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ON THE STRUCTURE OF THE ORTHOGONAL GROUP

OMA HAMARA

Let V be a vector space over a field k of characteristic + 2, let @ be a
non-degenerate quadratic form on V. Let G=0(V,Q) denote the group
of all isometries of V. We shall place a topology on O(V,Q) such that
O(V,Q) becomes a topological group which is discrete if and only if V is
finite-dimensional. Further, the classical structure theorems for O(V,k)
in the finite-dimensional case carry over to the infinite-dimensional
situation for the topological group O(V k) (see [1, Chapter V]).

1. Preliminaries.

Let, then, (V,Q) be an arbitrary vector space over a field of character-
istic +2 with non-degenerate quadratic form ¢. Call such a space a
@-space hereafter. Let G@=0(V,Q) be the orthogonal group of all iso-
metries of V. Let &, & be respectively the set of all finite dimensional
non-singular subspaces of V, and the set of all subspaces of V. Let & be
the set of all subgroups of G.

We define two maps: ¢:& >, y:# —~ & as follows: If Eeé,
H e s, then

o(B) = {oc € G| o|g=identity on E}
and
x(H) ={zxeV| o@)=zforall ce H}.

Some of the properties of these two maps are:

(i) If E,cE,, HicH,, E,e&, H;e X, then o(E,)20(E,), x(H;)=2
x(H,), that is, g, x are order reversing.
(i) If E€ &, He H, then yoo(E)2F and goy(H)2H.
(iii) If B, € &, E,€ &, E,<E,, then o(E,)>o(H,).
(iv) f E€ &, He H, then go yoo(E)=p(E) and yogo y(H)=y(H).
(v) If E € &, then yoo(E)=E, 80 y00|s,=1g,
(vi) Let 0 € @, E € &, then o(o(E))=0 o(E) o7

Proor. We shall prove only (iii) and (v); all the others are more or
less obvious,
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(iii): Let V=E, 1 E,* where E* denotes the space {y € V | y L E} for
any space E € &, so that E,> E, implies the existence of an = € I/, such
that zxe B *. Let o=1p L (—1g.), then 0€ @ and o(x)=—2z. Also
o|g, =identity on E,, so o € o(¥,), o & o(H,).

(v): Now yoo(E)2E for all Ee€é and poyop(E)=p(E) by (iv).
Hence, if yoo(E)>E € &,, then o(yoo(E)) <p(E) contradicting (iv).

2. The Topology on O(V)=G.
Let #={U | U=9g(E), E€ &y}=0(&,). Then we have:

(i) If U,,U,e %, there is a U € % such that U<=U,nU,.

(i) f Ue%, then UU=U, U-1=U.

(iii) If Ue, o€, then there is a U’ € % such that cU'6s-1cU.
(iv) Nyeg U={1y}.

Proor.
U,nU, = o(B)No(E,) = {c€@| ox)=2 for xe E,UE,}.

Let E € &, be such that E’gEluEz. Then
U = o(B) < o(Er)no(Ey) = UnU,.

(ii) This is obvious.
(iii) Let U=p(E), E'=0"YE), U'=p(E’), then E'€ 6, as Ee &,.
But then
o(o(E")) = o(E) = U = o(p(E"))or = ¢ U' 7.

(iv) Let 0 € N4 U, then o€ g(£), for all E € &,, hence o(x)=x for
all ze E, for all E€ &,. But Ug , E=V. Hence c=1,.

These facts imply that % may be taken as a fundamental system of
neighborhoods of the identity for a Hausdorff topology on G'=0(V,Q).
We shall call this the finite topology (see [3]).

TaEOREM 1. G=0(V,Q) with the finite topology, is discrete if, and only
if, V is finite-dimensional.

Proor. If V is finite-dimensional, then clearly @ is discrete, {1} is
open and, hence, there is a U € % such that U< {1}, so
U = o) ={1,} forsome E€é&,.
Let z€ V and E, € &, be such that E,>{x}uE. Then
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o(E,) < o(E) = {1,},

so B, =E by (iii) of section 1. As x was arbitrary, £ = V. This completes
the proof.

If £ € &,, then g(E) is, of course, an open subgroup and, consequently,
closed. But we have more generally

PRrOPOSITION 1. Let E € &, and let G=0(V) have the finite topology,
then H=o(E) is closed and for any H € # oy(H)2H. Hence p maps &
onto the set S of all closed subgroups of G.

Proor. Let o€ H, He #. Then for any E,c &,, we must have
olBy)onH+0. If xe Egy(H), x+0, let E e &, be such that xe€ £ .
Then there is an 7, € o(£,) such that n, o € H, so that n,lo|p=1,.
In particular, o(x)=n,(x)=2, as 5, € o(£,). Thus o(x)=x, for all x € E;
hence o e H. So H=H, the closure of H. Next, since H<p(y(H)) is
closed, H co(x(H)). This completes the proof.

Notice that if 4={+1,}, then 4=A4<O(V)=0(y(4)).

Prorosrrion 2. If (V,Q) is infinite dimensional, then O(V,Q) is a
totally discomnected non-locally compact growp.

Proor. Let E, € &, be such that dimE,>2, then V=K, | E.*, o(E,)
is an open subgroup of G and, hence, is closed. Further, Ng o o(E)=
{1}, so O(V)=@Q is totally disconnected.

In order to prove that G is not locally compact, it suffices to show that
G itself is non-compact since p(E’)=G’ compact would imply that
O(E"*,Q|g,s), the finite topology of which is the inherited topology from
O(E,Q), would be compact. So we let G, =p(E,), dimE, =2, £, € &, and
consider the left coset space O(V,Q)/G,=G/G,. Suppose that ¢ is com-
pact, then the natural map =:G — G/G, shows that G/@, is compact.
But G,=p(#,) is open and, hence, ¢@G,=d € GG, is also open. Thus
GG, is discrete and, therefore, finite. Consider next two cases:

(i) % infinite. The elements of O(E,) may be identified with the ele-
ments of the subgroup O(E,)L1g. of G. Denote this group by G,.
Then 7,7" € G5, =1 mod@, if, and only if, 7’17 € G¢. But Gy,ne(¥,)=
{1}, so ¥'=t. Therefore, since G, is infinite, G/, is an infinite set.
This contradicts compactness; hence @ is not compact.

(ii) If £ is finite, then we use lemma 1, proved in the next section, to
provide us with a sequence of subspaces F'y,F,,..., such that F, L F;,
j#*1, and F; are hyperbolic planes. Then construct the following maps
o; such that o;: F; - F; isometrically, and extend o; to V (see [4]).
Choose E, to equal F,. Then n: o; — ;, and
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5:i = 6']' <:>0'j‘10'iEG1 = Q(El) .
For if i +j,
of o1
o;to;: By = F; %> o (F,) + By,

hence 0;70; ¢ ;. Thus again we have an infinite set ¢//G; which con-
tradicts compactness.

Let Qr={ceG@=0(V)| oc€o(E*), E € &}=group generated by all
g € ( such that o leaves E* elementwise fixed, where £ € &, V=E | E*.
We have

THEOREM 2. Using the finite topology on O(V), we find that the group G
is dense in O(V), that is, Gp=0(V).

ProoF. Let e G=0(V). We have to show that ¢ € G, that is, for
all E € &,, there is a 5 € o(E) such that oy € G, or that there is a 7 € G
such that o-l7r=7 € o(E). Let E°=0c(E), then let £, be a finite dimen-
sional semi-simple subspace of ¥ such that E,2 E+ E°. Now V=E, | E*
and o: E - E°, with E,E° both contained in E,; hence, by Witt’s Theo-
rem, we can extend ¢ to ¢’ in O(E,). Let 1=0"11g., then clearly 7€ G
and ve€@yp. Further, o-lt|y;=0"10|yp=1f; hence o-'7€g(E). This
proves the theorem.

3. The structure of O(V, Q).

In this section we wish to generalize, to infinite dimensional @-spaces,
a number of results which will aid us in considering further the structure
of the orthogonal group O(V). Some we state without proof. Many
times we will use the notation: fo(»,y) =2y, for x,y € V, f, the associated
bilinear form.

Lemma 1. Let (V,Q) be a semi-simple Q-space over k. If dimV =2 and
k is finite, then for any a €k there is a x €V such that fo(x,x)=a. If
dim V=1 and V has isotropic vectors, then when k is any field and for
any a €k we can find x € V so that fo(x,x)=a.

Proor. For infinite dimensional ¥ the proof is as in the finite case
(see e.g. [1]).

CoroLrARY. If (V,Q) ts as tn the lemma with dim V = 3, then V contains
isotropic vectors if k is finite.

Let Z(V,Q) denote the center of O(V,Q)=G and O(V,Q)’ the group
theoretic commutator subgroup of O(V,Q). Let Q4(V,Q)=(Gr)’, where
Gp was defined in section 2. Let Q(V,Q)=0(V,Q)’, the closure of the
group generated by the commutators.
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LemMa 2. Let (V,Q) be a semi-simple @Q-space, S a two dimensional
non-singular (semi-stmple) subspace.
Unless S is a hyperbolic plane and k= GY(3), there is a map o € 2,(V.Q)
such that S*={x e V| o(x)=x}.

Proor. It is well known that there is a o’ € £(S,Q) such that ¢'(x) =
for all 02 € 8. Define o as: 0=¢"1L1g (V=818*%), then 6: V >V
and is clearly in 2,(V,Q). This ¢ is the element that works.

Lemma 3. If (V,Q) is a semi-simple Q-space with dimension =3, let
o e O(V,Q) be such that ar=ra for all 1€ Q4x(V,Q).
Then o= £ 1.

Proor. First we show that if fy(x,7)+ 0, then o(x)=ax,a €k, a= £ 1.

a) Assume k+GF(3). Let = be such that fy(z,x)+0, let S(x) be the
space of z. So V=_8(z)L S)* and dimS(x)*=2, so that there is an
element y € S(x)* such that f,(y,9)+0, x Ly. Let S=.8(x,y) be the span
of z and y, S is then semi-simple. Lemma 2 implies the existence of
0 € 25(V,Q) such that S*={ze V| o(z)=2}. Let ze 8*,

e(o(2)) = ao(2) = o(2) ,
hence ¢(z) € S* for any z € S*; so that ¢(S*) < S*. Similarly, since o=
eo~1 for all g € 24(V,Q), we get that o~}(S*)< S*, and hence ¢(8*)=8*.
Consequently o(S)=8. Now dim S*=1 and is semi-simple; so that there
is a y’' € 8* such that f,(y',y') +0. Apply the same argument above to
S"'=8(x,y’) and get that ¢(8')=8". Hence

a(Sn8’) = 8n8' = S(x);

so that o(z)=ax (a= +1).

b) Let k=GF(3), hence k*= +1. By lemma 1, since dim¥V 2 2, for
any a € k there is a vector x € V such that f,(z,2)=a € k*. So V=2_8(z)L
S(z)*, dimS(z)*=2, and hence, again there is a y € S(z)* such that
J(,y)=a. Put S=8(x,y). If z=0x+ fy, then

2z = ala+pla = a(a+p?),
80
f(z,2) = 0 <=« and =0 or z=0.

Hence S is anisotropic and not a hyperbolic plane, so that, by lemma 2,
there is a o€ Q,(V,Q) such that S*={z| o(z)=2z}. Then we get as
before ¢(S)=S8.

i) If dimV =4, then dimS8*=2. The same method as in a) yields
ox)=c-x.
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ii) If dim ¥V =3, then dim 8*=1. Take y' € 8%, ¥’ +0; semi-simplicity
of §* implies that f(y’,y’)+0. Hence fo(y',y' )= taeck* If fo(y',y') =
+a, apply a previous argument to get that o(x)=c-z. If fo(y',y")= —a,
then V=_8(x,y,y'). The vectors x + v,y are orthogonal,

fQ(x’x) = fQ(y’y) =a = _fQ(yl>y,) s
and with e= +1

fo@+ey,x+ey) = folx,2)+fo¥,y) = 2a = —a = fo(y',y') .

Therefore S(z + y,¥’) is anisotropic, and by the previous argument we get

o(S(x+y,y)) = Sx+tyy).
Hence
oSz, y)nS(x +y,y")] = Sx,y)nS(x+y,y’) = S(x+y);

so we get g(x+ey)=c;(x+ey), 1=1,2. But (x+y)L(x~y), and x+y,y
is an orthogonal basis of V; so that o(y’)=cy’, hence o(z)=c-x.

Take now any finite dimensional subspace S of V. Let 8" be a finite
dimensional semi-simple subspace of V containing 8. Let z,,...,x, be
an orthogonal basis of §’, then o(x;)=c;x;.

So: a) If fo(x,+ g, 2, +2,) %0, then

0@y + ) = (T +X5) = €121+ Co %53
so that c=c¢;=c¢,.
b) If fo(x, + 2,2, 4 2,) =0, then

Q1+ 23+ 73) = Q2,4 2,) +Q(x3) = Q(x3) + 0 dimVz3.
So that

3
o(@y+ 2+ %) = c(@y+Xp+a5) = 3 0y,
, i=1
and hence c=c¢,;, 1=1,2,3.
Thus we get ¢;=cy=...=c,= +1. Then clearly from this we get
that o= +1,,. This completes the proof.

CoroLLARY. Z(V,Q)={+ 1}, when (V,Q) is a semi-simple @-space of
dim = 3.

For every finite dimensional semi-simple @-space (W,Q) with associated
bilinear form g, we have from the finite dimensional theory a homo-
morphism 6,, called the spinorial norm, 0,: O+(W) — k*[k*%, where
O+(W) is the group of rotations in O(W). This map is defined as follows:
if =1, 1,,...17,,, where 7, is the symmetry defined by x, that is, if

) =y - 2a,
zx
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then
0p(0) = z 222, .. 2, 2k*2, 2% = xx = gy(a,x) .

Some of the properties of the spinorial norm for (W,g) are as follows:

i) Q(W,g9o)cker0,,
ii) 6,, mapsO+(W) onto k*/k*2, when (W,g,), has isotropic vectors.
iii) If W contains non-zero isotropic vectors, then Q(W,g)=kernel
of 0.
iv) If W=U_1V, then ker0,=0+U)nker0,,.
v) Suppose o=1,"1,,
u-x
T () = u — 22—
z-x
o€ kerf,,, then o€ Q(W,g,). If dim W =2, then ker0,,=2(W,g,) and
each element of (W) is a square of a rotation. If dim W=3, then
ker0,=Q(W) and each element of (W) is the square of a rotation with
the same axis.

We set down the following notation: If U is a finite dimensional semi-
simple subspace of (V,Q) and r « O(U) we shall hereafter identify v with
(T_L IU‘) € O(V).

Lemma 4. Let (V,f) be any @-space. Suppose that k is a finite field and ©
18 an isometry of a subspace U, of V onto a finite dimensional subspace U,
of V. If U, is contained in a finite dimensional semi-simple Q-space W
of V with codim W = 2, then we can extend v to an element o € Qu(V,Q).

Proor. Let W, be a finite dimensional semi-simple @-subspace of V
containing U,, U, and W such that dim (W,/W)=2. Then we can extend
7 to a rotation o of W,, since we can always multiply by a reflection of
W*nW,. Now if g, is a rotation of W*nW,, then g, o also extends 7.
But, since dim (W*nW,)= 2 and k is finite, we know W*nW, contains
elements with arbitrary squares. Hence there is a rotation p, €
O(W*nW,) such that 0,,(0,)=0,,(0), thus 0,,(0,-0)=1, and hence
01°0 € Q(W,,Q|W,). Since dim W,2>3, then W, contains non-zero iso-
tropic vectors; so that Q(W,, @|W,')=ker0,,. Let o=g, 011, then
o€ 'QF( V’Q)

CoroLLARY. If k is finite, dimV =24, and x,y are non-zero isotropic
vectors, then there is a 2 € Qx(V,Q) such that lx=y.

Proor. x is in some hyperbolic plane, as is y. Let v map the first
hyperbolic plane onto the other isometrically and such that rr=y.
Then extend z by the lemma.
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LemMA 5. Let U,, U, be semi-simple isometric subspaces of (V,Q), (V,Q)
a semi-simple Q-space. Suppose that U, is finite dimensional and contains
1sotropic lines. Then there is a A € Qp(V,Q) such that Uy=A(U,).

Proor. Let W, be a semi-simple finite dimensional subspace contain-
ing U, and U,. By multiplying by an appropriate symmetry, we can
find a rotation ¢ of W,, such that ¢U,=U,. Again, we can follow this
by any rotation ¢ of U,. By Lemma 1, we can achieve: 0,,(0)=0,,(0),
since U, has isotropic lines. Hence 4,=¢'0 is such that 6,,(4,)=1, so
that 4, € Q(W,) and U,=A(U,). Then A=4,11,, . is the desired map.

CoroLLARY. If dimV 23 and x,y are non-zero isotropic vectors, then
there is an element € k* such that for any o« € k*, there is an element
A€ Qp(V,Q) such that Ax)=Px3y.

Proor. Let y,5' be a hyperbolic pair, and let W be a semi-simple
subspace of finite dimension, such that z,y,y" are in W. Choose a rota-
tion o € O(W) such that ox=y (possible since dim¥V =3). Let 0,(0)=
pk*?, and let ¢ be a rotation of S(y,y’) such that o(y)=p«%y. Then
6,,(0) = 0,,(c) and A= go is the desired element of 2,(V,Q) (identified with
1.1 4).

Lremma 6. Let (V,f) be a semi-simple Q-space with dim V 25. Let P=
S(z,y) be a singular plane (that is, rad P+ {0}) where a?=y%*+0. Then
there 18 A € Qp(V,Q) such that Ay=y, Az =z, where S(x,z) i3 semi-simple.

Proor. Let S(u) be the radical of P, then P=8(y,u) and x=ay+ fu,
B+0. But 22=y%, hence

2% = o2y + 2ofuy + f2ut = o?y?.

So that = + 1, and we can replace «y by y, fu by u, to obtain x=y +u.
Let H=_8(y)* be the hyperplane orthogonal to y, since u € H, there is
an isotropic vector » € H, such that u-v= —a2. Then we have two cases:

a) k is a finite field: dim H 2 4, so that there is a 4, € (H) such that

Mu=v, A=1gz.14eQ:V,Q).
Hence
My) =y, Ar=AMy+u)=y+v=2,
and
zz = (y+u)(y+v) = y¥*+y-v+y-ut+u-v =20,
zz=a2=y? %+ 0.

Therefore S(z,z) is semi-simple.
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b) k is an infinite field; thus there is a 4 € Qp(H, f|H) such that

Au = af?e, ly =y,
&, chosen as follows:

Ax = A(y+u) = y+ofv = 2.
Then
2=yt =2,

22 =2 Yy+afrv = (y+u)y+af(y+u)v = y*—oapa?.
Then 8(z,2) is non-singular when we can choose § such that
2z =yl—af?2? £ tat.
Since £ is infinite, one can clearly find an appropriate 8 and «.

LEMMA 7. Let (V,Q) be a semi-simple Q-space, x € V such that fo(x,x) % 0.
Suppose o is an tsometry of V which keeps fixed every line L generated by
a vector y such that

¥* = foly.y) = 2.
Then o= + 1, if dim V = 4 for any k.

Proor. Since fy(ox,00)=f,(2,#)%£0, we may assume that ox=2z by
replacing ¢ by — o if necessary. Let H=S8(x)*. We have two cases:

a) H contains non-zero isotropic vectors: Let u e H be such that
u?=0, 0. Since (r+u)?=x? it follows that o(x+u)=e(x+u) where
e=+1. But

o(u) = o(z+u—2z) = e(x+u)—x

is isotropie, hence ¢= + 1. So
ou) = (x+u)—z =wu.

Let y e H. Then y is in some hyperbolic plane of H. But ¢ equals the
identity on any hyperbolic plane of H so that o(y)=y, o(z)=x implies
that o=1;,, hence the original o= +1,.

b) H is anisotropic. Let z+0, z € H. If there are at least six rotations
of the plane P=S8(x,z), then they carry S(z) into three distinet lines
which are kept fixed by o, which gives us, by use of the properties of o
and gx=uw, that oz=2. But if k is finite, then since dim H 2 3, by the
corollary to lemma 1, H has non-zero isotropic vectors, so that we are
in case a). And if % is infinite, then it is known that there are more than
six rotations of the plane P when P is either hyperbolic or anisotropic.
Of course, P is semi-simple.

This completes the proof.
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Now we generalize to infinite dimensions a proposition which is prac-
tically the result we want (see [1]).

ProrosiTIiON 3. Suppose (V,Q) is a semi-stmple Q-space with dim V = 5.
Let H be a subgroup of O(V)= G which enjoys the following properties:

a) H 1is invartant under transformation by elements of Qx(V,Q); that is,
if 0€Rp(V,Q), then cHo 1< H.

b) H s not contained in the center of G=0(V).

Then H will contasn an element o= 1y which is the square of a three
dimensional rotation; that is, it 18 the square of a rotation arising from a
three-dimensional space.

Proor. Pick o € H such that 6= + 1, (corollary to lemma 3). Then o
must move some non-isotropic line S(x), otherwise o= + 1, by lemma 7.
Now we can choose this o such that the plane P=38(z,q(x)) is semi-
simple, as follows: Suppose P is singular. Using o(x)2=x2, it follows by
lemma 6 that, there is a 1 € 25(V) such that A(o(x))=o0(x), Ax=2, with
S(x,z) semi-simple. Take p=A0-1A-1¢. This is in H, by hypothesis a),
and p(x) =z, hence S(,o(x)) is semi-simple. Let ¢ be this p. So we may
assume that P =38(z,s(x)) is a semi-simple plane. Using this ¢ we claim
that there is a o+ + 1, of H which keeps some non-isotropic line fixed.
To see this we may assume that ¢ moves every non-isotropic line, other-
wise take g=0g. Suppose there were a A€ Q2,(V,Q) such that it keeps
every vector of P fixed and does not commute with ¢, then p=21-10-14.
o € H, by hypothesis a) and g(x)=A4-"1(x)=2. Thus g% —1;, and Ao=0l
implies that p+1;,,. Thus we would have the desired p. To prove the
existence of the above 1 consider the cases:

i) oP+P. Let we P such that oué¢ P, so that su=v+w, veP,
we P*, with w+0. But the dimP*>3. Then one can pick a three
dimensional semi-simple subspace of P* containing w, say W, and then
find 4 € (W) which moves w (see [1, p. 105]). Extend 4 to ¥V, and get

Ao(u) = Av+w) = v+Aw) + v+w = ou = giu),

hence Ao#0A and A € Q(V).

iil) gP=P. Then oP*=P* Let 1=0|p.. Suppose 19p=p7 for all
o € 25(P¥*), then by lemma 3 we know that v= 4 1p,. But this contra-
dicts the assumption that ¢ moves the non-isotropic lines. Hence there
is a o' € Qp(P*) such that 7o' +¢'7. Extending o’ to V, by p=1p10', we
have that cp=*g0, p|p=1p.

Thus we have an element o+ + 1, in H such that o keeps a certain
non-isotropic line S(x) fixed. Then, by lemma 7, we have again that
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there must be a vector y such that y2=ax2, but S(y) is moved by o. Let
oy =z, then S(y)+8(z). Let 7, be the symmetry defined by the hyper-
plane S(x)*, that is

z U
T () =u—2—=z.
T x

Let W be a semi-simple subspace of finite dimension containing « and .
Then Witt’s theorem says that there is an element u € O(W) and hence
an element y € Op(V)=Gp, such that u(z)=y. Now ur,ul=1,,=1,,
therefore

A= TyTs = prop Tt € Qp(V.Q) .

i ey —p = dp —
Again, 01,07 '=1,=71,,=1,, and ot 07 =1,,=1,. Therefore
-1 -1 -1 -1 —
olol = a1, 1,07 = o067 l0T,07 = 1,7,

Hence ¢=o0do'Al=7,7,7,7,=7,7,. But geH, and g1y, since
S8(z)+8(y). Further o € Q4(V,Q), (ref. V) on the spinorial norm. Finally,
let P=S(y,2), then rad P=P*nP=rad P*. Since y?+0, dimradP <1,
let W be any finite dimensional semi-simple subspace of dim=mn,25
containing P. Then P*nW contains a semi-simple subspace W, of
dimension n,—3. Let U be a three-dimensional semi-simple subspace
orthogonal to W, in W. So that g is a rotation of U, since ¢ = 17,7, leaves
each element of P*, and hence those of W, fixed. But pe 2(W)<c
ker0,,, and by properties iv) and v) of 0,,, we get

o € ker0, = O*(U) n kerf,, kerf, = Q2U).

So that ¢ € 2(U) and p is a square of a rotation of U.
This completes the proof, since g+ 1, ¢ € H, and g is the square of a
rotation of U a three-dimensional semi-simple subspace of V; hence

QE 'QF( V:Q)'

Suppose now that (V,Q) contains isotropic vectors. Let U be a three-
dimensional semi-simple subspace of V, and ¢ the square of a rotation
of U. Suppose U is anisotropic. Then the axis of rotation of p is not
isotropic and thus p is the square of a rotation of an anisotropic plane P.
We prove that any anisotropic plane P can be imbedded in a three-
dimensional semi-simple subspace U’ of V containing isotropic vectors,
as follows: Select u+ 0, such that 42=0 and % is not orthogonal to P.
This is possible as follows: Let S(u,v) be a hyperbolic plane, P=S(y,z).
Then

(u+3y)? = 242 (u-v) = .

Math. Scand. 21 — 15
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Let 7:u+3y*v -y, extend 7 to V. Then 7: S(u,v) - S(¢,s) a hyper-
bolic plane containing y, so that

T ut+dytov > t+dyts=y,  HE+dyts) = 2 £ 0.

Hence this ¢ works. Let « then be such that u2=0 and not w1 P, set U’ =
S(y,z,u). If U’ were singular, and S(v) its radical, then S(v) would be
the only isotropic line of U’, since P is anisotropic. So that S(v)=S(u)
and this implies that » € P*, contradicting the fact that not » L P. Hence
U’ is semi-simple. This proves our assertion, so that we may assume
that g is the square of rotation of U which contains isotropic vectors in
the first place. This also proves that the generators (see [1, p. 135])
(1, 7,)? of Qp(V) are squares of rotations of three-dimensional subspaces
U which contain isotropic lines. We will use this remark below.

Now let (V,Q) be a semi-simple @-space of dimension =5, containing
isotropic vectors and H a subgroup of O(V) as in the proposition above.
Let

e € HnQy(V), o#*ly,

and such that g is the square of a rotation of a three-dimensional semi-
simple subspace U containing isotropic vectors.

i) Suppose k contains more than three elements. Then from the finite
dimensional theory we know that Q(U)~P S L,(k), the projective special
linear group, is simple. HnQ(U) contains ¢ and is an invariant subgroup
of 2(U), hence 2(U)< H, by simplicity of 2(U). The subspace U con-
tains a hyperbolic plane P and therefore H contains 2(P). Let U’ be a
subspace, such as U, P’ a hyperbolic plane of U’. By lemma 5, there is a
A € Qp(V) such that P'=AP. So that Q(P')=1Q2(P)A-1, hence Q(P')c H.
The group (U’) is simple and Q(U’')nH22(P’), a non-trivial group.
But 2(U’')nH is invariant in 2(U’), hence 2(U’) < H. This implies that H
contains all generators of 24,(V), and hence H contains Q,(V,Q).

ii) Suppose £=GF(3). We use the fact that a finite dimensional
@-space over a finite field contains a proper subspace of arbitrary pre-
scribed geometry (by use of lemma 1 repeatedly). Since dim ¥V =5, we
can find a semi-simple subspace V,’" of dimension 4 which is of index 1.
Then the subspace V,' contains a three-dimensional subspace U’ iso-
metric to U, by use of the same fact. So by extending this isometry of
U’ with U to V, U is contained in a 4-dimensional semi-simple subspace
Vo, of V with index 1. And again by the finite dimensional theory the
group (V,) (~P 8Ly(kd?)) is simple. Further Q(V,)nH contains .
Hence 2(V,)<H. Then, as before, with ¥, any 4-dimensional semi-
simple subspace of index 1, we have again (V,)< H. If U’ is any sub-
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space such as U we can imbed it in such a space V;. Thus we can get
QU')cH. And, as in i) we thus have Q4(V)< H. We have proved

THEOREM 3. Suppose (V,Q) is a semi-simple quadratic space of dimen-
ston 25, and that V contains isotropic vectors. Let H be a subgroup of
O(V) having the following properties:

i) H is invariant under transformation by Q5(V.Q); that is to say, if
T€R(V,Q), then tHr1cH.

ii) H 4s not contained in Z(V,Q).

Then Qp(V.Q)cH.

CoROLLARY. Let (V,Q) be a semi-simple quadratic Q-space of dimension
25, containing isotropic vectors. Let H be a closed normal subgroup of
O(V,Q), provided with the finite topology, such that H&Z(V,Q). Then H
contains the closure of Qx(V,Q).

If H is also in Qgx(V), then H=Qz(V).

Now since (' is dense in G =0(V), then by continuity of multiplication
Qp(V,Q)=0(V,Q) =2(V,Q), the commutator subgroup of O(V). Hence
we have

THEOREM 4. Let (V,Q) be a semi-simple quadratic space of dimension
= 5 containing isotropic vectors. Then the group 2(V,@Q)/Z(V.,Q)n2(V,Q),
where Q(V,Q) = closure of the group of commutators of O(V ,Q), and Z(V Q)=
center of O(V,Q), s a simple topological group.

Remark 1. If we provide the general linear group of an infinite dimen-
sional linearly topologized vector space with the finite topology, we get
a topological group. Using the same type of definitions and analysis with
the aid of the problems in Bourbaki [2, pp. 97-99], we can prove easily
a similar theory for the projective special linear group of the general
linear group.

Remark 2. For the spaces of the type considered in theorem 4 we have
a new way to prove that O(V,Q) is not compact; namely, if O(V,Q) is
compact, then, since it is also totally disconnected, there exist arbi-
trarily small open normal subgroups. But this contradicts theorem 3,
and hence O(V,Q) could not be compact.

Finally, let us consider when Q(V,Q)=0(V,Q). Since Q(V,Q)=
Q(V,Q), it suffices to know when Q4(V,Q) is dense in O(V,Q). Again,
since O(V,Q) = G, it suffices to ask when Q,(V,@)2Gy. That is, for any
6 € Gy, and any F € &, does there exist an 7 € g(E) such that ¢-n € 2.
It is clear that such 5 must exist in order that 2(V,Q)=0(V,Q); also if
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it does exist, then n € Gzng(&). Hence, it has a norm, 6,(n)=06(y), for
some W e &,. Further, we have 0(on)=0(7)=1, since on=1 € Qx(V,Q);
so that 0(c)=0(n). Now 5 e O(E*)nGy and we may always pick 7 such
that 0(c)=0(n) if E* has isotropic vectors (if it does not, we may not be
able to find % such that 6(n)=0(s)). Thus we have

THEOREM 5. Let (V,Q) be a semi-simple quadratic space of dimension
25 containing tnfinitely many linearly independent isotropic wvectors.
Then we have the diagram

{1y} ZynQ(V,Q) < AV,Q)=0(V.Q).

A group of A simple topo-
order 1 or 2. logical group.
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