binary but the class does not include all of
Sin 8.

3. A decision procedure.

We will use, in a limited way, the proof theory of Linear Reasoning
introduced by W. Craig in [3], but we will restate all of the definitions
and facts that we need from that theory. From the eleven one-premise
rules of inference used in Linear Reasoning we need only the four that
we list below. To state these rules we let M,,M,,... be the arbitrary
quantifier free formulas, we let « and y be arbitrary individual variables,
and we let ¢ be an arbitrary individual term.
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PlQM A . AQuMon... AQ,M,]
PQM A . . AQM AQuMun .. AQ M,

Duplication:

PlQM A . .AT2Q M, (2)A...AQ, M, ]
p 3:‘/[Qlﬂll’\ e AQmMm(y)A e AQnMn]’

where (1) Q,, M ,.(y) is the result of substituting y for the
free occurrences of z in @, M, (x), (2) y is free at the
free occurrences of z in @, M, (x), and (3) ¥ does not
oceur free in @, M, k+m, nor in 32Q, M, ().

J-exportation:

V-exportation: same as J-exportation, with Yz and Yy in place of Jx
and 3y, respectively.

Q1 VyQ M (?_/2

QuQ:M(t)
where (1) @,M(t) is the result of substituting ¢ for the
free occurrences of y in @,M(y) and (2) t is free at the
free occurrences of y in Q,M (y).

Y-instantiation:

For any formulas X and Y, an L3-deduction of Y from X is an ordered
n-tuple (X,,...,X,), where X;=X and X, =Y, together with a specifi-
cation of how, for any m, 1<sm<n, X,,,, results from X,, by an ap-
plication of one of the four L-rules listed above.

LemMA 1. For any prenex formula X of R, X is not satisfiable iff there
exists an L-deduction from X of a prenex formula Y with a truth function-
ally inconsistent matriz.

Proor. By the consistency of the L-rules, X is not satisfiable whenever
such an Lé-deduction exists.

Conversely, suppose that X is a prenex formula which is not satis-
fiable. Let C' be aa—«x where « is any predicate letter of rank zero
which does not occur in X. By Theorem 2 of [3] (a completeness theorem
for Linear Reasoning) there exists a symmetric L-deduction © of C
from X. A symmetric L-deduction consists of a succession of applica-
tions of eleven one-premiss rules of inference in a specified order. This
specified order requires that all applications of a rule called matriz change
occur together and in the middle of the deduction. The rule matriz
change is a rule that allows one to infer PM’ from PM where M, M’ are
quantifier free and —M A M’ is tautologous. Since all applications of
matrix change occur together and the prefix is left unchanged with this
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rule, we may assume that there is exactly one application of matrix
change in . We report also that matrix change is the only one of the
eleven L-rules which can be applied to a premiss in such a way as to
introduce a new predicate letter that does not occur in the premiss or
in such a way as to exclude all occurrences of a predicate letter that
does occur in the premiss.

Let PM’ be the formula obtained from PM by the application of
matrix change in . Then M and M’ have no predicate letters in com-
mon and M’ is not tautologous so M must be contradictory.

We report further that the only L-rules that can occur in a sym-
metric L-deduction before the application of matrix change are the four
rules listed above for our definition of Ls-deduction and an equivalence
rule, V-vacuous introduction, which consists of introducing a vacuous
universal quantifier into the prefix. We obtain an L3-deduction fromX
of a prenex formula Y with a truth functionally inconsistent matrix by
modifying the initial part of © to the point of the application of matrix
change by omitting any steps justified with the rule ¥-vacuous introduc-
tion and by deleting corresponding occurrences of universal quantifiers
in succeeding formulas.

An Ls-deduction will be said to be of order k in case in includes ex-
actly h applications of duplication.

LemMma 2. Let X and Y be prenex formulas such that the matriz of X is
i conjuctive normal form and such that there exists an Lé-deduction of Y
from X. Then the matrix N of Y is tn conjunctive normal form and for any
h conjuncts C4,. . .,Cy, of N there exists an Ls-deduction from X of order <h
of a prenex conjunctive formula Y' with a matrix in which C,,...,C,
occur as conjuncts.

Proor. We will say that a formula is conjunctive in case the formula
obtained from it by deleting all of its quantifiers is in conjunctive normal
form. We observe that an application of any of the four L*rules to a
conjunctive formula produces a conjunctive formula. It follows that if
there is an L3-deduction from a prenex conjunctive formula X of a prenex
formula Y, then Y is conjunctive.

Let © be any L3-deduction of a prenex conjunctive formula Y from a
prenex conjunctive formula X. For each occurrence of a conjunct in
the matrix of Y we will define a unique predecessor in each preceeding
formula of ©. For any occurrence of a formula X; of £ which is intro-
duced by an application of duplication, the occurrence of the connective
A between the two identical conjuncts produced in the duplication will
be called the center of X;. The predecessor in a formula X; of © of an
occurrence of a conjunct in the next formula, X;,,, of © is the occur-
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rence of the conjunct of X; in the same relative position where in the
case of an application of duplication the position is determined by
counting from the left for an occurrence of a conjunct left of the center
and by counting from the right for an occurrence of a conjunct right of
the center. The predecessor in any earlier formula of an occurrence of a
conjunct is defined as required so that the relation of predecessor is the
smallest transitive relation including the elements just described.

For any k conjuncts Cy,. . .,C; of the matrix of ¥ we will show how to
modify © to obtain an Ls-deduction from X of order <% of a prenex
formula Y’ with a matrix in which C,,...,C), occur as conjuncts. To
obtain the required modification of £, first specify particular occurrences
of Cy,...,C, in Y and then omit any application of duplication in £
unless the two identical subformulas produced each contain a predeces-
sor of one of the specified occurrences of C,,..,C,. When an application
of duplication is to be omitted select one of the two identical subformulas
produced by it to be deleted and delete in all later formulas any sub-
formula whose predecessor is in this selected subformula and also delete
any quantifiers exported from deleted subformulas. If just one of two
identical subformulas produced in an application of duplication contains
a predecessor of a specified occurrence of one of C,...,C,, then select
the other of the two identical subformulas to be deleted in omitting that
application of duplication.

TaEOREM 4. There is a positive solution to the decision problem for
satisfiability for formulas of SfUST in any first order language without
equality.

Proor. A quantifier free formula M in S (in 87) is contradictory iff
it contains as one conjunct a disjunction of negated atomic formulas
(of atomic formulas) and as other conjuncts each of these (the negation
of each of these) atomic formulas. Thus a quantifier free formula M in
STus; for which the largest number of terms in any of its disjunctions
is k, is contradictory iff some subconjunction of <%+ 1 of its conjuncts
is contradictory.

Let X be any prenex conjunctive formula in S} (in 87) and let A be
the largest number of terms that occur in any disjunction in X. By
properties of the Ls-rules, if there is an L3-deduction from X of a prenex
formula Y, then Y isin S (in 87) and h is the largest number of terms
that occur in any disjunction in Y. By Lemmas 1 and 2, X is not satis-
fiable iff there exists an L5-deduction of order <%+ 1 of a prenex formula
with a truth functionally inconsistent matrix. But for any prenex for-
mula X and any & € I, one can easily determine whether there exists an
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Ls-deduction of order <h+1 from X of a prenex formula whose matrix
is contradictory. One could make a finite list of L3-deductions and be
sure that any L®-deduction of order <4+ 1 from X would be essentially
the same as a member of the list. An inessential difference in L#-deduc-
tions as far as determining whether the matrix of the resulting formula
is contradictory is in different choices of individual variables introduced
in some applications of V-instantiation. Except for this inessential dif-
ference there is an easily obtained finite number of different sequences
of applications of the given rules of inference starting from a given
formula X and including no more than %+ 1 applications of duplication.
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